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Abstract. We present a randomized procedure named Hierarchical Sampling from Sketches
(Hs9) that can be used for estimating a class of functions over the frequency Veofoup-

date streams of the fort(S) = >""_, o (| fi|). We illustrate this by applying the $ttechnique

to design nearly space-optimal algorithms for estimatingithenoment of the frequency vector,

for realp > 2 and for estimating the entropy of a data stream.

1 Introduction

A variety of applications in diverse areas, such as, networking, database systems, sensor net-
works, web-applications, share some common characteristics, namely, that data is generated
rapidly and continuously, and must be analyzed in real-time and in a single-pass over the data
to identify large trends, anomalies, user-defined exception conditions, etc.. Furthermore, it is
frequently sufficient to continuously track the “big picture”, or, an aggregate view of the data.

In this context, efficient and approximate computation with bounded error probability is of-
ten acceptable. The data stream model presents a computational model for such applications,
where, incoming data is processed in an online fashion using sub-linear space.

1.1 The data stream model

A data streans® is viewed as a sequence of records of the fpws ¢, v), where,posis the

index of the record in the sequendes the identity of an item iril,n] = {1,...,n}, and

v is the changeto the frequency of the item: > 0 indicates an insertion of multiplicity

v, while v < 0 indicates a corresponding deletion. The frequency of an iteshenoted by

fi, is the sum of the changes to the frequency sfnce the inception of the stream, that

3 Preliminary version of this paper appeared as the following conference publications. “Simpler algorithm for es-

timating frequency moments of data streams”, Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh and
Chandan Sah#®&roceedings of the ACM Symposium on Discrete Algoritl2®86, pp. 708-713 and “Estimat-

ing Entropy over Data Streams”, Lakshminath Bhuvanagiri and Sumit Garfalyeedings of the European
Symposium on Algorithms, Springer LNCS Volume 4@68148-159, 2006.



IS, fi = 2_(posi,v) appears ins V- 1he€ following variations of the data stream model have been
considered in the research literature.

1. Theinsert-onlymodel, where, data streams to not have deletions, that:is,0 for all
records. Theunit insert-onlymodel is a special case of the insert-only model, where,
v = 1 for all records.

2. Thestrict update modelwhere, insertions and deletions are allowed, subject to the con-
straint thatf; > 0, for all i € [1,n].

3. Thegeneral update mode¥here no constraints are placed on insertions and deletions.

4. The sliding window modelwhere, a window size paramet8f is given and only the
portion of the stream that has arrived within the [#Sttime units is considered to be

relevant. Records that are not part of the the current window are deemed to have expired.

In the data stream model, an algorithm must perform its computations in an online manner,
that is, the algorithm gets to view each stream record exactly once. Further, the computa-
tion is constrained to use sub-linear space, thai(islog F1) bits, where,[y = >~ .| fi|.
This implies that the stream cannot be stored in its entirety and summary structures must be
devised to solve the problem.

We say that an algorithm estimates a quantityvith e-accuracy and probability — ¢
if it returns an estimate that satisfi@ — C| < eC with probability 1 — §. The probability
is assumed to hold for every instance of input data and is taken over the random coin tosses
used by the algorithm. More simply, we say that a randomized algorithm estidiatgth
e-accuracy if it returns an estimate satisfyinfg— C| < eC with constant probability greater
than% (for e.g.,%). Such an estimator can be used to obtain another estimatdr that
is e-accurate and is correct with probability— 6 by following the standard procedure of
returning the the median af= O(log %) independent such estimat€s, . . ., Cs.

In this paper, we consider two basic problems in the data streaming model, namely, esti-
mating the moment of the frequency vector of a data stream and estimating the entropy of a
data stream. We first define the problems and review the research literature.

1.2 Previous work on estimatingF;, for p > 2

For any reap > 0, thep™ moment of the frequency vector of the stre&ris defined as
Fy(8) =Y _Ifil” .
i=1

The problem of estimating), has led to a number of advancements in the design of algo-
rithms and lower bound techniques for data stream computation. It was first introduced in



[1] that also presented the first sub-linear space randomized algorithm for estitfgtiiog

p > 1 with e-accuracy and using spaCE(E%nl—l/p log F) bits. For the special case &%,

the seminal sketch technique was presented in [1], that uses@pé;:h)g F) bits for esti-
mating F5 with e-accuracy. The work in [9, 13] reduced the space requirementdocurate
estimation ofF},, for p > 2, to O (5n!~1/P=D(log F})).* The space requirement was re-
duced in [12] toO(n'~%/®+1)(log F)), for p > 2 andp integral. A space lower bound of
Q(nk%) for estimatingF,, for p > 2, was shown in a series of contributions [1, 2, 7] (see
also [20]). Finally, Indyk and Woodruff [18] presented the first algorithm for estimating

for realp > 2, that matched the above space lower bound up to poly-logarithmic factors. The
2-pass algorithm of Indyk and Woodruff requires spadet; n'~%/?(log? n)(log® F1)) bits.

The 1-pass data streaming algorithm derived from the 2-pass algorithm further increases the
constant and poly-logarithmic factors. The work in [24] present@(}eé) space lower bound

for e-accurate estimation df,, for any realp # 1 ande > ﬁ

1.3 Previous work on estimating entropy

The entropyH of a data stream is defined as

| fil Fy

H = Vil joe 71

A Z B fil
1€[1,n]:f;#£0

It is a measure of the information theoretemdomnes®r theincompressibilityof the data
stream. A value of entropy close tog n, is indicative that the frequencies in the stream are
randomly distributed, whereas, low values are indicative of “patterns” in the data. Monitoring
changes in the entropy of a network traffic stream has been used to detect anomalies [15, 22,
25]. The work in [16] presents an algorithm for estimatiHgover unit insert-only streams

to within a-approximation (i.e.% < H < bH anda - b < «) over insert-only streams
using spac@(%). The work in [5] presents an algorithm for estimatifigto within «-
approximation over insert-only streams using sp@o(e}ZFf/o‘(log Fy)?(log Fy + log n)).
Subsequent to the publication of the conference version [3] of our algorithm, a different al-
gorithm for estimating the entropy of insert-only streams was presented in [6]. The algorithm
of [6] requires space (= (log n)(log F1)(log F1 + log(1/¢))) respectively. The work in [6]

also shows a space lower boundm(wl(l/e)) for estimating entropy over a data stream.

4 The algorithm of [13] assumasto be integral.



1.4 Contributions

In this paper we present a technigue caliétarchical sampling from sketches Hss, that is

a general randomized technique for estimating a variety of functions over update data streams.
We illustrate the Ks technique by applying it to derive near-optimal space algorithms for
estimating frequency moments, for realp > 2. The Hssalgorithm estimates,, for any

realp > 2 to within e-accuracy using space

2
0 <€2€4/p =27 . (log F1)? - (log n + log log F1)2>

Thus, the space upper bound of these algorithms match the lower bounds up to factors that
are poly-logarithmic inFy, n and polynomial in%. The expected time required to process
each stream update 3(log n + loglog F) operations. The algorithm essentially uses the
idea of Indyk and Woodruff [18] to classify items into groups, based on frequency. However,
Indyk and Woodruff define groups whose boundaries are randomized; in our algorithm, the
group boundaries are deterministic. Thedtechnique is used to design an algorithm that
estimates the entropy of general update data streams to widtdouracy using space

(log FY)?
© <e3 log(1/4)

Organization. The remainder of the paper is organized as follows. In Section 2, we review
relevant algorithms from the research literature. In Section 3, we presentstheehnique

for estimating a class of data stream metrics. Sections 4 and 5 usesth&ethnique to
estimate frequency moments and entropy, respectively, of a data stream. Finally, we conclude
in Section 6.

- (logn + log log F1)2>

2 Preliminaries

In this section, we review the @NTSKETCH and the @UNT-MIN algorithms for finding
frequent items in a data stream. We also review algorithms to estimate the residual second
moment of a data stream [14]. For completeness, we also present an algorithm for estimating
the residual first moment of a data stream.

