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Abstract. We present a randomized procedure named Hierarchical Sampling from Sketches

(HSS) that can be used for estimating a class of functions over the frequency vectorf of up-

date streams of the formΨ(S) =
∑n

i=1 ψ(|fi|). We illustrate this by applying the HSStechnique

to design nearly space-optimal algorithms for estimating thepth moment of the frequency vector,

for realp ≥ 2 and for estimating the entropy of a data stream.3

1 Introduction

A variety of applications in diverse areas, such as, networking, database systems, sensor net-

works, web-applications, share some common characteristics, namely, that data is generated

rapidly and continuously, and must be analyzed in real-time and in a single-pass over the data

to identify large trends, anomalies, user-defined exception conditions, etc.. Furthermore, it is

frequently sufficient to continuously track the “big picture”, or, an aggregate view of the data.

In this context, efficient and approximate computation with bounded error probability is of-

ten acceptable. The data stream model presents a computational model for such applications,

where, incoming data is processed in an online fashion using sub-linear space.

1.1 The data stream model

A data streamS is viewed as a sequence of records of the form(pos, i, v), where,posis the

index of the record in the sequence,i is the identity of an item in[1, n] = {1, . . . , n}, and

v is thechangeto the frequency of the item.v > 0 indicates an insertion of multiplicity

v, while v < 0 indicates a corresponding deletion. The frequency of an itemi, denoted by

fi, is the sum of the changes to the frequency ofi since the inception of the stream, that

3 Preliminary version of this paper appeared as the following conference publications. “Simpler algorithm for es-

timating frequency moments of data streams”, Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh and

Chandan Saha,Proceedings of the ACM Symposium on Discrete Algorithms, 2006, pp. 708-713 and “Estimat-

ing Entropy over Data Streams”, Lakshminath Bhuvanagiri and Sumit Ganguly,Proceedings of the European

Symposium on Algorithms, Springer LNCS Volume 4168, pp. 148-159, 2006.



is, fi =
∑

(pos,i,v) appears inS v. The following variations of the data stream model have been

considered in the research literature.

1. The insert-onlymodel, where, data streams to not have deletions, that is,v > 0 for all

records. Theunit insert-onlymodel is a special case of the insert-only model, where,

v = 1 for all records.

2. Thestrict update model, where, insertions and deletions are allowed, subject to the con-

straint thatfi ≥ 0, for all i ∈ [1, n].
3. Thegeneral update modelwhere no constraints are placed on insertions and deletions.

4. The sliding window model, where, a window size parameterW is given and only the

portion of the stream that has arrived within the lastW time units is considered to be

relevant. Records that are not part of the the current window are deemed to have expired.

In the data stream model, an algorithm must perform its computations in an online manner,

that is, the algorithm gets to view each stream record exactly once. Further, the computa-

tion is constrained to use sub-linear space, that is,o(n logF1) bits, where,F1 =
∑n

i=1|fi|.
This implies that the stream cannot be stored in its entirety and summary structures must be

devised to solve the problem.

We say that an algorithm estimates a quantityC with ε-accuracy and probability1 − δ

if it returns an estimate that satisfies|Ĉ − C| ≤ εC with probability1 − δ. The probability

is assumed to hold for every instance of input data and is taken over the random coin tosses

used by the algorithm. More simply, we say that a randomized algorithm estimatesC with

ε-accuracy if it returns an estimate satisfying|Ĉ − C| ≤ εC with constant probability greater

than 1
2 (for e.g., 7

8 ). Such an estimator can be used to obtain another estimator forC that

is ε-accurate and is correct with probability1 − δ by following the standard procedure of

returning the the median ofs = O(log 1
δ ) independent such estimatesĈ1, . . . , Ĉs.

In this paper, we consider two basic problems in the data streaming model, namely, esti-

mating the moment of the frequency vector of a data stream and estimating the entropy of a

data stream. We first define the problems and review the research literature.

1.2 Previous work on estimatingFp for p ≥ 2

For any realp ≥ 0, thepth moment of the frequency vector of the streamS is defined as

Fp(S) =
n∑

i=1

|fi|p .

The problem of estimatingFp has led to a number of advancements in the design of algo-

rithms and lower bound techniques for data stream computation. It was first introduced in



[1] that also presented the first sub-linear space randomized algorithm for estimatingFp, for

p > 1 with ε-accuracy and using spaceO( 1
ε2
n1−1/p logF1) bits. For the special case ofF2,

the seminal sketch technique was presented in [1], that uses spaceO( 1
ε2

logF1) bits for esti-

matingF2 with ε-accuracy. The work in [9, 13] reduced the space requirement forε-accurate

estimation ofFp, for p > 2, to O
(

1
ε2
n1−1/(p−1)(logF1)

)
.4 The space requirement was re-

duced in [12] toO(n1−2/(p+1)(logF1)), for p > 2 andp integral. A space lower bound of

Ω(n1− 2
p ) for estimatingFp, for p > 2, was shown in a series of contributions [1, 2, 7] (see

also [20]). Finally, Indyk and Woodruff [18] presented the first algorithm for estimatingFp,

for realp > 2, that matched the above space lower bound up to poly-logarithmic factors. The

2-pass algorithm of Indyk and Woodruff requires spaceO( 1
ε12

n1−2/p(log2 n)(log6 F1)) bits.

The 1-pass data streaming algorithm derived from the 2-pass algorithm further increases the

constant and poly-logarithmic factors. The work in [24] presents anΩ( 1
ε2

) space lower bound

for ε-accurate estimation ofFp, for any realp 6= 1 andε ≥ 1√
n

.

1.3 Previous work on estimating entropy

The entropyH of a data stream is defined as

H =
∑

i∈[1,n]:fi 6=0

|fi|
F1

log
F1

|fi|
.

It is a measure of the information theoreticrandomnessor the incompressibilityof the data

stream. A value of entropy close tolog n, is indicative that the frequencies in the stream are

randomly distributed, whereas, low values are indicative of “patterns” in the data. Monitoring

changes in the entropy of a network traffic stream has been used to detect anomalies [15, 22,

25]. The work in [16] presents an algorithm for estimatingH over unit insert-only streams

to within α-approximation (i.e.,Ha ≤ Ĥ ≤ bH anda · b ≤ α) over insert-only streams

using spaceO
(

n1/α

H

)
. The work in [5] presents an algorithm for estimatingH to within α-

approximation over insert-only streams using spaceO
(

1
ε2
F

2/α
1 (logF1)2(logF1 + log n)

)
.

Subsequent to the publication of the conference version [3] of our algorithm, a different al-

gorithm for estimating the entropy of insert-only streams was presented in [6]. The algorithm

of [6] requires spaceO
(

1
ε2

(log n)(logF1)(logF1 + log(1/ε))
)

respectively. The work in [6]

also shows a space lower bound ofΩ
(

1
ε2 log(1/ε)

)
for estimating entropy over a data stream.

4 The algorithm of [13] assumesp to be integral.



1.4 Contributions

In this paper we present a technique calledhierarchical sampling from sketchesor HSS, that is

a general randomized technique for estimating a variety of functions over update data streams.

We illustrate the HSS technique by applying it to derive near-optimal space algorithms for

estimating frequency momentsFp, for realp > 2. The HSS algorithm estimatesFp, for any

realp ≥ 2 to within ε-accuracy using space

O

(
p2

ε2+4/p
n1−2/p · (logF1)2 · (log n+ log logF1)2

)
.

Thus, the space upper bound of these algorithms match the lower bounds up to factors that

are poly-logarithmic inF1, n and polynomial in1
ε . The expected time required to process

each stream update isO(log n + log logF1) operations. The algorithm essentially uses the

idea of Indyk and Woodruff [18] to classify items into groups, based on frequency. However,

Indyk and Woodruff define groups whose boundaries are randomized; in our algorithm, the

group boundaries are deterministic. The HSS technique is used to design an algorithm that

estimates the entropy of general update data streams to withinε-accuracy using space

O

(
(logF1)2

ε3 log(1/ε)
· (log n+ log logF1)2

)
.

Organization. The remainder of the paper is organized as follows. In Section 2, we review

relevant algorithms from the research literature. In Section 3, we present the HSS technique

for estimating a class of data stream metrics. Sections 4 and 5 use the HSS technique to

estimate frequency moments and entropy, respectively, of a data stream. Finally, we conclude

in Section 6.

2 Preliminaries

In this section, we review the COUNTSKETCH and the COUNT-M IN algorithms for finding

frequent items in a data stream. We also review algorithms to estimate the residual second

moment of a data stream [14]. For completeness, we also present an algorithm for estimating

the residual first moment of a data stream.

Given a data stream,rank(r) is an item with therth largest absolute value of the fre-

quency, where, ties are broken arbitrarily. We say that an itemi has rankr if rank(r) = i. For

a given value ofk, 1 ≤ k ≤ n, the settop(k) is the set of items with rank≤ k. The residual

second moment [8] of a data stream, denoted byFres
2 (k), is defined as the second moment of

the stream after the top-k frequencies have been removed, that is,Fres
2 (k) =

∑
r>k f

2
rank(r).



The residual first moment [10] of a data stream, denoted byF res
1 , is analogously defined

as theF1 norm of the data stream after the top-k frequencies have been removed, that is,

F res
1 =

∑
r>k |frank(r)|.

Sketches. A linear sketch[1] is a random integerX =
∑

i fi · xi, where,xi ∈ {−1,+1},
for i ∈ [1, n] and the family of variables{xi}i∈[1,n] is either pair-wise or 4-wise independent,

depending on the use of the sketches. The family of random variables{xi}i∈D is referred to

as thelinear sketch basis. For anyd ≥ 2, a d-wise independent linear sketch basis can be

constructed in a pseudo-random manner from a truly random seed of sizeO(d log n) bits as

follows. LetF be field of characteristic 2 and of size at leastn + 1. Choose a degreed − 1
polynomialg : F → F with coefficients that are randomly chosen fromF [4, 23]. Definexi

to be 1 if the first bit ofg(i) is 1, and definexi to be−1 otherwise. Thed-wise independence

of thexi’s follows from Wegman and Carter’s universal hash functions [23].

Linear sketches were pioneered by [1] to present an elegant and efficient algorithm for

returning an estimate of the second momentF2 of a stream to within a factor of(1 ± ε)
with probability 7

8 . Their procedure keepss = O( 1
ε2

) independent linear sketches (i.e., using

independent sketch bases)X1, X2, . . . , Xs, where, the sketch basis used for eachXi is four-

wise independent. The algorithm returnsF̂2 as the average of the square of the sketches, that

is, F̂2 = 1
s

∑s
j=1X

2
j . A crucial property observed in [1] is thatE

[
X2

j

]
= F2 andVar

[
X2

j

]
≤

5F 2
2 . In the remainder of the paper, we abbreviate linear sketches as simply, sketches.