Given a data streamiank(r) is an item with ther'” largest absolute value of the fre-
quency, where, ties are broken arbitrarily. We say that aniteas rank- if rank(r) = i. For
a given value of, 1 < k < n, the setop(k) is the set of items with rank k. The residual
second moment [8] of a data stream, denote&B(k), is defined as the second moment of
the stream after the top{requencies have been removed, thafi§i(k) = 3=, fan-



The residual first moment [10] of a data stream, denoted'}§y, is analogously defined
as theF; norm of the data stream after the tbdrequencies have been removed, that is,

F{es = Zr>k ‘frank(r)|'

Sketches. A linear sketch{1] is a random integeX = . f; - z;, where,z; € {—1,+1},
fori € [1,n] and the family of variable$z; };c (1 ,, is either pair-wise or 4-wise independent,
depending on the use of the sketches. The family of random variéblés p is referred to
as thelinear sketch basisFor anyd > 2, ad-wise independent linear sketch basis can be
constructed in a pseudo-random manner from a truly random seed @b &ieg n) bits as
follows. Let F' be field of characteristic 2 and of size at least 1. Choose a degreé— 1
polynomialg : ' — F with coefficients that are randomly chosen fréni4, 23]. Definex;
to be 1 if the first bit ofy(7) is 1, and define; to be—1 otherwise. Thel-wise independence
of the z;’s follows from Wegman and Carter’s universal hash functions [23].

Linear sketches were pioneered by [1] to present an elegant and efficient algorithm for
returning an estimate of the second momeéntof a stream to within a factor ofl + ¢)
with probability%. Their procedure keeps= O(}Q) independent linear sketches (i.e., using
independent sketch bases), Xs, ..., X;, where, the sketch basis used for ea¢hs four-
wise independent. The algorithm retutfisas the average of the square of the sketches, that
is, [ = 1375 ) X7. Acrucial property observed in [1] is thB{ X 7] = F; andVar[X?] <
5FZ. In the remainder of the paper, we abbreviate linear sketches as simply, sketches.

COUNTSKETCH algorithm for estimating frequency. Pair-wise independent sketches are
used in [8] to design the @QUNTSKETCH algorithm for estimating the frequency of any given
itemsi € [1,n] of a stream. The data structure consists of a collection-efO(log 3 ) inde-
pendent hash tablés,, Us, . .., U, each consisting dfk buckets. A pair-wise independent
hash functiom; : [1,n] — {1,2,...,8k} is associated with each hash table that maps items
randomly to one of th8k buckets. Additionally, for each table indgx= 1,2, ..., s, the al-
gorithm keeps a pair-wise independent family of random variaples ;< »;, Where, each

zy; € {—1,+1} with equal probability. Each bucket keeps a sketch of the sub-stream that
maps to it, that islU;[r] = > ;. )=y fizis @ € {1,2,...,s} andj € {1,2,...,s}. An
estimatef; is returned as followsf; = mediarj_, U;[h;(i)]zi;. The accuracy of estimation

is stated as a functiod of the residual second moment defined as [8]

As, A) & <F56:1(3)>1/2 _




The space versus accuracy guarantees of theNG SKETCHalgorithm is presented in The-
orem 1.

Theorem 1 ([8]). Let A = A(k,8k). Then, fori € [1,n], Pr{]fi — fil < A} >1-0.
The space used 8(k(log 5)(log F1)) bits and the time taken to process a stream update is
O(log ). 0

COUNT-MIN Sketch for estimating frequency. The CouNT-MIN algorithm [10] for esti-
mating frequencies keeps a collectiorsof O(log %) independent hash tabl&s, Ts, . . ., T,
where, each hash tablg is of sizeb = 2k buckets and uses a pair-wise independent hash
functionh; : [1,n] — {1,...,2k}, for j = 1,2,...,s. The bucketl}[r] is an integer
counter that maintains the following sumij[r] = >_;.;, ;). fi- The estimated frequency

fi is obtained asf; = mediari_,7}[h;(i)]. The space versus accuracy guarantees for the
CouNT-MIN algorithm is given in terms of the quantify (k) = >, .| frank(r) |-

Theorem 2 ([10]). Pr {]f, —fil < FIT('“)} > 1-4. The space used@ (k(log ) (log F}))
bits and timeO (log ) to process each stream update. 0

Estimating F5¢°. The work in [14] presents an algorithm to estim&t®(s) to within an
accuracy of(1 + ¢) with confidencel — § using space (% log(F1)log(%)) bits. The data
structure used is identical to thedONTSKETCH structure. The algorithm basically removes

the tops estimated frequencies from thedONTSKETCH structure and then estimatés.

The COUNTSKETCH structure is used to find the tdpitems with respect to the absolute
values of their estimated frequencies. [gt| > ... > |f., | denote the top: estimated
frequencies. Next, the contributions of these estimates are removed from the structure, that
is, Us[r]:=Ujlr] = > p, (r)=r frijm, - Subsequently, theASTAMS algorithm [21], a variant

of the original sketch algorithm [1], is used to estimate the second moment as fdﬁ%ﬁ?v&

mediar_; 3-5%, (U;[r])2. If k = O(e~2s), then,|[Fy™ — F5es| < Fy” [14].

Lemma 1 ([14]). For a given integetk > 1 and0 < e < 1, there exists an algorithm for
update streams that returns an estimatgs* (k) satisfying| F3¢* (k) — F3°* (k)| < eF3° (k)
with probability 1 — & using space (% (log &t )(log FY)) bits. O

Estimating F7*®. An argument similar to the one used to estim&a}e’ (k) can be applied
to estimatef7“*(k). We will prove the following property in this subsection.



Lemma 2. For 0 < ¢ < 1, there exists an algorithm for update streams that returns an
estimateF7** satisfyingPr {|F{65 — Fres(k)| < eF{eS(k:)} > 3. The algorithm uses
0 <k(10§F1) n (logFl)(log;Hrlog(l/G))) bits. 0

The algorithm is the following. Keep adbUNT-MIN sketch structure with height where,
bis a parameter to be fixed, and width= O(log % ). In parallel, we keep a set of= O(E%)
sketches based on a 1-stable distribution [17]. A one-stable sketch is a linear Bketch
>, fizji, where, thez; ;'s are drawn from a 1-stable distribution= 1,2, ..., s. As shown
by Indyk [17], the random variable

- . - ~ 7
Y = mediarj_, |Y;| satisfiesPr {]Y - < eFl} > 3

The CoUNT-MIN structure is used to obtain the tépelements with respect to the absolute
value of their estimated frequencies. Suppose these itemg are . . , i, and\fily > |fi2| >

. > |f}k|. Let I = {iy,i2,...,i;}. Each one-stable sketdj is updated to remove the
contribution of the estimated frequencies. That is,

k
Y =Y =Y fiziin -
r=1
Finally, the following value is returned.
Fyes(k) = mediarf_, |Y7| .
We now analyze the algorithm. L&t = T}, = {¢1,12,...,t;} denote the set of indices

of the top# (true) frequencies, such thigh, | > | fi,| > ... > |fi, |-

Lemma 3.

Fems Y U< rew (1)

i€[ln], il

Proof. Since bothI" and I are sets of; elements each, thereford, — I| = |I — 7. Let
i — 1/ be an arbitrary 1-1 map fromhe 7' — I to an element’ in I — T. Since,i is a top
frequency and’ is not, thereforef; > fi. Further,fi/ > fZ otherwise; would be among
the top#4 items with respect to estimated frequencies, thatvimuld be inI, contradicting
thati € 7' — I. The conditionf; > f; implies the following.

fi—A<fi<fo<fr+A
with probability1 — 2, or, thatf; < f; + 2A, with probability1 — 2. Therefore,

fi<fi<fo+A.



Thus, using union bound for all items fih, ], we have with probability — %

S D> A DY futA= D fitkA . 1)

iel-T ieT—1 iel-T iel-T
Let
G= > 1fil=> f+ > h
i€(l,n]-1 €T—1 1Z(TUI)
By (1), it follows that

i+ > i < G

el-T iZ(TUI) iel-T 1Z(TUI)

Sinceine[_T fz + ZiQ(TUI) f7, = F{ES(]{J), we have,

IN
g
=
+
5
DS
+
g
o

Fres(k) < G < FI°(k) + kA .

(

By Theorem 2, we have) < k) . Therefore,

F{(k) < G < F1*(k) (1 + IZ) , with prob.1 —g . O

Proof (Of Lemma 2.)Let f’ denote the frequency vector after the estimated frequencies are
removed. Then,

. fr ifrefl,n] -1
"= ifrel

Let Iy denoted .y ,,[f;|- Then, by Lemma 3, it follows that

T‘ES 2k
= > A+> (fi-f)<G+kA<F (k:)<1+b>

i€[l,n]—1 iel

since,A < 1 I;(b) < H ;(k). Further,

= > L+>(fi-f)=2G-kA>F Tes(k)(l—i)

i€[l,n]—TI el

Combining,

k 2k
F1 (k) (1 - b) < F{ < F{*(k) (1 + b)



with probability1 — 2-%(%), By construction, the 1-stable sketches technique retiffis=
mediarj_, Y| satisfyingPr {|F{65 —F|| < eF{} > I. Therefore, using union bound

. 2k 2k\ .
[FYe = F{ (k)] < S F (k) + eF{ (k) (1 + b) with prob.g —n2~ W)
If b > [2%], then,

|E7es — FTes (k)| < 3eFye(k) with prob% .

Replacinge by €/3 yields the first statement of the lemma.

The space requirement is calculated as follows. We use the idea of a pseudo-random gen-
erator of Indyk [17] for streaming computations. The state of the data structure (i.e., stable
sketches) is the same as if the items arrived in sorted order. Therefore, as observed by Indyk
[17], Nisan’s pseudo-random generator [19] can be used to simulate the randomized com-
putation usingO(S log R) random bits, where$ is the space used by the algorithm (not
counting the random bits used) aRds the running time of the algorithm. We apply Indyk’s
observation to the portion of the algorithm that estimdtgsThus,S = O ((10572&)) and the
running timeRk = O (%) assuming the input is presented in sorted order of items. Higre,
is the number of distinct items in the stream with non-zero frequency. Then the total random
bits required igD(Slog R) = O ((log Fl)(1°§2"+l°g(1/5)>. O

3 The Hssalgorithm

In this section, we present a procedure for obtainimgmesentative samplever the in-
put stream, which we refer to &$ierarchical Sampling over Sketch@dss) and use it for
estimating a class of metrics over data-streams of the following form

w(S) = > vlfil) - @
i: fi 70

Sampling sub-streamsThe Hss algorithm uses a sampling scheme as follows. From the
input streamS, we create sub-streanss, ..., Sy, such thatSy = Sandforl <[ < L, §
is obtained fromS;_; by sub-sampling each distinct item appearingsjn, independently
with probability%. At level 0, Sy = S. The streans;, corresponding to levdl, is obtained
by sampling choosing each distinct valuei afith independently, with probabilitg. Since,
the sampling is based on the identity of an iténeither all records irS with identity ¢
are present ib1, or, none are—each of these cases holds with proba%ilﬂl;he strean®s,,



corresponding to levet is obtained by sampling each distinct valueiadppearing in the

sub-streand;, with probability% and independently of the other itemsSnp. In this manner,

&, is a randomly sampled sub-streamf 1, for [ > 1, based on the identity of the items.
The sub-sampling scheme is implemented as follows. We assume that power of

2. Leth : [1,n] — [0,max(n?, W)] be a random hash function drawn from a pair-wise

independent hash family afl > 2F;. Let L,.x = [log(max(n?, W))]. Define the random

function level: [1,n] — [1, Lyax] as follows.

1 if h(i) =0

level(i) =
eVe( ) |Sb(h(z)) 2 < |eV€l(i) < Limax -

where,lsb(x) is the position of the least significant “1” in the binary representation dhe
probability distribution of the random level function is as follows.

+1 ifr=1
Pr{level(i) =1} = "
otherwise.

l\i‘,_\ D=

All records pertaining ta are included in the sub-strearfig throughSieye(;)- The sampling
technique is based on the original idea of Flajolet and Martin [11] for estimating the number
of distinct items in a data stream. The Flajolet-Martin scheme maps the original stream into
disjoint sub-streams;, S5, . .. ,S’ﬂogn], where,S] is the sequence of records of the form
(pos i,v) such that level) = [. The Hsstechnique creates a monotonic decreasing sequence
of random sub-streams in the sense thad S;1 O S»... D ;.. andS; is the sequence

of records for item such that level) > 1.

max

Ateach level € {0,1,..., Lmax}, the Hssalgorithm keeps a frequency estimation data-
structure denoted b¥;, that takes as input the sub-stre&mand returns an approximation
to the frequencies of items that map&p The D; structure can be any standard data struc-
ture such as the @INT-MIN sketch structure or the @NTSKETCH structure. We use the
COUNT-MIN structure for estimating entropy and th@ NTSKETCH structure for estimat-
ing F,,. Each stream updatpds ¢, v) belonging taS; is propagated to the frequent items data
structureD; for 0 < I < level(i). Letk(l) denote a space parameter for the data stru@re
for example k(1) is the size of the hash tables in th@ ONT-MIN or COUNTSKETCH struc-
tures. The values df(l) are the same for levels= 1,2, ..., Ly and is twice the value
for k(0). That is, ifk = k(0), then,k(1) = ... = k(Lmax) = 2k. This non-uniformity
is a technicality required by Lemma 4 and Corollary 1. We refek te k(0) as the space
parameter of the BIS structure.



Approximatingf;. Let A;(k) denote the additive error of the frequency estimation by the
data structuré;) at levell and using space parameterThat is, we assume that

it — fil < Ay(k) with probability1 — 27

where,t is a parameter angiu is the estimate for the frequency ¢@f obtained using the
frequent items structurB,; (k). By Theorem 2, ifD; is instantiated by the QUNT-MIN sketch
structure with height and width[log ], then, f” — fil < %M with probability1 —27¢.

If D, is instantiated using the @NTSKETCH structure with heigh8% and widthO(log t),
then, by Theorem 1, it follows thaf,; — f;| < 8 (F’i%(""”)l/ * with probability 1 — 2.
We first relate the random valué$©®(k, 1) andF;°* (k, [) to their corresponding non-random
valuesFye* (k) andF5e* (k), respectively.

Lemma 4. Forl > 1andk > 2, Pr{F{'es(k,l) < %jl’“)} > 1 —2ek/6.

Proof. For itemi € [1,n], define an indicator variable; to be 1 if records correspond-
ing to ¢ are included in the stream at levelnamely,S;, and letz; be 0 otherwise. Then,
Pr{z; =1} = % Define the random variablg ; as the number of items i, »] with rank
at most2!~1k in the original strean® and that are included ify;. That is,

Tiy = > T .
1<rank(i)<2!=1k
By linearity of expectationk [le] = zl;k = g Applying Chernoff’s bounds to the sum of
indicator variabled; ;, we obtain

PriTis >k} <e*/0 .

Say that the evergPARSE!) occurs if the element with rank+ 1 in S; has rank larger than
2!~k in the original streans. The argument above shows tiRat{ SPARSEI)} > 1 —e~*/6,
Thus,

F{(k,0)< > |filzi, assumingsPARsEI) holds. 3)

rank(i)>2t—1k
By linearity of expectation

Flres(2l71k)

E[F{®(k,l) | SPARSE])] < >



Supposey; is the frequency of the item with rarikk+ 1 in ;. Applying Hoeffding’s bound
to the sum of non-negative random variables in (3), each upper boundedveg have,

Pr {F7°* (I, 1) > 2E[F[*(k,1)] | sPARSE])} < e [P (k0] /Gun)
or,

Fres 2l71k res /ol—
Pr{F{es(k:,l) <1 = 2 25_1 | SPARSE(Z)} < e FIe@TR/B2w) (4)

Assuming the eversPARSE]!), it follows thatu; < franar-1411)-

1 Fes(2172k)
up < m Z ‘frank(i)| < W
2l=2+1<rank(i)<2!—1(k)

or,

Flres (2l—1 kj)
u

<22k

Substituting in (4) and taking the probability of the complement event, we have,

Flres(2l—1k)

Pr {F{es(kz, <=5

] SPARSE(Z)} >1—e M0,

Since,Pr {SPARSEI)} > 1 — e ¥/,

F{es(Ql_ll{:)

Pr {F{%(k, )< =55

} > (1 — e */6). Pr{sparsKIl)}
=(1—ek/0)2 51 e k/6

Fges (21— 1 k‘)

2 ) with probability> 1 — 276,

Corollary 1. Foril > 1, F5*%(k, 1) <

Proof. Apply Lemma 4 to the frequency vector obtained by replagintgy f?2, fori € [1, n].