COUNTSKETCH algorithm for estimating frequency. Pair-wise independent sketches are

used in [8] to design the COUNTSKETCH algorithm for estimating the frequency of any given

itemsi ∈ [1, n] of a stream. The data structure consists of a collection ofs = O(log 1
δ ) inde-

pendent hash tablesU1, U2, . . . , Us, each consisting of8k buckets. A pair-wise independent

hash functionhj : [1, n] → {1, 2, . . . , 8k} is associated with each hash table that maps items

randomly to one of the8k buckets. Additionally, for each table indexj = 1, 2, . . . , s, the al-

gorithm keeps a pair-wise independent family of random variables{xij}i∈[1,n], where, each

xij ∈ {−1,+1} with equal probability. Each bucket keeps a sketch of the sub-stream that

maps to it, that is,Uj [r] =
∑

i:hj(i)=r fixij , i ∈ {1, 2, . . . , s} and j ∈ {1, 2, . . . , s}. An

estimatef̂i is returned as follows:̂fi = mediansj=1 Uj [hj(i)]xij . The accuracy of estimation

is stated as a function∆ of the residual second moment defined as [8]

∆(s,A) def= 8
(

Fres
2 (s)
A

)1/2

.



The space versus accuracy guarantees of the COUNTSKETCHalgorithm is presented in The-

orem 1.

Theorem 1 ([8]). Let ∆ = ∆(k, 8k). Then, fori ∈ [1, n], Pr
{
|f̂i − fi| ≤ ∆

}
≥ 1 − δ.

The space used isO(k(log 1
δ )(logF1)) bits and the time taken to process a stream update is

O(log 1
δ ). ut

COUNT-M IN Sketch for estimating frequency. The COUNT-M IN algorithm [10] for esti-

mating frequencies keeps a collection ofs = O(log 1
δ ) independent hash tablesT1, T2, . . . , Ts,

where, each hash tableTj is of sizeb = 2k buckets and uses a pair-wise independent hash

function hj : [1, n] → {1, . . . , 2k}, for j = 1, 2, . . . , s. The bucketTj [r] is an integer

counter that maintains the following sum:Tj [r] =
∑

i:hj(i)=r fi. The estimated frequency

f̂i is obtained aŝfi = mediansr=1Tj [hj(i)]. The space versus accuracy guarantees for the

COUNT-M IN algorithm is given in terms of the quantityF res
1 (k) =

∑
r>k|frank(r)|.

Theorem 2 ([10]). Pr
{
|f̂i − fi| ≤

F res
1 (k)

k

}
≥ 1−δ. The space used isO

(
k
(
log 1

δ

)
(logF1)

)
bits and timeO

(
log 1

δ

)
to process each stream update. ut

Estimating Fres
2 . The work in [14] presents an algorithm to estimateFres

2 (s) to within an

accuracy of(1 ± ε) with confidence1 − δ using spaceO( s
ε2

log(F1) log(n
δ )) bits. The data

structure used is identical to the COUNTSKETCH structure. The algorithm basically removes

the top-s estimated frequencies from the COUNTSKETCH structure and then estimatesF2.

The COUNTSKETCH structure is used to find the top-k items with respect to the absolute

values of their estimated frequencies. Let|f̂τ1 | ≥ . . . ≥ |f̂τk
| denote the top-k estimated

frequencies. Next, the contributions of these estimates are removed from the structure, that

is,Uj [r]:=Uj [r]−
∑

t:hj(τt)=r fτtxjτt . Subsequently, the FASTAMS algorithm [21], a variant

of the original sketch algorithm [1], is used to estimate the second moment as follows:F̂
res
2 =

mediansj=1

∑8k
r=1(Uj [r])2. If k = O(ε−2s), then,|F̂res

2 − Fres
2 | ≤ εF̂

res
2 [14].

Lemma 1 ([14]). For a given integerk ≥ 1 and0 < ε < 1, there exists an algorithm for

update streams that returns an estimateF̂ res
2 (k) satisfying|F̂ res

2 (k)− F res
2 (k)| ≤ εF res

2 (k)
with probability1− δ using spaceO( k

ε2
(log F1

δ )(logF1)) bits. ut

Estimating F res
1 . An argument similar to the one used to estimateFres

2 (k) can be applied

to estimateF res
1 (k). We will prove the following property in this subsection.



Lemma 2. For 0 < ε ≤ 1, there exists an algorithm for update streams that returns an

estimateF̂ res
1 satisfyingPr

{
|F̂ res

1 − F res
1 (k)| ≤ εF res

1 (k)
}
≥ 3

4 . The algorithm uses

O
(

k(log F1)
ε + (log F1)(log n+log(1/ε))

ε2

)
bits. ut

The algorithm is the following. Keep a COUNT-M IN sketch structure with heightb, where,

b is a parameter to be fixed, and widths = O(log n
δ ). In parallel, we keep a set ofs = O( 1

ε2
)

sketches based on a 1-stable distribution [17]. A one-stable sketch is a linear sketchYj =∑
i fizj,i, where, thezj,i’s are drawn from a 1-stable distribution,j = 1, 2, . . . , s. As shown

by Indyk [17], the random variable

Ŷ = mediansj=1|Yj | satisfiesPr
{
|Ŷ − F1| ≤ εF1

}
≥ 7

8
.

The COUNT-M IN structure is used to obtain the top-k elements with respect to the absolute

value of their estimated frequencies. Suppose these items arei1, i2, . . . , ik and|f̂i1 | ≥ |f̂i2 | ≥
. . . ≥ |f̂ik |. Let I = {i1, i2, . . . , ik}. Each one-stable sketchYj is updated to remove the

contribution of the estimated frequencies. That is,

Y ′
j = Yj −

k∑
r=1

f̂irzj,ir .

Finally, the following value is returned.

F̂ res
1 (k) = mediankj=1|Y ′

j | .

We now analyze the algorithm. LetT = Tk = {t1, t2, . . . , tk} denote the set of indices

of the top-k (true) frequencies, such that|ft1 | ≥ |ft2 | ≥ . . . ≥ |ftk |.

Lemma 3.

F res
1 (k) ≤

∑
i∈[1,n], i6∈I

|fi| ≤ F res
1 (k)

(
1 +

k

b

)
.

Proof. Since bothT andI are sets ofk elements each, therefore,|T − I| = |I − T |. Let

i 7→ i′ be an arbitrary 1-1 map fromi ∈ T − I to an elementi′ in I − T . Since,i is a top-k

frequency andi′ is not, therefore,fi ≥ fi′ . Further,f̂i′ ≥ f̂i, otherwise,i would be among

the top-k items with respect to estimated frequencies, that isi would be inI, contradicting

thati ∈ T − I. The conditionf̂i′ ≥ f̂i implies the following.

fi −∆ ≤ f̂i ≤ f̂i′ ≤ fi′ +∆

with probability1− δ
4n , or, thatfi ≤ fi′ + 2∆, with probability1− δ

4n . Therefore,

fi′ ≤ fi ≤ fi′ +∆ .



Thus, using union bound for all items in[1, n], we have with probability1− δ
2 ,∑

i∈I−T

fi′ ≤
∑

i∈T−I

fi ≤
∑

i∈I−T

fi′ +∆ =
∑

i∈I−T

fi′ + k∆ . (1)

Let

G =
∑

i∈[1,n]−I

|fi| =
∑

i∈T−I

fi +
∑

i6∈(T∪I)

fi

By (1), it follows that∑
i∈I−T

fi +
∑

i6∈(T∪I)

fi ≤ G ≤
∑

i∈I−T

fi + k∆ +
∑

i6∈(T∪I)

fi .

Since,
∑

i∈I−T fi +
∑

i6∈(T∪I) fi = F res
1 (k), we have,

F res
1 (k) ≤ G ≤ F res

1 (k) + k∆ .

By Theorem 2, we have,∆ ≤ F res
1 (k)

b . Therefore,

F res
1 (k) ≤ G ≤ F res

1 (k)
(

1 +
k

b

)
, with prob.1− δ

2
. ut

Proof (Of Lemma 2.).Let f ′ denote the frequency vector after the estimated frequencies are

removed. Then,

f ′r =

fr if r ∈ [1, n]− I

fr − f̂r if r ∈ I.

LetF ′
1 denote

∑
i∈[1,n]|f ′i |. Then, by Lemma 3, it follows that

F ′
1 =

∑
i∈[1,n]−I

fr +
∑
i∈I

(fi − f̂i) ≤ G+ k∆ ≤ F res
1 (k)

(
1 +

2k
b

)

since,∆ ≤ F res
1 (b)

b ≤ F res
1 (k)

b . Further,

F ′
1 =

∑
i∈[1,n]−I

fr +
∑
i∈I

(fi − f̂i) ≥ G− k∆ ≥ F res
1 (k)

(
1− k

b

)
Combining,

F res
1 (k)

(
1− k

b

)
≤ F ′

1 ≤ F res
1 (k)

(
1 +

2k
b

)



with probability1−2−Ω(w). By construction, the 1-stable sketches technique returnsF̂ res
1 =

mediansj=1|Y ′
j | satisfyingPr

{
|F̂ res

1 − F ′
1| ≤ εF ′

1

}
≥ 7

8 . Therefore, using union bound

|F̂ res
1 − F res

1 (k)| ≤ 2k
b
F res

1 (k) + εF res
1 (k)

(
1 +

2k
b

)
with prob.

7
8
− n2−Ω(w)

If b ≥ d2k
ε e, then,

|F̂ res
1 − F res

1 (k)| ≤ 3εF res
1 (k) with prob.

3
4
.

Replacingε by ε/3 yields the first statement of the lemma.