3.1 Group definitions

Recall that at each levél the sampled streai is provided as input to a data structupg
that when queried, returns an estimﬁgefor anyi € [1, n| satisfying

Ifi,l — fi| < 4;, withprob.1 —27" .

Here,t is a parameter that will be fixed in the analysis and the additive etras a function
of the algorithm used b, (e.g.,4; = F7**(k)/(2!"1k) for COUNT-MIN sketches and



Ay = Fes(k) /(2! 'k) for COUNTSKETCH). Fix a parametet which will be closely related
to the given accuracy parametgrand is chosen depending on the problem. For example, in
order to estimaté’,, € is set to;. Therefore,

fi,l € (1+e)f;, provided,f; > %, andi € S;, with prob.1 — 27" .
Define the following event
GOODEST = |fi; — fi| < 4, for eachi € S;andl € {0,1,...,L} .
By union bound,
Pr{GOODEST} > 1 —n(L+1)27" . (5)

Our analysis will be conditioned on the evenbGDEST.

Define a sequence of geometrically decreasing threstglds, . . . , 77, as follows.
T 1
ﬂ:i%zz1g,“¢am§<71§1. (6)

In other words,L = [logTy|. Note thatL and Ly, are distinct parameters,, . is a data
structure parameter and is decided prior to the run of the algorithima dynamic parameter
that is dependent dfy and is instantiated at the time of inference. In the next paragraph, we
discuss howry is chosen. The threshold valuégs are used to partition the elements of the
stream into groupé&, . . . , G, as follows.

GQZ{iESI ‘fz‘ZTO} and Gl:{iESZ ﬂ<‘fi‘§ﬂ,1}, l=1,2,...,L .

An item3 is said to bediscovered as frequeat levell, provided,; maps taS; andﬁ»,l > Q,
where,Q;,1 =0,1,2..., L, is a parameter family. The values@f are chosen as follows.

Q=Ti(1—¢€) ()
The space parametg(l) is chosen at levélas follows.

AOZAO(k) §€Q07 AOZAI(Qk) SEQlal:]-72v"°7L . (8)

The choice ofTy. The value ofTj is a critical parameter for the $6 parameter and its
precis choice depends on the problem that is being solved. For example, for estifjating

. a0\ /2 L L -
Ty is chosen ag(llfg) (%) . For estimating the entropd/, it is sufficient to choos&j as



(11 3 Flm(k/) , Where k' andk are parameters of the estimation algoritAtnmust be chosen

as small as possible subject to the following propedty < (1 — €) 5 Zo |Lemma 4 and Corol-
lary 1 show that for the GUNT-MIN structure and the QUNTSKETCH structure, Iy can be

res 1/
chosen to be as small é%— and (F k) , respectively. Since, neithér]**(k) nor
F5°(k) can be exactly computed in sub-linear space, therefore, the algorithms of Lemmas 1
and Lemma 2 are used to obtaﬁmpproximation% to the corresponding quantities. By re-

( ) ok

placingk by 2k at each level, it suffices to defifig as’

1/2
or as( ) , respectively.

3.2 Hierarchical samples

Items are sampled and placed into sampled gréups.1, . . ., G, as follows. The estimated
frequency of an item is defined as

fi = fir, where,r is the lowest level such thgt,. > Q, .
The sampled groups are defined as follows.
Go={i:|fi| >ToyandG = {i: Tji_1 < |f;| <Tjandie §},1 <1< L .

The choices of the parameter settings satisfy the following properties. We use the following
standard notation. Faer,b € R anda < b, (a, b) denotes the open interval defined by the set
of points betweer andb (end points not included]q, b] represents the closed interval of
points between andb (both included) and finally, and, ) and(a, b] respectively, represent

the two half-open intervals. Partition a frequency gragpfor 1 < [ < L — 1, into three
adjacent sub-regions:

Imargin(G;) = [T}, T; + €Qy], 1 =0,1,...,L —1andis undefined far= L.
rmarginG;) = [Q—1 — éQ;_1,T1—1), 1 =1,2,..., L andis undefined far= 0.
mid(G)) = (T} + €Q1, Q-1 — €Qy), 1<I<L-1

These regions respectively denotelthargin (left-margin),rmargin (right-margin) andaniddle-
regionof the group,;. An items is said to belong to one of these regions if its true frequency
lies in that region. The middle-region of groug% and (| is extended to include the right
and left margins, respectively. That is,

Imargin(Go) = [To, To + €Qo) and mid Go) = [T + €Qo, F1]
rmarginGr) = (Qr—1 — éQr—1,Tr—1) and midGy) = (0,Qr—1 — €éQr—1] -

5 More accurate estimates B§** and F7°* can be obtained using Lemmas 1 and Lemma 2, but in our applica-
tions, a constant factor accuracy suffices.



Important Convention. For clarity of presentation, from now on, the description of the
algorithm and the analysis throughout uses the frequerfcigstead of| f;|. However, the
analysis remains unchanged if the frequencies are negativefans used in terms of;.

The only reason for making this notational convenience is to avoid wiifimg many places.

An equivalent way of viewing this is to assume that the actual frequencies are given by an
n-dimensional vectoy. The vectorf is defined as the absolute valuegoftaken coordinate

wise, (i.e.,f; = |g;| for all 7). It is important to note that the $5technique is only designed

to work with functions of the fornd """, ¢(|g;|). All results in this paper and their analysis,

hold for general update data streams, where, item frequencies could be positive, negative or
zero.

We would now like to show that the following properties hold, with probability 2= each.

1. Items belonging to the middle region of afy may be discovered as frequent, that is,
fir > Q,, only at a level- > I. Further,f; = f;;, that is, the estimate of its frequency
is obtained from level. These items are never misclassified, that is piélongs to some
sampled grougs,, then,r = 1.

2. Items belonging to the right region 6f, may be discovered as frequent at levet [ — 1,
but not at levels less than— 1, for [ > 1. Such items may be misclassified, but only to
the extent that may be placed in eithe®;_; or G;.

3. Similarly, items belonging to the left-region 6f; may be discovered as frequent only at
levelsi or higher. Such items may be misclassified, but only to the extent thalaced
either inG; orin Gy 1.

Lemma 5 states the properties formally.
Lemmab. Lete < % The following properties hold conditional on the ev&WODEST.

1. Suppose € mid(G;). Then,i is classified inta®; iff i € S; and f; = fi;. If i ¢ S, then,
f; is undefined andis unclassified.

2. Supposeé € Imargin(G;), forsomd € {0,1,...,L—1}.1fi € §;, then, is not classified
into any group. Supposec S;. Then, (1)i is classified intaG; iff i € S; and fll > 1T,
and, (2)i is classified inta; 1 iff i € Sjy1 fi; < T). In both casesf; = fi;.

3. Suppose € rmargin(G;) for some somé € {1,2,...,L}. If i & S;_y, then, f; is
undefined and is unclassified. Supposec S;_1. Then,

(a) 7 is classified intoG;_; iff (1) fu_l > T4, 01, (2) fz‘,l—l < @ andi € §; and
fir > T_1.Incase (1)f; = f;;_1 and in case (2)/i = fi..

(b) i is classified intaG; iff i € S; and either (1)f;,_1 > Q;_1 and f; < T;_, or, (2)
fiio1 < Q1 andf; = f;;. Incase (1)f; = fi;—1 and in case (2); = fi,.



Proof. We prove the statements in sequence. Assume that the ezeEST holds.