The space requirement is calculated as follows. We use the idea of a pseudo-random gen-

erator of Indyk [17] for streaming computations. The state of the data structure (i.e., stable

sketches) is the same as if the items arrived in sorted order. Therefore, as observed by Indyk

[17], Nisan’s pseudo-random generator [19] can be used to simulate the randomized com-

putation usingO(S logR) random bits, where,S is the space used by the algorithm (not

counting the random bits used) andR is the running time of the algorithm. We apply Indyk’s

observation to the portion of the algorithm that estimatesF1. Thus,S = O
(

(log F1)
ε2

)
and the

running timeR = O
(

F0
ε2

)
, assuming the input is presented in sorted order of items. Here,F0

is the number of distinct items in the stream with non-zero frequency. Then the total random

bits required isO(S logR) = O
(

(log F1)(log n+log(1/ε)
ε2

)
. ut

3 The HSSalgorithm

In this section, we present a procedure for obtaining arepresentative sampleover the in-

put stream, which we refer to asHierarchical Sampling over Sketches(HSS) and use it for

estimating a class of metrics over data-streams of the following form

Ψ(S) =
∑

i:fi 6=0

ψ(|fi|) . (2)

Sampling sub-streams.The HSS algorithm uses a sampling scheme as follows. From the

input streamS, we create sub-streamsS0, . . . ,SL such thatS0 = S and for1 ≤ l ≤ L, Sl

is obtained fromSl−1 by sub-sampling each distinct item appearing inSl−1 independently

with probability 1
2 . At level 0, S0 = S. The streamS1, corresponding to level1, is obtained

by sampling choosing each distinct value ofi with independently, with probability12 . Since,

the sampling is based on the identity of an itemi, either all records inS with identity i

are present inS1, or, none are–each of these cases holds with probability1
2 . The streamS2,



corresponding to level2 is obtained by sampling each distinct value ofi appearing in the

sub-streamS1, with probability 1
2 and independently of the other items inS1. In this manner,

Sl is a randomly sampled sub-stream ofSl−1, for l ≥ 1, based on the identity of the items.

The sub-sampling scheme is implemented as follows. We assume thatn is a power of

2. Let h : [1, n] → [0,max(n2,W )] be a random hash function drawn from a pair-wise

independent hash family andW ≥ 2F1. LetLmax = dlog(max(n2,W ))e. Define the random

function level: [1, n] → [1, Lmax] as follows.

level(i) =

1 if h(i) = 0

lsb(h(i)) 2 ≤ level(i) ≤ Lmax .

where,lsb(x) is the position of the least significant “1” in the binary representation ofx. The

probability distribution of the random level function is as follows.

Pr {level(i) = l} =

1
2 + 1

n if l = 1
1
2l otherwise.

All records pertaining toi are included in the sub-streamsS0 throughSlevel(i). The sampling

technique is based on the original idea of Flajolet and Martin [11] for estimating the number

of distinct items in a data stream. The Flajolet-Martin scheme maps the original stream into

disjoint sub-streamsS ′1,S ′2, . . . ,S ′dlog ne, where,S ′l is the sequence of records of the form

(pos, i, v) such that level(i) = l. The HSStechnique creates a monotonic decreasing sequence

of random sub-streams in the sense thatS0 ⊃ S1 ⊃ S2 . . . ⊃ SLmax andSl is the sequence

of records for itemi such that level(i) ≥ l.

At each levell ∈ {0, 1, . . . , Lmax}, the HSSalgorithm keeps a frequency estimation data-

structure denoted byDl, that takes as input the sub-streamSl, and returns an approximation

to the frequencies of items that map toSl. TheDl structure can be any standard data struc-

ture such as the COUNT-M IN sketch structure or the COUNTSKETCH structure. We use the

COUNT-M IN structure for estimating entropy and the COUNTSKETCHstructure for estimat-

ingFp. Each stream update (pos, i, v) belonging toSl is propagated to the frequent items data

structuresDl for 0 ≤ l ≤ level(i). Letk(l) denote a space parameter for the data structureDl,

for example,k(l) is the size of the hash tables in the COUNT-M IN or COUNTSKETCHstruc-

tures. The values ofk(l) are the same for levelsl = 1, 2, . . . , Lmax and is twice the value

for k(0). That is, if k = k(0), then,k(1) = . . . = k(Lmax) = 2k. This non-uniformity

is a technicality required by Lemma 4 and Corollary 1. We refer tok = k(0) as the space

parameter of the HSS structure.



Approximatingfi. Let ∆l(k) denote the additive error of the frequency estimation by the

data structureDl) at levell and using space parameterk. That is, we assume that

|f̂i,l − fi| ≤ ∆l(k) with probability1− 2−t

where,t is a parameter and̂fi,l is the estimate for the frequency offi obtained using the

frequent items structureDl(k). By Theorem 2, ifDl is instantiated by the COUNT-M IN sketch

structure with heightk and widthdlog te, then,|f̂i,l − fi| ≤
F res

1 (k,l)
k with probability1−2−t.

If Dl is instantiated using the COUNTSKETCH structure with height8k and widthO(log t),

then, by Theorem 1, it follows that|f̂i,l − fi| ≤ 8
(

Fres
2 (k,l)

k

)1/2
with probability 1 − 2−t.

We first relate the random valuesF res
1 (k, l) andFres

2 (k, l) to their corresponding non-random

valuesF res
1 (k) andFres

2 (k), respectively.

Lemma 4. For l ≥ 1 andk ≥ 2, Pr
{
F res

1 (k, l) ≤ F res
1 (2l−1k)

2l−1

}
≥ 1− 2e−k/6.

Proof. For item i ∈ [1, n], define an indicator variablexi to be 1 if records correspond-

ing to i are included in the stream at levell, namely,Sl, and letxi be 0 otherwise. Then,

Pr {xi = 1} = 1
2l . Define the random variableTl,k as the number of items in[1, n] with rank

at most2l−1k in the original streamS and that are included inSl. That is,

Tl,k =
∑

1≤rank(i)≤2l−1k

xi .

By linearity of expectation,E
[
Tl,k

]
= 2l−1k

2l = k
2 . Applying Chernoff’s bounds to the sum of

indicator variablesTl,k, we obtain

Pr {Tl,k > k} < e−k/6 .

Say that the eventSPARSE(l) occurs if the element with rankk + 1 in Sl has rank larger than

2l−1k in the original streamS. The argument above shows thatPr {SPARSE(l)} ≥ 1−e−k/6.

Thus,

F res
1 (k, l) ≤

∑
rank(i)>2l−1k

|fi|xi, assumingSPARSE(l) holds. (3)

By linearity of expectation

E
[
F res

1 (k, l) | SPARSE(l)
]
≤ F res

1 (2l−1k)
2l

.



Supposeul is the frequency of the item with rankk + 1 in Sl. Applying Hoeffding’s bound

to the sum of non-negative random variables in (3), each upper bounded byul, we have,

Pr
{
F res

1 (k, l) > 2E
[
F res

1 (k, l)
]
| SPARSE(l)

}
< e−E

[
F res

1 (k,l)
]
/(3ul)

or,

Pr

{
F res

1 (k, l) <
F res

1 (2l−1k

2l−1
| SPARSE(l)

}
< e−F res

1 (2l−1k)/(3·2l·ul) . (4)

Assuming the eventSPARSE(l), it follows thatul ≤ frank(2l−1k+1).

ul ≤
1

2l−2k

∑
2l−2k+1≤rank(i)≤2l−1(k)

|frank(i)| ≤
F res

1 (2l−2k)
2l−2k

or,

F res
1 (2l−1k)

ul
≤ 2l−2k .

Substituting in (4) and taking the probability of the complement event, we have,

Pr

{
F res

1 (k, l) <
F res

1 (2l−1k)
2l−1

| SPARSE(l)
}
> 1− e−k/6 .

Since,Pr {SPARSE(l)} > 1− e−k/6,

Pr

{
F res

1 (k, l) <
F res

1 (2l−1k)
2l−1

}
> (1− e−k/6) · Pr {SPARSE(l)}

= (1− e−k/6)2 > 1− 2e−k/6 .

Corollary 1. For l ≥ 1, Fres
2 (k, l) ≤ Fres

2 (2l−1k)

2l−1 with probability≥ 1− 2−
k
6 .

Proof. Apply Lemma 4 to the frequency vector obtained by replacingfi by f2
i , for i ∈ [1, n].

3.1 Group definitions

Recall that at each levell, the sampled streamSl is provided as input to a data structureDl,

that when queried, returns an estimatef̂i,l for anyi ∈ [1, n] satisfying

|f̂i,l − fi| ≤ ∆l, with prob.1− 2−t .

Here,t is a parameter that will be fixed in the analysis and the additive error∆l is a function

of the algorithm used byDl (e.g.,∆l = F res
1 (k)/(2l−1k) for COUNT-M IN sketches and



∆l = Fres
2 (k)/(2l−1k) for COUNTSKETCH). Fix a parameter̄ε which will be closely related

to the given accuracy parameterε, and is chosen depending on the problem. For example, in

order to estimateFp, ε̄ is set to ε
4p . Therefore,

f̂i,l ∈ (1± ε̄)fi, provided,fi >
∆l

ε̄
, andi ∈ Sl, with prob.1− 2−t .

Define the following event

GOODEST≡ |f̂i,l − fi| < ∆l, for eachi ∈ Sl andl ∈ {0, 1, . . . , L} .

By union bound,

Pr {GOODEST} ≥ 1− n(L+ 1)2−t . (5)

Our analysis will be conditioned on the event GOODEST.

Define a sequence of geometrically decreasing thresholdsT0, T1, . . . , TL as follows.

Tl =
T0

2l
, l = 1, 2, . . . , L and

1
2
< TL ≤ 1 . (6)

In other words,L = dlog T0e. Note thatL andLmax are distinct parameters.Lmax is a data

structure parameter and is decided prior to the run of the algorithm.L is a dynamic parameter

that is dependent onT0 and is instantiated at the time of inference. In the next paragraph, we

discuss howT0 is chosen. The threshold valuesTl’s are used to partition the elements of the

stream into groupsG0, . . . , GL as follows.

G0 = {i ∈ S : |fi| ≥ T0} and Gl = {i ∈ S : Tl < |fi| ≤ Tl−1}, l = 1, 2, . . . , L .

An item i is said to bediscovered as frequentat levell, provided,i maps toSl andf̂i,l ≥ Ql,

where,Ql, l = 0, 1, 2 . . . , L, is a parameter family. The values ofQl are chosen as follows.

Ql = Tl(1− ε̄) (7)

The space parameterk(l) is chosen at levell as follows.

∆0 = ∆0(k) ≤ ε̄Q0, ∆0 = ∆l(2k) ≤ ε̄Ql, l = 1, 2, . . . , L . (8)

The choice ofT0. The value ofT0 is a critical parameter for the HSS parameter and its

precis choice depends on the problem that is being solved. For example, for estimatingFp,

T0 is chosen as 1
ε̄(1−ε̄)

(
F̂2
k

)1/2
. For estimating the entropyH, it is sufficient to chooseT0 as



1
ε̄(1−ε̄)

F̂ res
1 (k′)

k , where,k′ andk are parameters of the estimation algorithm.T0 must be chosen

as small as possible subject to the following property:∆l ≤ ε̄(1− ε̄)T0

2l . Lemma 4 and Corol-

lary 1 show that for the COUNT-M IN structure and the COUNTSKETCHstructure,T0 can be

chosen to be as small asF
res
1 (k′)

k and
(

Fres
2 k
k

)1/2
, respectively. Since, neitherF res

1 (k) nor

Fres
2 (k) can be exactly computed in sub-linear space, therefore, the algorithms of Lemmas 1

and Lemma 2 are used to obtain1
2 -approximations5 to the corresponding quantities. By re-

placingk by 2k at each level, it suffices to defineT0 as F̂ res
1 (k)
2k or as

(
F̂

res
2 k
2k

)1/2
, respectively.