Let: € mid(G;). If I = 0 then the statement is obviously true, so we consider 1.
Supposé € S, for somer < [, ands is discovered as frequent at levelthat is,fi,r > Q..
Since, @ODEST holds, thereforef; > Q, — A,. Since,i € mid(G)), fi; < Qi—1 — €Q;—1.
Combining, we have

Qi1 —€Qi_1> i 2 Qr — Ar = Qr — €Q;

which is a contradiction for <[ — 1. Therefore; is not discovered as frequent in any level
r < l. Hence, ifi € S;, i remains unclassified. Now suppose that S;. Since, @ODEST
holds,f“ < fi + 4. Since;i € mid(G)), fi; < Q-1 — €Q;—1. Therefore,

i <Qia—eQ 1+ A < Qi 9

since,A; = éQ; = €Q;_1/2. Further,i € mid(G)) implies thatf; > T; + €Q,. Since,
GOODEST holds,

fu>fi—-A>Ti+eQ — A =T, (10)
since,4; = éQ;. Combining (9) and (10), we have,
Ty < fig<Q1<Tiy .

Thus,i is classified intaG;.

We now consider statement (2) of the lemma. Assume tf@b@EST holds. Suppose
i € Imargin(G;), forl € {0,1,..., L —1}. Then, T} < f; < T; + €Q; = T; + 4A;. Suppose
r < [. We first show that ifi € S, then,i cannot be discovered as frequent at leyethat
is, f” < Q.. Assume to the contrary thzf’g,r > (@,. Since, @ODEST holds, we have,

fir < fi + A, Further,A, = €Q, andQ,. = (1 — &)T;.. Therefore,
T,(1-8?=Q, — A < fi <Ti + A =T1(1+&1—¥9) .

Since,T, = T; - 21—,

olT < 1+€é(1—e <9

if € <
i-gz = €=

[N

This is a contradiction, it > r. We conclude that is not discovered as frequent at level
r < 1. Therefore, ifi ¢ S;, then,i is not classified into any of thé',’s. Now suppose that



i € §;. We first show that is discovered as frequent at levelSince,i € Imargin(G;),
therefore,f; > 1; and hence,

ﬁ,l>ﬂ_Al:%_EQl>Ql- (11)

Thus,i is discovered as frequent at levelThere are two cases, namely, eitlfgr > 1T, or
fi1 < Tj. In the former case; is classified inta3; and f; = f;. In the latter casef;,; < T},
the decision regarding the classification is made at the nextlevdl. If i ¢ S;.4, then,:
remains unclassified. Otherwise, supposeS; ;. The estimat@fi,lﬂ is ignored in favor of
a lower level estimattfi,l, which is deemed to be accurate, since it is at IéasBy (11),
fi,l > @ > 1Tj41. By assumptionfu < Ty. Therefore; is classified intaZ;, ;. This proves
statement (2) of the lemma.

Statement (3) is proved in a similar fashion. O

Estimator. The sample is used to compute the estimiat&Ve also define an idealized esti-
mator? that assumes that the frequent items structure is an oracle that does not make errors.

L L
sﬁ:ZZw(ﬁ-)al ¢=ZZw<fi)-2l (12)

3.3 Analysis

Fori € [1,n] andr € [0, L], define the indicator variabte; . as follows.

1 ifieS,andi € G,
Tir =

)

0 otherwise.

In this notation, equation (12) can be written as follows.
A L - L
=" (i) w2 U= ()Y w2 . (13)
i€[1,n] r=0 1€[1,n] r=0

Note that for a fixed;, the family of variablesr; ,’s is not independent, since, each item
belongs to at most one sampled graiip(i.e., Ef:o x; IS either 0 or 1). We now prove a
basic property of the sampling procedure.

Lemma 6. Let: € G.



1. If ¢ € mid(G)), then,

(@) Pr{z;; = 1| GOODEST} = 5, and, (b)Pr{z;, = 1 | GOODEST} = 0 for l # r.
2. If 0 <1< L —1andi € Imargin(G)), then,

(@) Pr{z;; = 1| GOODEST} - 2! + Pr{z;41 = 1 | GOODESsT} - 2!*! = 1, and,

(b) Pr{z;, =1} =0, forr € {0,..., L} — {l,1 + 1}.
3. If 1 <1 < Landi € rmargin(G)), then,

(@) Pr{z;; = 1| GOODEST} - 2! + Pr{z;;_1 = 1 | GOODEsT} - 2\~ = 1, and,

(b) Pr{z;, =1]| GoobEsT} =0, forr € {0,...,L} — {{ —1,1}.

Proof. We first note that the part (b) of each of the three statements of the lemma is a restate-
ment of parts of Lemma 5. For example, supposdmargin(G;), ! < L and assume that the
event @ODEST holds. By Lemma 5, part (2), eithée G; ori € G;11. Thus,z;, = 0, if r
is neitherl nor! + 1. In a similar manner, parts (b) of the other statements of the Lemma can
be seen as a restatement of parts of Lemma 5. We now consider part (a) of the statements.
Assume that the event@DEST holds.

Supposei € mid(G;). The probability that is sampled intaS; = % by construc-
tion of the sampling technigue. By Lemma 5, part (1); € S;, then,i € G,. Therefore,
Pr{z;; = 1| GOODEST} = 5.

Supposé € Imargin(G;) andl < L. ThenPr{i € §;} = % andPr{i € ;41 |i € S} =
1. By Lemma 5, part (2), (@) € Gy, or,z;; = 1iff i € S;andf;; > T; and, (b)i € G441,
or,z;;41 = 1iff i € ;1 andf;; < T;. Therefore,

Pr{z;;4+1 =1]i e S and GOODEST}

= Pr {z € S andfi,l <T;|ie€ S and GOODEST}

=Pr {le <T;|ie S and GOODEST} - Pr {z € §41 |1 € S and GOODEST andfi,l < Tl}
(14)

We know thaPr {fll <T|ie S and GDODEST} =1-Pr{z;; =1|i € S and GOODEST}.
The specific value of the estimafgl is a function solely of the random bits employedBy

and the sub-strea$. By full-independence of the hash function mapping items to the levels,
we have that

X 1
Pr{i € 841 | i€ S and GoobEsTandf;; < Tl} = Pr{eS1]ie8§} = 3 -
Substituting in (14), we have,

1
Pr{z;;4+1 =1]|i e S and GOODEST} = 3 (1 —Pr{z;;=1]ie S and GOODEST}> .



By definition of conditional probabilities (and multiplying by 2),
2Pr{z;;4+1 = 1| GooDEsT}  Pr{z;; =1| GOODEST}
Pr{ie S} N Pr{ie S}

Since,Pr {i € S} = 5, we obtain,

2"1Pr{z;;41 = 1| GOODEST} = 1 — 2!Pr{z;; = 1 | GOODEST}
or,
Pr{z;; = 1| GOODEST} - 2! + Pr{z;;,1 = 1 | GOODEST} - 21 =1 .

This proves the statement (2) of the lemma. Statement (3) regarding the right-mafgin of
can be proved analogously. O

A useful corollary of Lemma 6 is the following.
Lemma 7. Fori € [1,n], Y% E[z;, | GOODEST] - 2" = 1.

Proof. If i € mid(G;), then, by Lemma &r {z;; = 1 | GOODEST} = % andPr{z;, = 1| GOODEST} =
0, if r # 1. Therefore,
L L
> E[ziy | GOODEST) = Pr{z;, = 1| GOODEST} - 2! = Pr{z;; =1}-2' =1 .
r=0 r=0
Suppose € Imargin(G;), for 0 < I < L. By Lemma 6,Pr{z;; = 1 | GOODEST} - 2! +
Pr{z;;+1 = 1| GOODEsT}-2!*! = 1 andPr {z;, = 1 | GOODEST} = 0, forr ¢ {I,1+1}.
Therefore,

L L
> E[i, | GOODEST] - 2" = > "Pr{z;, = 1| GOODEST} - 2" =1 .
r=0 r=0
The case fok € rmarginG;) is proved analogously. 0

Lemma 8 shows that the expected valu&dé ¥, assuming the event@DEST holds.
Lemma 8. E[¥ | GOODEST| = ¥.

Proof. By (13),¥ = Zie[m] U(fi) Zf:o z;r - 2" . Taking expectation and using linearity
of expectation,
L

E[¥ | GOODEST] = Y #(f;) Y E[ziy-2" | GOODEST]
i€[1,n)] r=0

L
= Z O(fi), since,z Elz;, 2" | GOODEST| = 1, by Lemma 7
i€[1,n] r=0

=V . O



The following lemma is useful in the calculation of the variance of
Notation.Let [(:) denote the index of the grou, such that € G;.

Lemma 9. For i € [1,n] andi ¢ Go — Imargin(Go), S5 E[z;, - 2 | GOODEST] <
2!+ 1f i € Gy — Imargin(Gy), then, % E[z;, - 22" | GOODEST] = 1.

Proof. We assume that all probabilities and expectations in this proof are conditioned on the
event GODEST. For brevity, we do not write the conditioning event. Let mid(G;) and
assume that GODEST holds. Theng; ; = 1iff i € §;, by Lemma 6. Thus,

Pri{z;; =1}-2% = % 22— ol

If i € Imargin(G;), then, by the argument in Lemma 7,

Prizij=1}-2% 4 Priz;; =1} -2 =1 .
Multiplying by 2/+1,

Pri{zijs1 = 13 220D 4 Pr{z;; = 1} 22 <21
Similarly, if i € rmarginG), then,
Priz;=1}2' 4+ Pri{z;; =1}2""1=1.

Therefore,

Pr{zi; =1} 2% 4 Pr{z;;_, = 1} 220D < 2%

Since,/(i) denotes the index of the grodp to whichi belongs, therefore,

L
ZEJ;” 22r] < 2l0+1
r=0

In particular, ifi € Gy — Imargin(Gy) or if i € mid(G;), then, the above sum %), 0
Lemma 10.
Var [ | GOODEST] < > V(S - 21O+
1€[1,n]

i¢(Go—Imargin(Go))



Proof. We assume that all expressions for probability and expectations in this proof are con-
ditioned on the event GODEST. For brevity, it is not written explicitly.

Z wfz Zl‘zr'

1€[1,n]
L L

Z ¢2 (fi) szr : 2} + E[Z v(fi) ¢(fj) Z T,y -2 Z Lg,ra '2T2]
i€[1,n] 1#£] r1=0 ro=0

E[ > v*(f) me 2+ E[ D () Y wiwy - iy - 2712
ze[l n] ze[l n] r1#T2

EY o) o) Z T, - 2 Z T 2]
i#£j r1=0 ro=0

We note that, (a;r:ir = z;,, (b) an itemi is classified into a unique grou®,, and therefore,
Tir - Tir, = 0,fOrry #re, and, (c) fori # j, z;,, andz;,, are assumed to be independent
of each other, regardless of the values poéndrs. Thus,

L L
Z E ¢2 fz Zmzr 22r +ZE fz) Z Liry * 2T1]E[¢(fj) Z Ljry - 2T2]

i€[1,n] i#] r1=0 ro=0
Z ¢2 (fi)E szr 22T + 0% — Z wZ (fi)
1€[1,n] r=0 1€[1,n]

since, by Lemma &[] =¥ = 3, ., ¥(fi) S E[xi,-27]. As aresult, the expression
for Var[¥] simplifies to

Var[#] = E[#?] — = Y E[A(S) wa 27— > ()

i1€[1,n] i€[1,n]
< S ROt Y = > i)
i€[1,n] ieGofImargin(Go) i€[l,n]
1¢Go—Imargin(Go)
< > W2(f;)2'D+ ) by Lemma 9. O
1€[1,n]

1ZGo—Imargin(Go)

For any subset C [1,n], denote byy(S) the expression, o ¥(fi). Let ¥? = ¥2(S)
denoted = v*(|fil).



Corollary 2. If the functiony(-) is non-decreasing in the intervd . .. Ty + 4], then,
L
Var[# | GOODEST] = Y~ /(Ti—1)¥ (G2t + ¢(To + Ag)p(Imargin(Go))  (15)
=1

Proof. If the monotonicity condition is satisfied, ther{7;_1) > «(f;) foralli € G;, 1 > 1
andy(f;) < ¢(To + Ao) for i € Imargin(Go). Thereforeg?(f;) < ¥ (Ti_1) - ¥(fi), in the
first case and)?(f;) < (Tp + 4Ap) in the second case. By Lemma 10,

L
Var[# [ GOODEST] <Y > (T ) (f:)2'0 + >~ o(To+ Ag)(fi)

=1 i€G, i€lmargin(Go)
L
= P(T-1)(G)2 + 4(To + Ag)p(Imargin(Gy)) - 0
=1

3.4 Errorin the estimate

The error incurred by our estimadeis [# — ¥|, and can be written as the sum of two error
components using triangle inequality.

b — 0| <|F— 0|+ |F—T| =& + &

Here,&, = |¥ — ¥| is the error due to sampling ard = |¥ — ¥| is the error due to the
estimation of the frequencies. By Chebychev’s inequality

Pr {51 < 3(Var[#])V/? | GOODEST} > S .

Substituting the expression foar[¥] from (15),

L 1/2
Pr {51 < 3<Z V(T 1) (G)2 + (T + A0)¢(Imargir(G0))> GOODEST}
=1

> (16)

©| oo

We now present an upper bound 8n Define a real valued function : [1,n] — R as
follows.

A [P (&l fis A) if i € Gy — Imargin(Gp) ori € mid(G))
T = A (& (fi, A if i € Imargin(G;), for somel > 1
Ay - [W(&(fis Air))| i i € rmargin(Gy)

where, the notatiow;( f;, 4;) returns the value of that maximizeg«/'(¢)| in the interval
[fi = A, fi + Al



Lemma 11. Assume thaGOODEST holds. Then&y < 3 -cpy ) i - S w2

Proof. Assume that the event@DEST holds. By triangle inequality,

L L
<D0 D) = el -2 = 3T 1) — v D i 2
l r=0

i€[1,n]

Case 11 € mid(G)) ori € Go — Imargin(Gy). Then,i is classified only in groug:; with

probability 4 o, (or remains unclassified), arfql = fZ by Lemma 6. By Taylor’s series

(i) — ()] < A [0 (&)

Whereigi = gl(fla Al) malelZGSI!}/(t) fort e [f’L - Al’ f’L + Al]

Case 2:i € Imargin(G;) andl < L. Then,f; = f;; or f; = fi;+1. Therefore|f;
D) — ()| < AlY'(&)]. Finally, Case 3:i € rmarginG;)

andl > 0. Then,i € G;_; ori € ;. Similarly, it can be shown thai(f;) — ¢(f;)| <

- fil <4

1+ [¢'(&)]. Adding,

E< Y ARG A)) wazwz > AW (G A)) mezr

1€Go—Imargin(Go) =0 i€lmargin(G;)
oriemid(G)

L L
+>00Y M WG M) Y w22
I=1 iermarginG;) r=0

Using the notation of;’s, we have,

E < Z TG ZQ?ZTQT O

i€[1,n]

To abbreviate the statement of the next few lemmas, we introduce the following notation

=y m (17)
i€[1,n]
1/2
I, :3( > 72 ol >+1> , and (18)
1€[1,n]
1Z¢Go—Imargin(Go)
1/2
(Zw T )%(Gy) 2“1+w<To+Ao>w<lmargir(Go>>> (19)



Lemma 12.
HZ
E[&> | GOODEST]| < II;, andVar[&; | GOODEST| < ?2 :

ThereforePr {&, < II + II, | GOODEST} > §.

Proof. Assume that @ODEST holds and definé; = ., ,;; i S xi,2 By Lemma 11,
&L < &. Applying Lemmas 8 and 10 &), gives

H2
E[£5 | GoODEST] < T}, andVar[€} | GOODEST] < ?2 .
By Chebychev’s inequalityr {&) < II; + II; | GOODEST} > % Thus,

Pr {52 <I +1I ’ GOODEST} >

©| oo

Lemma 13 presents the overall expression of error and its probability.