3.2 Hierarchical samples

Items are sampled and placed into sampled groupsḠ0, Ḡ1, . . . , ḠL as follows. The estimated

frequency of an itemi is defined as

f̂i = f̂i,r, where,r is the lowest level such that̂fi,r > Qr .

The sampled groups are defined as follows.

Ḡ0 = {i : |f̂i| ≥ T0} andḠl = {i : Tl−1 < |f̂i| ≤ Tl andi ∈ Sl}, 1 ≤ l ≤ L .

The choices of the parameter settings satisfy the following properties. We use the following

standard notation. Fora, b ∈ R anda < b, (a, b) denotes the open interval defined by the set

of points betweena andb (end points not included),[a, b] represents the closed interval of

points betweena andb (both included) and finally, and[a, b) and(a, b] respectively, represent

the two half-open intervals. Partition a frequency groupGl, for 1 ≤ l ≤ L − 1, into three

adjacent sub-regions:

lmargin(Gl) = [Tl, Tl + ε̄Ql], l = 0, 1, . . . , L− 1 and is undefined forl = L.

rmargin(Gl) = [Ql−1 − ε̄Ql−1, Tl−1), l = 1, 2, . . . , L and is undefined forl = 0.

mid(Gl) = (Tl + ε̄Ql, Ql−1 − ε̄Ql), 1 ≤ l ≤ L− 1

These regions respectively denote thelmargin(left-margin),rmargin(right-margin) andmiddle-

regionof the groupGl. An itemi is said to belong to one of these regions if its true frequency

lies in that region. The middle-region of groupsG0 andGl is extended to include the right

and left margins, respectively. That is,

lmargin(G0) = [T0, T0 + ε̄Q0) and mid(G0) = [T0 + ε̄Q0, F1]

rmargin(GL) = (QL−1 − ε̄QL−1, TL−1) and mid(G0) = (0, QL−1 − ε̄QL−1] .

5 More accurate estimates ofFres
2 andF res

1 can be obtained using Lemmas 1 and Lemma 2, but in our applica-

tions, a constant factor accuracy suffices.



Important Convention. For clarity of presentation, from now on, the description of the

algorithm and the analysis throughout uses the frequenciesfi instead of|fi|. However, the

analysis remains unchanged if the frequencies are negative and|fi| is used in terms offi.

The only reason for making this notational convenience is to avoid writing|·| in many places.

An equivalent way of viewing this is to assume that the actual frequencies are given by an

n-dimensional vectorg. The vectorf is defined as the absolute value ofg, taken coordinate

wise, (i.e.,fi = |gi| for all i). It is important to note that the HSS technique is only designed

to work with functions of the form
∑n

i=1 ψ(|gi|). All results in this paper and their analysis,

hold for general update data streams, where, item frequencies could be positive, negative or

zero.

We would now like to show that the following properties hold, with probability1− 2−t each.

1. Items belonging to the middle region of anyGl may be discovered as frequent, that is,

f̂i,r ≥ Qr, only at a levelr ≥ l. Further,f̂i = f̂i,l, that is, the estimate of its frequency

is obtained from levell. These items are never misclassified, that is, ifi belongs to some

sampled group̄Gr, then,r = l.

2. Items belonging to the right region ofGl may be discovered as frequent at levelr ≥ l−1,

but not at levels less thanl − 1, for l ≥ 1. Such items may be misclassified, but only to

the extent thati may be placed in either̄Gl−1 or Ḡl.

3. Similarly, items belonging to the left-region ofGl may be discovered as frequent only at

levelsl or higher. Such items may be misclassified, but only to the extent thati is placed

either inḠl or in Ḡl+1.

Lemma 5 states the properties formally.

Lemma 5. Let ε̄ ≤ 1
6 . The following properties hold conditional on the eventGOODEST.

1. Supposei ∈ mid(Gl). Then,i is classified intoḠl iff i ∈ Sl and f̂i = f̂i,l. If i 6∈ Sl, then,

f̂i is undefined andi is unclassified.

2. Supposei ∈ lmargin(Gl), for somel ∈ {0, 1, . . . , L−1}. If i 6∈ Sl, then,i is not classified

into any group. Supposei ∈ Sl. Then, (1)i is classified intoḠl iff i ∈ Sl and f̂i,l ≥ Tl,

and, (2)i is classified intoḠl+1 iff i ∈ Sl+1 f̂i,l < Tl. In both cases,̂fi = f̂i,l.

3. Supposei ∈ rmargin(Gl) for some somel ∈ {1, 2, . . . , L}. If i 6∈ Sl−1, then, f̂i is

undefined andi is unclassified. Supposei ∈ Sl−1. Then,

(a) i is classified intoḠl−1 iff (1) f̂i,l−1 ≥ Tl−1, or, (2) f̂i,l−1 < Ql and i ∈ Sl and

f̂i,l ≥ Tl−1. In case (1),f̂i = f̂i,l−1 and in case (2),̂fi = f̂i,l.

(b) i is classified intoḠl iff i ∈ Sl and either (1)f̂i,l−1 ≥ Ql−1 and f̂i < Tl−1, or, (2)

f̂i,l−1 < Ql−1 and f̂i = f̂i,l. In case (1),f̂i = f̂i,l−1 and in case (2)̂fi = f̂i,l.



Proof. We prove the statements in sequence. Assume that the event GOODEST holds.

Let i ∈ mid(Gl). If l = 0 then the statement is obviously true, so we considerl ≥ 1.

Supposei ∈ Sr, for somer < l, andi is discovered as frequent at levelr, that is,f̂i,r ≥ Qr.

Since, GOODEST holds, therefore,fi ≥ Qr −∆r. Since,i ∈ mid(Gl), fi < Ql−1 − ε̄Ql−1.

Combining, we have

Ql−1 − ε̄Ql−1 > fi ≥ Qr −∆r = Qr − ε̄Qr

which is a contradiction forr ≤ l − 1. Therefore,i is not discovered as frequent in any level

r < l. Hence, ifi 6∈ Sl, i remains unclassified. Now suppose thati ∈ Sl. Since, GOODEST

holds,f̂i,l ≤ fi +∆l. Since,i ∈ mid(Gl), fi < Ql−1 − ε̄Ql−1. Therefore,

f̂i,l < Ql−1 − ε̄Ql−1 +∆l < Ql−1 (9)

since,∆l = ε̄Ql = ε̄Ql−1/2. Further,i ∈ mid(Gl) implies thatfi > Tl + ε̄Ql. Since,

GOODEST holds,

f̂i,l ≥ fi −∆l > Tl + ε̄Ql −∆l = Tl (10)

since,∆l = ε̄Ql. Combining (9) and (10), we have,

Tl < f̂i,l < Ql−1 < Tl−1 .

Thus,i is classified intoḠl.

We now consider statement (2) of the lemma. Assume that GOODEST holds. Suppose

i ∈ lmargin(Gl), for l ∈ {0, 1, . . . , L − 1}. Then,Tl ≤ fi ≤ Tl + ε̄Ql = Tl +∆l. Suppose

r < l. We first show that ifi ∈ Sr, then,i cannot be discovered as frequent at levelr, that

is, f̂i,r < Qr. Assume to the contrary that̂fi,r ≥ Qr. Since, GOODEST holds, we have,

f̂i,r ≤ fi +∆r. Further,∆r = ε̄Qr andQr = (1− ε̄)Tr. Therefore,

Tr(1− ε̄)2 = Qr −∆r ≤ fi ≤ Tl +∆l = T1(1 + ε̄(1− ε̄)) .

Since,Tr = Tl · 2l−r,

2l−r ≤ 1 + ε̄(1− ε̄)
(1− ε̄)2

< 2, if ε̄ ≤ 1
6

.

This is a contradiction, ifl > r. We conclude thati is not discovered as frequent at level

r < l. Therefore, ifi 6∈ Sl, then,i is not classified into any of thēGr ’s. Now suppose that



i ∈ Sl. We first show thati is discovered as frequent at levell. Since,i ∈ lmargin(Gl),
therefore,fi ≥ Tl and hence,

f̂i,l > Tl −∆l =
Ql

1− ε̄
− ε̄Ql > Ql . (11)

Thus,i is discovered as frequent at levell. There are two cases, namely, eitherf̂i,l ≥ Tl or

f̂i,l < Tl. In the former case,i is classified intoḠl andf̂i = f̂i. In the latter case,̂fi,l < Tl,

the decision regarding the classification is made at the next levell + 1. If i 6∈ Sl+1, then,i

remains unclassified. Otherwise, supposei ∈ Sl+1. The estimatêfi,l+1 is ignored in favor of

a lower level estimatêfi,l, which is deemed to be accurate, since it is at leastQl. By (11),

f̂i,l > Ql > Tl+1. By assumption,̂fi,l < Tl. Therefore,i is classified intoḠl+1. This proves

statement (2) of the lemma.

Statement (3) is proved in a similar fashion. ut

Estimator. The sample is used to compute the estimateΨ̂ . We also define an idealized esti-

matorΨ̄ that assumes that the frequent items structure is an oracle that does not make errors.

Ψ̂ =
L∑

l=0

∑
i∈Ḡl

ψ(f̂i) · 2l Ψ̄ =
L∑

l=0

∑
i∈Ḡl

ψ(fi) · 2l (12)

3.3 Analysis

For i ∈ [1, n] andr ∈ [0, L], define the indicator variablexi,r as follows.

xi,r =

1 if i ∈ Sr andi ∈ Ḡr

0 otherwise.

In this notation, equation (12) can be written as follows.

Ψ̂ =
∑

i∈[1,n]

ψ(f̂i)
L∑

r=0

xi,r · 2r Ψ̄ =
∑

i∈[1,n]

ψ(fi)
L∑

r=0

xi,r · 2r . (13)

Note that for a fixedi, the family of variablesxi,r ’s is not independent, since, each item

belongs to at most one sampled groupḠr (i.e.,
∑L

r=0 xi,r is either 0 or 1). We now prove a

basic property of the sampling procedure.

Lemma 6. Let i ∈ Gl.



1. If i ∈ mid(Gl), then,

(a) Pr {xi,l = 1 | GOODEST} = 1
2l , and, (b)Pr {xi,r = 1 | GOODEST} = 0 for l 6= r.