Lemma 13. Lete < 1. Suppose)() is a monotonic function in the intervil, Ty + A].

Pr{0 — | < A Ty + 1} > L(1— (n(L+ 1))27)

Proof. Combining Lemma 12 and equation (16), and using the notation of equations (17), (18)
and (19), we have,

. 11 7
Pr{| —w|§A+U1+U2\GoooEST}21—§—§=§

Since,Pr {GOODEST} > 1 — (n(L + 1))27¢, therefore,
Pr {‘ ‘ <A+ I + HQ}

= Pr {|u7 U| < A4 Iy + Ty | GOODEST} Pr{GOODEST}

(1= (n(L+1))27). O

©\\1

Reducing Randomness by using Pseudo-random Generfeteranalysis has assumed that

the hash function mapping items to levels is completely independent. A pseudo-random gen-
erator can be constructed along the lines of Indyk in [17] and Indyk and Woodruff in [18],
to reduce the required randomness. This is illustrated for each of the two estimations that we
consider in the following sections, namely, estimatigand estimating?.



4 Estimating F), for p > 2

In this section, we apply the $technique to estimate), for p > 2. Lete = @. For esti-
mating F,, for p > 2, we use the ldstechnique instantiated with thedDNTSKETCH data
structure that uses space paramegtérhe value of: will be fixed during the analysis. We use
a standard estimator such as sketches [1p@TAMS [21] for estimatingF, to within accu-
racy ofli% and with confidencé% using spacé)(lof#). We extend the event@DESTt0
include this event, that is,

. F R
GOODEST 2 |Fy — Fy| < ZQ and|fi; — fil < A, Vie[l,n]andl € {0,1,...,L} .

The width of the @UNTSKETCH structure at each level is chosen to be= O(logn +
log log Fy) so thatPr { GOODEsST} > 28,
Let F,; denote the number of distinct items in the data stream, that is, the number of items
with non-zero frequency.
Lemma 14. Leté = min (@, %) Then,IT,(F,) < €F, .
Proof. Leti € Gy andl > 0. Then,m; < Ay)_1[¢'(§(fi, Ai-1))]- Since,F;, is monotonic
and increasing, we havé(f;,t) = f; +t, fort > 0. Fori € G;andl > 0, A1 < 2€f;.
Further,

W (ESi, Ar) < p(fi + AP < pfPTH A+ 26)P7 L < pyP 2P <9 fP
Thus,

T < A1 (E(fiy Ai—r)) < defipfP~t < ef?,  sincee = i- (20)

Fori € Go, 4y < €I} < &f;. Therefore,
m < Aot (E(fi, Ao)) < 28f;p(fi + Ao)P < eff . (21)

Combining this with (20), we have,

(F) < > eff =€k, . 0

i€[1,n]

Lemma 15. Lete < min (@, %) Then,

32 (72)%/7 . p? ai-2p

II; < eF,, provided,k > 2



Proof. II5 is defined as

(H2)2 — 9 Z 71_12 . 2l(i)+1
1€[1,n]

iZGo—Imargin(Go)

Suppose € G; andl > 1, or,i € ImarginGy). Then, by (20) and (21), it follows that,
m; < ef?. Therefore,

2
(1192) < ( Z €2fi2p X 2l(i)+1) (22)
i€[1,n]

iZGo—Imargin(Go)

Fori € Gyandl > 1, f; < Tj_; and thereforef? < TP | f7.
Fori € Imargin(Gy), fi; < To + Ap < To(1 + €) and therefore,

f22 < (To + Ao)PfP < TP(1+ @), fori € Imargin(Gy)
Combining, we have,

(H2)2 2 p \Dp £P - D Dol+1
9 <e Z Ty(1+¢) fi""ZTl—lzfiz : (23)

i€lmargin(Go) =1 1€G

By construction,

1/2
Ay < (2?> = Qo = E(l — E)To .

andT; = % Substituting in (23), we have,

(H )2 62 2F p/2 - L 2l+1
s ST o <62k2:> D I D I e | @4

i€lmargin(Go) I=11ieG,

Since,p > 2, w?f)% < 4. Further, sinceg < ﬁ, (1+éP <2and(l —é€P > %

Therefore, (24) can be simplified as

I1,)?2 25\ P/? -
(92> 58€2<€2]§) ( 3 )ff+22f§’)

i€lmargin(Go =1 1ieG

o1\ (=172
S 862 (62]{)> Fp (25)



; L
Smce’(Zz‘elmargin(Go) fzp + Zl:l Zz’eGl fzp> = FP - ZieGo—Imargin(Go) fzp We now use the
identity

1/2 1/r
2 < I or, Fg/Q <F,- Fg/z_l, foranyr > 2 . (26)
Fy Fy

Lettingr = p, we haveF} < FpFé”/%l. Substituting in (25), we have,

72.90/2. 2. F2. pP/2 n1-2/p\ P/
17,)2 p 10 ) 2 op/2 | 2
)= (E2k)r/? by = T2 20 Iy | Ty,

Letting k = 2'(7372)2/’7711—2/1’ — 32-(?1#,11—2@’ we have,
(IIy)* < €F7, o Il <€k, . O
Lemma 16.

1 2. (72)2/P . p2
If € < min <€ ) andk > wnl_z/p, then,A < eF), .

Proof. The expression (19) fad can be written as follows.
A2 L
=1 2 W)Y (T Y e (27)
i€lmargin(Go) =1 i€G

Except for the factor ot?, the expression on thRHSis identical to the expression in the
RHS (23), for which an upper bound was derived in Lemma 15. Following the same proof
and modifying the constants, we obtain that

32 (1277 1% 1 oy

2 212 ¢
A" < €°F, if k> 2y

Recall thats is the width of the @ UNTSKETCHSstructures kept at each levek 0, ..., L.

Lemma 17. Supposep > 2. Letk > 32'(:223#1114/?, € = min <ﬁ,%) and s =

O(logn + loglog Fy) , then,Pr {|Fp —F)| < 3er} with probability & .
Proof. By Lemma 13,

N 7
Pr {\Fp —F| < I + T, + A} > (1— 5)(Pr{GOODEST}) .



By Lemma 14, we havell; < eF,. By Lemma 15, we havell, < eF,. Finally, by
Lemma 16,1 < eF,,. Therefore,

H1+H2+A§36Fp

By choosing the numberof independent tables to I6&log n+log log F7) in the COUNTSKETCHStruc-
ture at each level, we haver {GOODEST} > 1 — 3-. This includes the error probability of
estimatingFQ to within factor of1 4 % of Fy. Thus,

Pr{|fy — Fyl < Ih + Mo+ A} > (1 - 3) (Pr {GOODEST}) > g . 0

The space requirement for the estimation procedure whose guarantees are presented in Lemma 17
can be calculated as follows. There de= O(log F1) levels, where, each level uses a
COUNTSKETCHStructure with hash table size size= O (p? - n!=2/7 . T2/1)) and number

of independent hash tables= O(logn + log log F}). Since, each table entry requires space

O(log F1) bits, the space required to store the tables is

P g2
S = O( pYwysL » (log? Fl)(logn+loglogF1)>

The number of random bits can be reduced ftofm (log n + log F1)) to O(S log R) using

the pseudo-random generator of [17,18]. Since the final state of the data structure is the
same if the input is presented in the order of item identities, therefore, O(n - L - s).
Therefore, the number of random bits require@is5 (log n+log log F} ). The expected time
required to update the structure corresponding to each stream update of thipdarinv) is

O(s) = O(logn + loglog Fy). This is summarized in the following theorem.

Theorem 3. For everyp > 2 and0 < ¢ < 1, there exists a randomized algorithm that re-
turns an estlmateF satisfyingPr {\F F,| <eF } 3 using space

2

@) <p— -n'=2/P . (log F1)? - (logn + loglog F) ) The expected time to process each

E2+4/P

stream update i®(log n + log log F71). O

5 Estimating Entropy

In this section, we apply the $stechnique to estimate the entropy

|fz Fl
T=2 R
zf7$0



of a data stream. Let
o) = zlog -, — <|a|<1
) = x lo -, — S |7 = .
g{L‘ F1

By convention, we lek(0) = 0. In this notation,

H=Y h ff)
i:fzﬁgo (Fl
In this section, the functiog(x) = h(xz/F1) and the statisti@ = """ | h(f;/F1) = H.