2. If 0 ≤ l ≤ L− 1 andi ∈ lmargin(Gl), then,

(a) Pr {xi,l = 1 | GOODEST} · 2l + Pr {xl+1 = 1 | GOODEST} · 2l+1 = 1, and,

(b) Pr {xi,r = 1} = 0, for r ∈ {0, . . . , L} − {l, l + 1}.
3. If 1 ≤ l ≤ L andi ∈ rmargin(Gl), then,

(a) Pr {xi,l = 1 | GOODEST} · 2l + Pr {xi,l−1 = 1 | GOODEST} · 2l−1 = 1, and,

(b) Pr {xi,r = 1 | GOODEST} = 0, for r ∈ {0, . . . , L} − {l − 1, l}.

Proof. We first note that the part (b) of each of the three statements of the lemma is a restate-

ment of parts of Lemma 5. For example, supposei ∈ lmargin(Gl), l < L and assume that the

event GOODEST holds. By Lemma 5, part (2), eitheri ∈ Ḡl or i ∈ Ḡl+1. Thus,xi,r = 0, if r

is neitherl nor l+ 1. In a similar manner, parts (b) of the other statements of the Lemma can

be seen as a restatement of parts of Lemma 5. We now consider part (a) of the statements.

Assume that the event GOODEST holds.

Supposei ∈ mid(Gl). The probability thati is sampled intoSl = 1
2l , by construc-

tion of the sampling technique. By Lemma 5, part (1), ifi ∈ Sl, then,i ∈ Ḡl. Therefore,

Pr {xi,l = 1 | GOODEST} = 1
2l .

Supposei ∈ lmargin(Gl) andl < L. Then,Pr {i ∈ Sl} = 1
2l andPr {i ∈ Sl+1 | i ∈ Sl} =

1
2 . By Lemma 5, part (2), (a)i ∈ Ḡl, or,xi,l = 1 iff i ∈ Sl andf̂i,l ≥ Tl and, (b)i ∈ Ḡl+1,

or,xi,l+1 = 1 iff i ∈ Sl+1 andf̂i,l < Tl. Therefore,

Pr {xi,l+1 = 1 | i ∈ Sl and GOODEST}

= Pr
{
i ∈ Sl+1 andf̂i,l < Tl | i ∈ Sl and GOODEST

}
= Pr

{
f̂i,l < Tl | i ∈ Sl and GOODEST

}
· Pr

{
i ∈ Sl+1 | i ∈ Sl and GOODEST andf̂i,l < Tl

}
(14)

We know thatPr
{
f̂i,l < Tl | i ∈ Sl and GOODEST

}
= 1−Pr {xi,l = 1 | i ∈ Sl and GOODEST}.

The specific value of the estimatêfi,l is a function solely of the random bits employed byDl

and the sub-streamSl. By full-independence of the hash function mapping items to the levels,

we have that

Pr
{
i ∈ Sl+1 | i ∈ Sl and GOODEST andf̂i,l < Tl

}
= Pr {∈ Sl+1 | i ∈ Sl} =

1
2
.

Substituting in (14), we have,

Pr {xi,l+1 = 1 | i ∈ Sl and GOODEST} =
1
2

(
1− Pr {xi,l = 1 | i ∈ Sl and GOODEST}

)
.



By definition of conditional probabilities (and multiplying by 2),

2Pr {xi,l+1 = 1 | GOODEST}
Pr {i ∈ Sl}

= 1−
Pr {xi,l = 1 | GOODEST}

Pr {i ∈ Sl}
.

Since,Pr {i ∈ Sl} = 1
2l , we obtain,

2l+1Pr {xi,l+1 = 1 | GOODEST} = 1− 2lPr {xi,l = 1 | GOODEST}

or,

Pr {xi,l = 1 | GOODEST} · 2l + Pr {xi,l+1 = 1 | GOODEST} · 2l+1 = 1 .

This proves the statement (2) of the lemma. Statement (3) regarding the right-margin ofGl

can be proved analogously. ut

A useful corollary of Lemma 6 is the following.

Lemma 7. For i ∈ [1, n],
∑L

r=0 E
[
xi,r | GOODEST

]
· 2r = 1.

Proof. If i ∈ mid(Gl), then, by Lemma 6,Pr {xi,l = 1 | GOODEST} = 1
2l andPr {xi,r = 1 | GOODEST} =

0, if r 6= l. Therefore,
L∑

r=0

E
[
xi,r | GOODEST

]
=

L∑
r=0

Pr {xi,r = 1 | GOODEST} · 2l = Pr {xi,l = 1} · 2l = 1 .

Supposei ∈ lmargin(Gl), for 0 ≤ l < L. By Lemma 6,Pr {xi,l = 1 | GOODEST} · 2l +
Pr {xi,l+1 = 1 | GOODEST}·2l+1 = 1 andPr {xi,r = 1 | GOODEST} = 0, for r 6∈ {l, l+1}.
Therefore,

L∑
r=0

E
[
xi,r | GOODEST

]
· 2r =

L∑
r=0

Pr {xi,r = 1 | GOODEST} · 2r = 1 .

The case fori ∈ rmargin(Gl) is proved analogously. ut

Lemma 8 shows that the expected value ofΨ̄ is Ψ , assuming the event GOODEST holds.

Lemma 8. E
[
Ψ̄ | GOODEST

]
= Ψ .

Proof. By (13), Ψ̄ =
∑

i∈[1,n] ψ(fi)
∑L

r=0 xi,r · 2r . Taking expectation and using linearity

of expectation,

E
[
Ψ̄ | GOODEST

]
=
∑

i∈[1,n]

ψ(fi)
L∑

r=0

E
[
xi,r · 2r | GOODEST

]
=
∑

i∈[1,n]

ψ(fi), since,
L∑

r=0

E
[
xi,r · 2r | GOODEST

]
= 1, by Lemma 7

= Ψ . ut



The following lemma is useful in the calculation of the variance ofΨ̄ .

Notation.Let l(i) denote the index of the groupGl such thati ∈ Gl.

Lemma 9. For i ∈ [1, n] and i 6∈ G0 − lmargin(G0),
∑L

r=0 E
[
xi,r · 22r | GOODEST

]
≤

2l(i)+1. If i ∈ G0 − lmargin(G0), then,
∑L

r=0 E
[
xi,r · 22r | GOODEST

]
= 1.

Proof. We assume that all probabilities and expectations in this proof are conditioned on the

event GOODEST. For brevity, we do not write the conditioning event. Leti ∈ mid(Gl) and

assume that GOODEST holds. Then,xi,l = 1 iff i ∈ Sl, by Lemma 6. Thus,

Pr {xi,l = 1} · 22l =
1
2l
· 22l = 2l .

If i ∈ lmargin(Gl), then, by the argument in Lemma 7,

Pr {xi,l+1 = 1} · 2l+1 + Pr {xi,l = 1} · 2l = 1 .

Multiplying by 2l+1,

Pr {xi,l+1 = 1} 22(l+1) + Pr {xi,l = 1} 22l ≤ 2l+1 .

Similarly, if i ∈ rmargin(Gl), then,

Pr {xi,l = 1} 2l + Pr {xi,l−1 = 1} 2l−1 = 1 .

Therefore,

Pr {xi,l = 1} 22l + Pr {xi,l−1 = 1} 22(l−1) ≤ 22l

Since,l(i) denotes the index of the groupGl to whichi belongs, therefore,

L∑
r=0

E
[
xi,r · 22r

]
< 2l(i)+1 .

In particular, ifi ∈ G0 − lmargin(G0) or if i ∈ mid(Gl), then, the above sum is2l(i). ut

Lemma 10.

Var
[
Ψ̄ | GOODEST

]
≤

∑
i∈[1,n]

i/∈(G0−lmargin(G0))

ψ2(fi) · 2l(i)+1 .



Proof. We assume that all expressions for probability and expectations in this proof are con-

ditioned on the event GOODEST. For brevity, it is not written explicitly.

E
[
Ψ̄2
]

= E
[( ∑

i∈[1,n]

ψ(fi)
L∑

r=0

xi,r · 2r
)2]

= E
[ ∑
i∈[1,n]

ψ2(fi)
( L∑

r=0

xi,r · 2r
)2]+ E

[∑
i6=j

ψ(fi) · ψ(fj)
L∑

r1=0

xi,r1 · 2r1

L∑
r2=0

xj,r2 · 2r2
]

= E
[ ∑
i∈[1,n]

ψ2(fi)
L∑

r=0

x2
i,r · 22r

]
+ E

[ ∑
i∈[1,n]

ψ2(fi)
∑

r1 6=r2

xi,r1 · xi,r2 · 2r1+r2
]

+ E
[∑

i6=j

ψ(fi) · ψ(fj)
L∑

r1=0

xi,r1 · 2r1

L∑
r2=0

xj,r2 · 2r2
]

We note that, (a)x2
i,r = xi,r, (b) an itemi is classified into a unique groupGr, and therefore,

xi,r1 · xi,r2 = 0, for r1 6= r2, and, (c) fori 6= j, xi,r1 andxj,r2 are assumed to be independent

of each other, regardless of the values ofr1 andr2. Thus,

E
[
Ψ̄2
]

=
∑

i∈[1,n]

E
[
ψ2(fi)

L∑
r=0

xi,r · 22r
]
+
∑
i6=j

E
[
ψ(fi)

L∑
r1=0

xi,r1 · 2r1
]
E
[
ψ(fj)

L∑
r2=0

xj,r2 · 2r2
]

=
∑

i∈[1,n]

ψ2(fi)E
[ L∑
r=0

xi,r · 22r
]
+ Ψ2 −

∑
i∈[1,n]

ψ2(fi)

since, by Lemma 8,E
[
Ψ̄
]

= Ψ =
∑

i∈[1,n] ψ(fi)
∑L

r=0 E
[
xi,r ·2r

]
. As a result, the expression

for Var
[
Ψ̄
]

simplifies to

Var
[
Ψ̄
]

= E
[
Ψ̄2
]
− (E

[
Ψ̄
]
)2 =

∑
i∈[1,n]

E
[
ψ2(fi)

L∑
r=0

xi,r · 22r
]
−
∑

i∈[1,n]

ψ2(fi)

≤
∑

i∈[1,n]
i6∈G0−lmargin(G0)

ψ2(fi)2l(i)+1 +
∑

i∈G0−lmargin(G0)

ψ2(fi)−
∑

i∈[1,n]

ψ2(fi)

≤
∑

i∈[1,n]
i6∈G0−lmargin(G0)

ψ2(fi)2l(i)+1, by Lemma 9. ut

For any subsetS ⊂ [1, n], denote byψ(S) the expression
∑

i∈S ψ(fi). Let Ψ2 = Ψ2(S)
denote

∑n
i=1 ψ

2(|fi|).



Corollary 2. If the functionψ(·) is non-decreasing in the interval[0 . . . T0 +∆0], then,

Var
[
Ψ̄ | GOODEST

]
=

L∑
l=1

ψ(Tl−1)ψ(Gl)2l+1 + ψ(T0 +∆0)ψ(lmargin(G0)) (15)

Proof. If the monotonicity condition is satisfied, thenψ(Tl−1) ≥ ψ(fi) for all i ∈ Gl, l ≥ 1
andψ(fi) ≤ ψ(T0 +∆0) for i ∈ lmargin(G0). Therefore,ψ2(fi) ≤ ψ(Tl−1) · ψ(fi), in the

first case andψ2(fi) ≤ ψ(T0 +∆0) in the second case. By Lemma 10,

Var
[
Ψ̄ | GOODEST

]
≤

L∑
l=1

∑
i∈Gl

ψ(Tl−1)ψ(fi)2l(i)+1 +
∑

i∈lmargin(G0)

ψ(T0 +∆0)ψ(fi)

=
L∑

l=1

ψ(Tl−1)ψ(Gl)2l+1 + ψ(T0 +∆0)ψ(lmargin(G0)) . ut

3.4 Error in the estimate

The error incurred by our estimatêΨ is |Ψ̂ − Ψ |, and can be written as the sum of two error

components using triangle inequality.

|Ψ̂ − Ψ | ≤ |Ψ̄ − Ψ |+ |Ψ̂ − Ψ̄ | = E1 + E2

Here,E1 = |Ψ − Ψ̄ | is the error due to sampling andE2 = |Ψ̂ − Ψ̄ | is the error due to the

estimation of the frequencies. By Chebychev’s inequality

Pr
{
E1 ≤ 3(Var

[
Ψ̄
]
)1/2 | GOODEST

}
≥ 8

9
.

Substituting the expression forVar
[
Ψ̄
]

from (15),

Pr

{
E1 ≤ 3

( L∑
l=1

ψ(Tl−1)ψ(Gl)2l+1 + ψ(T0 +∆0)ψ(lmargin(G0))
)1/2∣∣∣∣GOODEST

}

≥ 8
9
. (16)

We now present an upper bound onE2. Define a real valued functionπ : [1, n] → R as

follows.

πi =


∆l · |ψ′(ξi(fi,∆l))| if i ∈ G0 − lmargin(G0) or i ∈ mid(Gl)

∆l · |ψ′(ξi(fi,∆l))| if i ∈ lmargin(Gl), for somel > 1

∆l−1 · |ψ′(ξi(fi,∆l−1))| if i ∈ rmargin(Gl)

where, the notationξi(fi,∆l) returns the value oft that maximizes|ψ′(t)| in the interval

[fi −∆l, fi +∆l].



Lemma 11. Assume thatGOODEST holds. Then,E2 ≤
∑

i∈[1,n] πi ·
∑L

r=0 xi,r2r.

Proof. Assume that the event GOODEST holds. By triangle inequality,

E2 ≤
L∑

l=0

∑
i∈Ḡl

|ψ(f̂i)− ψ(fi)|xi,l · 2l =
∑

i∈[1,n]

|ψ(f̂i)− ψ(fi)|
L∑

r=0

xi,r · 2r .

Case 1:i ∈ mid(Gl) or i ∈ G0 − lmargin(G0). Then,i is classified only in group̄Gl with

probability 1
2l , (or remains unclassified), and̂fi,l = f̂i, by Lemma 6. By Taylor’s series

|ψ(f̂i)− ψ(fi)| ≤ ∆l · |ψ′(ξi)|

where,ξi = ξi(fi,∆l) maximizesψ′(t) for t ∈ [fi −∆l, fi +∆l].
Case 2:i ∈ lmargin(Gl) andl < L. Then,f̂i = f̂i,l or f̂i = f̂i,l+1. Therefore,|f̂i − fi| ≤ ∆l

and by Taylor’s series,|ψ(f̂i)− ψ(fi)| ≤ ∆l|ψ′(ξi)|. Finally, Case 3:i ∈ rmargin(Gl)
and l > 0. Then,i ∈ Ḡl−1 or i ∈ Ḡl. Similarly, it can be shown that|ψ(f̂i)− ψ(fi)| ≤
∆l−1 · |ψ′(ξi)|. Adding,

E2 ≤
∑

i∈G0−lmargin(G0)
or i∈mid(Gl)

∆l|ψ′(ξi(fi,∆l))|
L∑

r=0

xi,r2r+
L−1∑
l=0

∑
i∈lmargin(Gl)

∆l|ψ′(ξi(fi,∆l))|
L∑

r=0

xi,r2r

+
L∑

l=1

∑
i∈rmargin(Gl)

∆l−1 · |ψ′(ξi(fi,∆l−1))|
L∑

r=0

xi,r2r2l)

Using the notation ofπi’s, we have,

E2 ≤
∑

i∈[1,n]

πi ·
L∑

r=0

xi,r2r . ut

To abbreviate the statement of the next few lemmas, we introduce the following notation.

Π1 =
∑

i∈[1,n]

πi (17)

Π2 = 3
( ∑

i∈[1,n]
i6∈G0−lmargin(G0)

π2
i · 2l(i)+1

)1/2

, and (18)

Λ = 3
( L∑

l=1

ψ(Tl−1)ψ(Gl)2l+1 + ψ(T0 +∆0)ψ(lmargin(G0))
)1/2

(19)



Lemma 12.

E
[
E2 | GOODEST

]
≤ Π1, andVar

[
E2 | GOODEST

]
≤ Π2

2

9
.

Therefore,Pr {E2 ≤ Π1 +Π2 | GOODEST} ≥ 8
9 .

Proof. Assume that GOODEST holds and defineE ′2 =
∑

i∈[1,n] πi
∑L

l=0 xi,l2l. By Lemma 11,

E ′2 ≤ E2. Applying Lemmas 8 and 10 toE ′2 gives

E
[
E ′2 | GOODEST

]
≤ Π1, andVar

[
E ′2 | GOODEST

]
≤ Π2

2

9
.

By Chebychev’s inequality,Pr {E ′2 ≤ Π1 +Π2 | GOODEST} ≥ 8
9 . Thus,

Pr {E2 ≤ Π1 +Π2 | GOODEST} ≥ 8
9
.

ut

Lemma 13 presents the overall expression of error and its probability.

Lemma 13. Let ε̄ ≤ 1
3 . Supposeψ() is a monotonic function in the interval[0, T0 +∆0].

Pr
{
|Ψ̂ − Ψ̄ | ≤ Λ+Π1 +Π2

}
>

7
9
(1− (n(L+ 1))2−t) .

Proof. Combining Lemma 12 and equation (16), and using the notation of equations (17), (18)

and (19), we have,

Pr
{
|Ψ̂ − Ψ̄ | ≤ Λ+Π1 +Π2 | GOODEST

}
≥ 1− 1

9
− 1

9
=

7
9

Since,Pr {GOODEST} > 1− (n(L+ 1))2−t, therefore,

Pr
{
|Ψ̂ − Ψ̄ | ≤ Λ+Π1 +Π2

}
= Pr

{
|Ψ̂ − Ψ̄ | ≤ Λ+Π1 +Π2 | GOODEST

}
Pr {GOODEST}

≥ 7
9
(1− (n(L+ 1))2−t). ut

Reducing Randomness by using Pseudo-random Generator.The analysis has assumed that

the hash function mapping items to levels is completely independent. A pseudo-random gen-

erator can be constructed along the lines of Indyk in [17] and Indyk and Woodruff in [18],

to reduce the required randomness. This is illustrated for each of the two estimations that we

consider in the following sections, namely, estimatingFp and estimatingH.



4 Estimating Fp for p ≥ 2

In this section, we apply the HSS technique to estimateFp for p ≥ 2. Let ε̄ = ε
4p . For esti-

matingFp for p ≥ 2, we use the HSS technique instantiated with the COUNTSKETCH data

structure that uses space parameterk. The value ofk will be fixed during the analysis. We use

a standard estimator such as sketches [1] or FASTAMS [21] for estimatingF̂2 to within accu-

racy of1± 1
4 and with confidence2627 using spaceO( log F1

ε2
). We extend the event GOODEST to

include this event, that is,

GOODEST∼= |F̂2 − F2| <
F2

4
and|f̂i,l − fi| ≤ ∆l,∀i ∈ [1, n] andl ∈ {0, 1, . . . , L} .

The width of the COUNTSKETCH structure at each level is chosen to bes = O(log n +
log logF1) so thatPr {GOODEST} ≥ 26

27 .

LetF0 denote the number of distinct items in the data stream, that is, the number of items

with non-zero frequency.

Lemma 14. Let ε̄ = min
(

ε
4p ,

1
6

)
. Then,Π1(Fp) ≤ εFp .

Proof. Let i ∈ Gl andl > 0. Then,πi ≤ ∆l(i)−1|ψ′(ξ(fi,∆l−1))|. Since,Fp is monotonic

and increasing, we have,ξ(fi, t) = fi + t, for t > 0. For i ∈ Gl andl > 0, ∆l−1 < 2ε̄fi.

Further,

ψ′(ξ(fi,∆l−1) ≤ p(fi +∆l−1)p−1 ≤ pfp−1
i (1 + 2ε̄)p−1 ≤ pfp−1

i e2(p−1)/4p ≤ 2pfp
i .

Thus,

πi ≤ ∆l−1ψ
′(ξ(fi,∆l−1)) ≤ 4ε̄fipf

p−1
i < εfp

i , since,̄ε =
ε

4p
. (20)

For i ∈ G0,∆0 < ε̄Tl ≤ ε̄fi. Therefore,

πi ≤ ∆0ψ
′(ξ(fi,∆0)) ≤ 2ε̄fip(fi +∆0)p−1 ≤ εfp

i . (21)

Combining this with (20), we have,

Π1(Fp) ≤
∑

i∈[1,n]

εfp
i = εFp . ut

Lemma 15. Let ε̄ ≤ min
(

ε
4p ,

1
6

)
. Then,

Π2 ≤ εFp, provided,k ≥ 32 · (72)2/p · p2

ε2
n1−2/p .



Proof. Π2 is defined as

(Π2)2 = 9

 ∑
i∈[1,n],i6∈G0−lmargin(G0)

π2
i · 2l(i)+1


Supposei ∈ Gl and l ≥ 1, or, i ∈ lmargin(G0). Then, by (20) and (21), it follows that,

πi ≤ εfp
i . Therefore,

(Π2)2

9
≤

 ∑
i∈[1,n],i6∈G0−lmargin(G0)

ε2f2p
i · 2l(i)+1

 (22)

For i ∈ Gl andl ≥ 1, fi < Tl−1 and therefore,f2p
i ≤ T p

l−1f
p
i .