The Hssalgorithm is instantiated using thedONT-MIN sketch [10] as the frequentitems
structureD; at each level. We assume that there &tdouckets in each hash table, wheke,
is a parameter that we fix in the analysis. The paranieteg(¢) is fixed in the analysis. We
use Lemma 4 to estimatg“*(k’) to within factor of1 + % and with constant probability.
The parametek’ < k will also be fixed in the analysis. The thresholfig 71, ..., T, are
defined as follows.

W)

T
0 ek

T
, andT; = 2—?, fori > 1.

The rest of the parameters are defined in term$;of the manner described in Section 3.
Thus,A; = €(1 — e)T; andQ; = (1 — €)1;.
The derivativeh’ of the functionh is

1 1
h'(z) = log — — <z<1. (28)

ex Fy

The functiont/(x) is concave in the intervdl; !, 1] and attains a unique local maximum
atz = 1. The absolute value of the derivati\ig(-)| decreases frortog F; — 1 to 0 in the
interval [Fil, 1] and increases froi to 1 in the interval[Z, 1]. We choose the parametets
andk’ so that

F
To+ Qg < ?21 . (29)

We assume that < % in the rest of the discussion.

Lemma 18. Fori € G, m < %t log §i < 2eh (%)

Proof. Suppose € G;andl > 1, or: € Imargin(Gy). Due to the choice of, &’ as per (29),
|¢'(t)] is maximized at = T; — A,. Therefore,

1 Fy 1 P _ 2 F
)] < (T — A) < —1 = — (log 2t —logl—&)) < = log =L .
[ (t)] < (T l)_F1 Ong_ y F1<Ong og e))_Fl og l




since,e < % —log(1 — €) < log2 = 1. Thereforer; < Ml log . Further, fori € G,

I > 1or,i € ImarginGy),

Al Fy ET‘l fz
—log — = —log — < €h

7 losgy = ey <
Now supposé € Gy — Imargin(GO) Then, by (29)]¢’(t)| has a maximum value at= 7.
Therefore ¢/ (t)| < + log L as explained above. The argument now proceeds in the same

manner as above. a

Define the event GODRESEST to be F7es(k') < Fres(k') < 2F7s(k'). By Lemma 2,
GOODRESEST holds with constant probability and can be accomplished using space

O (K'(log F1) + logn). We assume that the eventoGDEST is broadened to include the
event GODRESEST as well, such thalPr { GOODEST} > 28.

Ty __2H
Lemma 19. 7 < TH(log F) "

Proof. Since, @ODEST holds, 7, = H=*) < 250 Therefore, if there are at mokt

distinct items in the stream (i.efp < k), then, Ty = 0 and the lemma follows. Otherwise,
i F i log k' To
H> Y |f gt> Y Wil jog 1 = 108 pres 1y > eplog k)22 .

fl - rank(¢) >k’ Fl £ 2F,

rank(z) >k/

Lemma 20. II; < 2eH .

Proof. By definition, Il; = Zie[l,n] ;. By Lemma 18, we haver; < 2eh <1{;—1) . Thus,

I, = Z 7 < Z 2€h<£> = 2¢H. O

i€[L,n] ie[1,n] 1

Lemma 21. Then,
~ 2
2 < 36e(log(2F1))H
k(log k')

Proof. By definition of I7, (equation (18))

L
:Z Z 71'?2”1 + Z 7T,L2 .

=1 1i€qG 1€lmargin(Go)

If £y < K/, then,F7**(k’) = 0 and thereforeT;, = 0 and soll, = 0¢, Therefore, without loss
of generality, we may assume th&s > £’. We first consider the summation over elements
in Gy, 1 > 1. In this region,

1 Fy
’h/(fl/Fl)’ < |h/(Tl/F1)| < El ? < —logFl

€l



and therefore,
el;
m < AR/ )| < %logFl.
1

Further, by Lemma 18r; < 2eh <£—1) Therefore,

Zzﬂzzwuzz‘ﬂ og ) - (20 (L) ot < oA lon ) ZZh( )

=1 1ieG, 1=1i€Gy =1 1ieG;

In a similar manner,

T
>, m<2APFlsR Y h(fi/R) .
, , 1 , .
i€lmargin(Go) i€lmargin(Go)
Adding,
my 5T 4eH?
<4ef—H < ——
9 Fi ~ k(logk')

since, by Lemma 1972 < W

Lemma 22. Then,
2(log(2Fy))H?

A% <
—  ek(logk’)

Proof. By equation (29)h(z) is monotonic increasing far < x < Tojgifo. Therefore, from
the definition ofA2,

A? T0+A0> <f> LT, Fy <f> !
— = M —=2—— ). h )+ 2 loe — a2 gl+1
9 2 ( F n) 2 5T Z[ Fi

i€lmargin(Go) =1 i€
L
2Th Ji T Ji
< - 2
< g . 7 ——(log(2F1))h <F > E 7 log(2F}) E h <F1>
i€lmargin(Go) =1 i€G

IN

2Ty fi

— log(2F; —

oeer) S (L)
1ZGo—Imargin(Go)

- 2Tv(log(2Fy))H < 2(log(2Fy))H?

- F —  ek(logk’)

since, by Lemma 197 < 2 0

log 0N

Lemma23. Lete < 3,k > 4,k > %ﬁi;) andé = £. Choose the width of the

COUNT-MIN structure at each level to be= O(logn + loglog Fy). Then,
Pr{|ﬁI—H| < 36H} > 2



Proof. By the above choice of, £ > 2 and thereforelog £ > 1. Therefore, by Lemma 20,
IT; < 2eH < eH . By the choice of’, logk’ > log 1. By Lemma 21,

36€%(log(2F))H? - 36€2 €2 log(1/¢)

72 < < H? .
2="""k(logk')  — 16 8log(l/e) —°
Therefore, /I, < eH. By Lemma 22,
2(log(2F,))H?
A2 < M < €2H2’ or, A < eH

k(log k')
By Lemma 13,

Pr{|f]—H| < H1+H2+A} zg-Pr{GOODEST}

By choosing the width of each @NT-MIN structure to bes = O(logn + loglog F}),
Pr{GooDEsT} > 2.

Pr{yﬁI—H\gzaeH}zg. O

There arelL + 1 levels, where each level keeps @@NT-MIN structure with height =
@) <m> and widths = O(logn + loglog F). Therefore, the space used by the data

structure isS = O ((logFl)iglffg’(‘f/lgglogFl)), not counting the random bits required. The
random bits can be reduced using the techniques of Indyk [17] that adapts the pseudo-random
generator of Nisan [19] for space bounded computations. Using this technique, the number
of random bits required becoméX S log R), where,S is the space used by the algorithm
andR is the running time of the algorithm. Since, the state of the data structure is the same if
the input were presented in a sorted order of the item identities, theré&fere (nL logn)

and thus, the number of random bits is
O(SlogR) =0 (1/(63 log(1/€))(log F1)*(log n 4 log log F1)2) .
Finally, we calculate the total number of bits required to estind&té (%), for k' = 4], to

(log g+log(1/e)) _

within relative accuracy af+1. By Lemma 4, this can be done using spé)cé(log F)
This is dominated by the space requirement of tlsstructure. This completes the proof of
the main theorem of this section, stated below.

Theorem 4. There exists an algorithm that returns an estimAteatisfying

A 2 log F1)?
Pr {\H —H| < eH} > 3 using space) <(Og1)(logn + loglogF1)2>

e3log(1/e)

The expected time required to process each stream updétgds n + log log F7). O
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Conclusions

We present Hierarchical Sampling from Sketches$}la technigue that can be used for
estimating a class of functions over update streams of theddi#) = > ; ¥(f;) and use

it to design nearly space-optimal algorithms for estimatingithdrequency moment;,, for
realp > 2, and for estimating the entropy of a data stream.
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