For i ∈ lmargin(G0), fi ≤ T0 +∆0 < T0(1 + ε̄) and therefore,

f2p
i ≤ (T0 +∆0)pfp

i ≤ T p
0 (1 + ε̄)p, for i ∈ lmargin(G0) .

Combining, we have,

(Π2)2

9
≤ ε2

∑
i∈lmargin(G0)

T p
0 (1 + ε̄)pfp

i +
L∑

l=1

T p
l−1

∑
i∈Gl

fp
i 2l+1 . (23)

By construction,

∆0 ≤
(

2F2

k

)1/2

= ε̄Q0 = ε̄(1− ε̄)T0 .

andTl = T0

2l . Substituting in (23), we have,

(Π2)2

9
≤ ε2

(1− ε̄)p

(
2F2

ε̄2k

)p/2
 ∑

i∈lmargin(G0)

(1 + ε̄)pfp
i +

L∑
l=1

∑
i∈Gl

fp
i ·

2l+1

2(l−1)(p−1)

 (24)

Since,p ≥ 2, 2l+1

2(l−1)(p−1) ≤ 4. Further, since,̄ε ≤ 1
4p , (1 + ε̄)p ≤ 2 and (1 − ε̄)p > 1

2 .

Therefore, (24) can be simplified as

(Π2)2

9
≤ 8ε2

(
2F2

ε̄2k

)p/2
 ∑

i∈lmargin(G0)

fp
i +

L∑
l=1

∑
i∈Gl

fp
i


≤ 8ε2

(
2F2

ε̄2k

)(p−1)/2

Fp (25)



since,
(∑

i∈lmargin(G0) f
p
i +

∑L
l=1

∑
i∈Gl

fp
i

)
= Fp−

∑
i∈G0−lmargin(G0) f

p
i . We now use the

identity (
F2

F0

)1/2

≤
(
Fr

F0

)1/r

or,F r/2
2 ≤ Fr · F r/2−1

0 , for anyr ≥ 2 . (26)

Letting r = p, we haveF p
2 < FpF

p/2−1
0 . Substituting in (25), we have,

(Π2)2 ≤
72 · 2p/2 · ε2 · F 2

p · F
p/2−1
0

(ε̄2k)p/2
· Fp ≤ 72ε2 · 2p/2 · F 2

p

(
n1−2/p

ε̄2k

)p/2

Lettingk = 2·(72)2/p

ε̄2
n1−2/p = 32·(72)2/p·p2

ε2
n1−2/p, we have,

(Π2)2 ≤ ε2F 2
p , or,Π2 ≤ εFp . ut

Lemma 16.

If ε̄ ≤ min
(
ε

4p
,
1
6

)
andk ≥ 32 · (72)2/p · p2

ε2+4/p
n1−2/p, then,Λ < εFp .

Proof. The expression (19) forΛ can be written as follows.

Λ2

9
=

 ∑
i∈lmargin(G0)

(T0 +∆0)pfp
i +

L∑
l=1

(Tl−1)p
∑
i∈Gl

fp
i 2l+1

 (27)

Except for the factor ofε2, the expression on theRHSis identical to the expression in the

RHS (23), for which an upper bound was derived in Lemma 15. Following the same proof

and modifying the constants, we obtain that

Λ2 ≤ ε2F 2
p if k ≥ 32 · (72)2/p · p2

ε2+4/p
n1−2/p .

Recall thats is the width of the COUNTSKETCHstructures kept at each levell = 0, . . . , L.

Lemma 17. Supposep ≥ 2. Let k ≥ 32·(72)2/p·p2

ε2+4/p n1−2/p, ε̄ = min
(

ε
4p ,

1
6

)
and s =

O(log n+ log logF1) , then,Pr
{
|F̂p − Fp| < 3εFp

}
with probability 6

9 .

Proof. By Lemma 13,

Pr
{
|F̂p − Fp| ≤ Π1 +Π2 + Λ

}
≥ (1− 7

9
)(Pr {GOODEST}) .



By Lemma 14, we have,Π1 ≤ εFp. By Lemma 15, we have,Π2 ≤ εFp. Finally, by

Lemma 16,Λ ≤ εFp. Therefore,

Π1 +Π2 + Λ ≤ 3εFp .

By choosing the numbers of independent tables to beO(log n+log logF1) in the COUNTSKETCHstruc-

ture at each level, we have,Pr {GOODEST} ≥ 1− 1
27 . This includes the error probability of

estimatingF̂2 to within factor of1± 1
2 of F2. Thus,

Pr
{
|F̂p − Fp| ≤ Π1 +Π2 + Λ

}
≥
(

1− 2
9

)(
Pr {GOODEST}

)
>

6
9
. ut

The space requirement for the estimation procedure whose guarantees are presented in Lemma 17

can be calculated as follows. There areL = O(logF1) levels, where, each level uses a

COUNTSKETCHstructure with hash table size sizek = O
(
p2 · n1−2/p · 1

ε1+2/p

)
and number

of independent hash tabless = O(log n+ log logF1). Since, each table entry requires space

O(logF1) bits, the space required to store the tables is

S = O

(
p2

ε2+4/p
n

1− 2
p (log2 F1)(log n+ log logF1)

)
.

The number of random bits can be reduced fromO(n(log n + logF1)) toO(S logR) using

the pseudo-random generator of [17, 18]. Since the final state of the data structure is the

same if the input is presented in the order of item identities, therefore,R = O(n · L · s).
Therefore, the number of random bits required isO(S(log n+log logF1). The expected time

required to update the structure corresponding to each stream update of the form(pos, i, v) is

O(s) = O(log n+ log logF1). This is summarized in the following theorem.

Theorem 3. For everyp ≥ 2 and0 < ε ≤ 1, there exists a randomized algorithm that re-

turns an estimatêFp satisfyingPr
{
|F̂p − Fp| ≤ εFp

}
≥ 2

3 using space

O
(

p2

ε2+4/p · n1−2/p · (logF1)2 · (log n+ log logF1)2
)

. The expected time to process each

stream update isO(log n+ log logF1). ut

5 Estimating Entropy

In this section, we apply the HSS technique to estimate the entropy

H =
∑

i:fi 6=0

|fi|
F1

log
F1

|fi|



of a data stream. Let

h(x) = x log
1
x
,

1
F1

≤ |x| ≤ 1 .

By convention, we leth(0) = 0. In this notation,

H =
∑

i:fi 6=0

h

(
fi

F1

)
.

In this section, the functionψ(x) = h(x/F1) and the statisticΨ =
∑n

i=1 h(fi/F1) = H.

The HSSalgorithm is instantiated using the COUNT-MIN sketch [10] as the frequent items

structureDl at each level. We assume that there are8k buckets in each hash table, where,k

is a parameter that we fix in the analysis. The parameterε̄ = ε̄(ε) is fixed in the analysis. We

use Lemma 4 to estimateF res
1 (k′) to within factor of1 ± 1

2 and with constant probability.

The parameterk′ ≤ k will also be fixed in the analysis. The thresholdsT0, T1, . . . , TL are

defined as follows.

T0 =
F̂ res

1 (k′)
ε̄k

, andTl =
T0

2l
, for l ≥ 1.

The rest of the parameters are defined in terms ofTl in the manner described in Section 3.

Thus,∆l = ε̄(1− ε̄)Tl andQl = (1− ε̄)Tl.

The derivativeh′ of the functionh is

h′(x) = log
1
ex

1
F1

≤ x ≤ 1 . (28)

The functionh′(x) is concave in the interval[F−1
1 , 1] and attains a unique local maximum

at x = 1
e . The absolute value of the derivative|h′(·)| decreases fromlogF1 − 1 to 0 in the

interval [ 1
F1
, 1

e ] and increases from0 to 1 in the interval[1e , 1]. We choose the parametersk

andk′ so that

T0 +∆0 <
F1

e2
. (29)

We assume that̄ε ≤ 1
2 in the rest of the discussion.

Lemma 18. For i ∈ Gl, πi ≤ 2∆l
F1

log F1
Tl
≤ 2ε̄h

(
fi

F1

)
.

Proof. Supposei ∈ Gl andl ≥ 1, or i ∈ lmargin(G0). Due to the choice ofk, k′ as per (29),

|ψ′(t)| is maximized att = Tl −∆l. Therefore,

|ψ′(t)| ≤ ψ′(Tl −∆l) ≤
1
F1

log
F1

Tl −∆l
=

1
F1

(
log

F1

Tl
− log 1− ε̄)

)
≤ 2
F1

log
F1

Tl
.



since,ε̄ ≤ 1
2 , − log(1 − ε̄) ≤ log 2 = 1. Therefore,πi ≤ 2∆l

F1
log F1

Tl
. Further, fori ∈ Gl,

l ≥ 1 or, i ∈ lmargin(G0),

∆l

F1
log

F1

Tl
=
ε̄Tl

Fl
log

Fl

Tl
< ε̄h

(
fi

F1

)
Now supposei ∈ G0− lmargin(G0). Then, by (29),|ψ′(t)| has a maximum value att = T0.

Therefore,|ψ′(t)| ≤ 1
F1

log F1
T0

as explained above. The argument now proceeds in the same

manner as above. ut

Define the event GOODRESEST to beF res
1 (k′) ≤ F̂ res

1 (k′) ≤ 2F res
1 (k′). By Lemma 2,

GOODRESEST holds with constant probability and can be accomplished using space

O (k′(logF1) + log n). We assume that the event GOODEST is broadened to include the

event GOODRESEST as well, such thatPr {GOODEST} ≥ 26
27 .

Lemma 19. T0
F1
≤ 2H

ε̄k(log k′) .

Proof. Since, GOODEST holds,T0 = F̂ res
1 (k′)

ε̄k ≤ 2F res
1 (k)
ε̄k . Therefore, if there are at mostk

distinct items in the stream (i.e.,F0 ≤ k), then,T0 = 0 and the lemma follows. Otherwise,

H ≥
∑

rank(i)>k′

|fi|
F1

log
F1

fi
≥

∑
rank(i)>k′

|fi|
F1

log k′ =
log k′

F1
F res

1 (k′) ≥ ε̄k(log k′)
T0

2F1
. ut

Lemma 20. Π1 ≤ 2ε̄H .

Proof. By definition,Π1 =
∑

i∈[1,n] πi. By Lemma 18, we have,πi ≤ 2ε̄h
(

fi

F1

)
. Thus,

Π1 =
∑

i∈[1,n]

πi ≤
∑

i∈[1,n]

2ε̄h
(
fi

F1

)
= 2ε̄H. ut

Lemma 21. Then,

Π2
2 ≤

36ε̄(log(2F1))H2

k(log k′)
.

Proof. By definition ofΠ2 (equation (18))

Π2
2

9
=

L∑
l=1

∑
i∈Gl

π2
i 2

l+1 +
∑

i∈lmargin(G0)

π2
i .

If F0 ≤ k′, then,F res
1 (k′) = 0 and therefore,T0 = 0 and soΠ2 = 0¿ Therefore, without loss

of generality, we may assume thatF0 > k′. We first consider the summation over elements

in Gl, l ≥ 1. In this region,

|h′(fi/F1)| ≤ |h′(Tl/F1)| ≤
1
F1

log
F1

eTl
≤ 1
F1

logF1



and therefore,

πi ≤ ∆l|h′(Tl/F1)| <
ε̄Tl

F1
logF1.

Further, by Lemma 18,πi ≤ 2ε̄h
(

fi

F1

)
. Therefore,

L∑
l=1

∑
i∈Gl

π2
i 2

l+1 ≤
L∑

l=1

∑
i∈Gl

ε̄Tl

F1
(logF1) · (2ε̄)h

(
fi

F1

)
· 2l+1 ≤ T0(4ε̄2 logF1)

F1

L∑
l=1

∑
i∈Gl

h

(
fi

F1

)
In a similar manner,

∑
i∈lmargin(G0)

π2
i ≤ 2(ε̄)2

T0

F1
logF1

∑
i∈lmargin(G0)

h(fi/F1) .

Adding,
Π2

2

9
≤ 4ε̄2

T0

F1
H ≤ 4ε̄H2

k(log k′)

since, by Lemma 19,T0
F1
≤ H

ε̄k(log k′) .

Lemma 22. Then,

Λ2 ≤ 2(log(2F1))H2

ε̄k(log k′)
.

Proof. By equation (29),h(x) is monotonic increasing for0 ≤ x ≤ T0+∆0
F1

. Therefore, from

the definition ofΛ2,

Λ2

9
=

∑
i∈lmargin(G0)

h

(
T0 +∆0

F1

)
· h
(
fi

F1

)
+

L∑
l=1

Tl−1

F1
log

F1

Tl−1

∑
i∈Gl

h

(
fi

F1

)
· 2l+1

≤
∑

i∈lmargin(G0)

2T0

F1
(log(2F1))h

(
fi

F1

)
+

L∑
l=1

T0

F1
log(2F1)

∑
i∈Gl

h

(
fi

F1

)

≤ 2T0

F1
log(2F1)

∑
i6∈G0−lmargin(G0)

h

(
fi

F1

)

≤ 2T0(log(2F1))H
F1

≤ 2(log(2F1))H2

ε̄k(log k′)

since, by Lemma 19,T0
F1
≤ H

ε̄k(log k′) . ut

Lemma 23. Let ε ≤ 1
2 , k′ ≥ 1

ε2
, k ≥ 8(log(2eF1))

ε3 log(1/ε)
and ε̄ = ε

4 . Choose the width of the

COUNT-M IN structure at each level to bes = O(log n+ log logF1). Then,

Pr
{
|Ĥ −H| ≤ 3εH

}
≥ 2

3 .



Proof. By the above choice ofk, k ≥ 2 and therefore,log k ≥ 1. Therefore, by Lemma 20,

Π1 ≤ 2ε̄H ≤ εH . By the choice ofk′, log k′ ≥ log 1
ε . By Lemma 21,

Π2
2 ≤

36ε̄2(log(2F1))H2

k(log k′)
≤ 36ε2

16
ε2 log(1/ε)
8 log(1/ε)

≤ ε2H2 .

Therefore,Π2 ≤ εH. By Lemma 22,

Λ2 ≤ 2(log(2F1))H2

k(log k′)
≤ ε2H2, or,Λ ≤ εH

By Lemma 13,

Pr
{
|Ĥ −H| ≤ Π1 +Π2 + Λ

}
≥ 7

9
· Pr {GOODEST}

By choosing the width of each COUNT-M IN structure to bes = O(log n + log logF1),
Pr {GOODEST} ≥ 26

27 .

Pr
{
|Ĥ −H| ≤ 3εH

}
≥ 6

9
. ut

There areL + 1 levels, where each level keeps a COUNT-M IN structure with heightk =
O
(

1
ε3 log(1/ε)

)
and widths = O(log n + log logF1). Therefore, the space used by the data

structure isS = O
(

(log F1)2(log n+log log F1)
ε3 log(1/ε)

)
, not counting the random bits required. The

random bits can be reduced using the techniques of Indyk [17] that adapts the pseudo-random

generator of Nisan [19] for space bounded computations. Using this technique, the number

of random bits required becomesO(S logR), where,S is the space used by the algorithm

andR is the running time of the algorithm. Since, the state of the data structure is the same if

the input were presented in a sorted order of the item identities, therefore,R = O(nL log n)
and thus, the number of random bits is

O(S logR) = O
(
1/(ε3 log(1/ε))(logF1)2(log n+ log logF1)2

)
.

Finally, we calculate the total number of bits required to estimateF̂ res
1 (k′), for k′ = d 1

ε2
e, to

within relative accuracy of1±1
2 . By Lemma 4, this can be done using spaceO

(
(log F1)(log n+log(1/ε))

ε2

)
.

This is dominated by the space requirement of the HSSstructure. This completes the proof of

the main theorem of this section, stated below.

Theorem 4. There exists an algorithm that returns an estimateĤ satisfying

Pr
{
|Ĥ −H| ≤ εH

}
≥ 2

3
using spaceO

(
(logF1)2

ε3 log(1/ε)
(log n+ log logF1)2

)
.

The expected time required to process each stream update isO(log n+ log logF1). ut



6 Conclusions

We present Hierarchical Sampling from Sketches (HSS), a technique that can be used for

estimating a class of functions over update streams of the formΨ(S) =
∑n

i=1 ψ(fi) and use

it to design nearly space-optimal algorithms for estimating thepth frequency momentFp, for

realp ≥ 2, and for estimating the entropy of a data stream.

Acknowledgements

The first author thanks Igor Nitto for pointing out an omission in the calculation of the space

requirement of the HSSalgorithm for estimating entropy.

References

1. Noga Alon, Yossi Matias, and Mario Szegedy. “The space complexity of approximating frequency mo-

ments”.Journal of Computer Systems and Sciences, 58(1):137–147, 1998.

2. Z. Bar-Yossef, T.S. Jayram, R. Kumar, and D. Sivakumar. “An information statistics approach to data stream

and communication complexity”. InProceedings of the ACM Symposium on Theory of Computing, 2002.

3. Lakshminath Bhuvanagiri and Sumit Ganguly. “Estimating Entropy over Data Streams”. InProceedings of

the European Symposium on Algorithms, pages 148–159, 2006.

4. J.L. Carter and M.N. Wegman. “Universal Classes of Hash Functions”.Journal of Computer Systems and

Sciences, 18(2):143–154, 1979.

5. Amit Chakrabarti, D.K. Ba, and S. Muthukrishnan. “Estimating Entropy and Entropy Norm on Data

Streams”. InProceedings of the Symposium on Theoretical Aspects of Computer Science, 2006.

6. Amit Chakrabarti, Graham Cormode, and Andrew McGregor. “A Near-Optimal Algorithm for Computing

the Entropy of a Stream”. InProceedings of the ACM Symposium on Discrete Algorithms, 2007.

7. Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. “Near-Optimal Lower Bounds on the Multi-Party

Communication Complexity of Set Disjointness”. InProceedings of the Conference on Computational Com-

plexity, 2003.

8. Moses Charikar, Kevin Chen, and Martin Farach-Colton. “Finding frequent items in data streams”. In

Proceedings of the International Colloquium on Automata, Languages and Programming, 2002, pages 693–

703.

9. Don Coppersmith and Ravi Kumar. “An improved data stream algorithm for estimating frequency moments”.

In Proceedings of the ACM Symposium on Discrete Algorithms, pages 151–156, 2004.

10. Graham Cormode and S. Muthukrishnan. “An Improved Data Stream Summary: The Count-Min Sketch and

its Applications”.Journal of Algorithms, 55(1):58–75, April 2005.

11. P. Flajolet and G.N. Martin. “Probabilistic Counting Algorithms for Database Applications”.Journal of

Computer System and Sciences, 31(2):182–209, 1985.

12. Sumit Ganguly. “A hybrid technique for estimating frequency moments over data streams”. Manuscript,

July, 2004.

13. Sumit Ganguly. “Estimating Frequency Moments of Update Streams using Random Linear Combinations”.

In Proceedings of the International Workshop on Randomization and Computation (RANDOM), 2004.



14. Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. “Practical Algorithms for Tracking Database Join

Sizes”. InProceedings of the FSTTCS, pages 294–305, December 2005.

15. Y. Gu, A. McCallum, and D. Towsley. “Detecting Anomalies in Network Traffic Using Maximum Entropy

Estimation”. InProceedings of of Internet Measurement Conference, pages 345–350, 2005.

16. Sudipto Guha, Andrew McGregor, and S. Venkatsubramanian. “Streaming and Sublinear Approximation of

Entropy and Information Distances”. InProceedings of the ACM Symposium on Discrete Algorithms, 2006.

17. Piotr Indyk. “Stable Distributions, Pseudo Random Generators, Embeddings and Data Stream Computation”.

In Proceedings of the IEEE Foundations of Computer Science, pages 189–197, 2000.

18. Piotr Indyk and David Woodruff. “Optimal Approximations of the Frequency Moments”. InProceedings of

the ACM Symposium on Theory of Computing, pages 202–298, 2005.

19. Noam Nisan. “Pseudo-Random Generators for Space Bounded Computation”. InProceedings of the ACM

Symposium on Theory of Computing, 1990.

20. Michael Saks and Xiaodong Sun. “Space lower bounds for distance approximation in the data stream model”.

In Proceedings of the ACM Symposium on Theory of Computing, 2002.

21. Mikkel Thorup and Yin Zhang. “Tabulation based 4-universal hashing with applications to second moment

estimation”. InProceedings of the ACM Symposium on Discrete Algorithms, pages 615–624, January 2004.

22. A. Wagner and B Plattner. “Entropy based worm and anomaly detection in fast IP networks”. In14th IEEE

WET ICE, STCA Security Workshop, 2005.

23. M.N. Wegman and Carter J. L. “New Hash Functions and their Use in Authentication and Set Equality”.

Journal of Computer Systems and Sciences, 22:265–279, 1981.

24. David P. Woodruff. “Optimal space lower bounds for all frequency moments”. InProceedings of the ACM

Symposium on Discrete Algorithms, pages 167–175, 2004.

25. K. Xu, Z. Zhang, and S. Bhattacharyya. “Profiling internet backbone traffic: behavior models and applica-

tions”. SIGCOMM Comput. Commun. Rev., 35(4):169–180, 2005.


