Estimating hybrid frequency moments of data streams

Sumit Ganguly, Mohit Bansal^{*}, and Shruti Dube ^{**}

Indian Institute of Technology, Kanpur

Abstract. We consider the problem of estimating hybrid frequency moments of two dimensional data streams. In this model, data is viewed to be organized in a matrix form $(A_{i,j})_{1 \le i,j,\le n}$. The entries $A_{i,j}$ are updated coordinate-wise, in arbitrary order and possibly multiple times. The updates include both increments and decrements to the current value of $A_{i,j}$. The hybrid frequency moment $F_{p,q}(A)$ is defined as $\sum_{j=1}^{n} \left(\sum_{i=1}^{n} |A_{i,j}|^p\right)^q$ and is a generalization of the frequency moment of one-dimensional data streams.

We present an $\tilde{O}(1)$ space¹ algorithm for the problem of estimating $F_{p,q}$ for $p \in [0,2]$ and $q \in [0,1]$. We also present a $\tilde{O}(n^{1-1/q})$ space algorithm for estimating $F_{p,q}$ for $p \in [0,2]$ and $q \in (1,2]$.

1 Introduction

The data stream model of computation is an abstraction for a variety of practical applications arising in network monitoring, sensor networks, RF-id processing, database systems, online webmining, etc.. A problem of basic utility and relevance in this setting is the following hybrid frequency moments estimation problem. Consider a networking application where a stream of packets with schema (src-addr, dest-addr, nbytes, time) arrives at a router. The problem is to warn against the following scenario arising out of a distributed denial of service attack, where, a few destination addresses receive messages from an unusually large number of distinct source addresses. This can be quantified as follows: let A be an $n \times n$ matrix where $A_{i,j}$ is the count of the number of messages from node i to node j. Then $A_{i,j}^0$ is 1 if i sends a message to j and is 0 otherwise. Thus, $\sum_{i=1}^{n} A_{i,i}^{0}$ counts the number of distinct sources that send at least one message to j. Define the hybrid moment $F_{0,2}(A) = \sum_{j=1}^{n} (\sum_{i=1}^{n} A_{i,j}^{0})^2$. In an attack scenario, $F_{0,2}(A)$ becomes large compared to its average value. Since n can be very large (e.g., in the millions), it is not feasible to store and update the traffic matrix A at network line speeds. We propose instead to use the data streaming approach to this problem, namely, to design a sub-linear space data structure that, (a) processes updates to the entries of A, and, (b) provides a randomized algorithm for approximating the value of $F_{0,2}(A)$.

Quantities such as $F_{0,2}(A)$ are known as the hybrid moment of a matrix A. They are more generally defined [19] as follows. Given an $n \times n$ integer matrix A with columns A_1, A_2, \ldots, A_n , the hybrid frequency moment $F_{p,q}(A)$ is the *q*th moment of the *n*-dimensional vector $[F_p(A_1), F_p(A_2), \ldots, F_p(A_n)]$. That is,

$$F_{p,q}(A) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} A_{i,j}^{p} \right)^{q} = \sum_{j=1}^{n} (F_{p}(A_{j}))^{q} .$$

 $^{^{\}star}$ Current Affiliation: University of California, Berkeley.

^{**} Current Affiliation: McKinsey & Company, New Delhi.

¹ The \tilde{O} notation suppresses factors of the form $(\log^{O(1)} n) \cdot (\log^{O(1)} F_{1,1}) \cdot e^{-\Omega(1)}$.

Data Stream Model. We will be interested in algorithms in the data stream model, that is, the input is abstracted as a potentially infinite sequence σ of records of the form (pos, i, j, Δ) , where, $i, j \in \{1, 2, ..., n\}$ and $\Delta \in \mathbb{Z}$ is the change to the value of $A_{i,j}$. The pos attribute is simply the sequence number of the record. Each input record (pos, i, j, Δ) changes $A_{i,j}$ to $A_{i,j} + \Delta$. In other words, the $A_{i,j}$ is the sum of the changes made to the (i, j)th entry since the inception of the stream:

$$A_{i,j} = \sum_{(pos,i,j,\Delta)\in\sigma} \Delta, \quad 1 \le i,j \le n$$

In this paper, we consider the problems of estimating $F_{p,q}$ and allow general matrix streams, that is, matrix entries may be positive, zero or negative.

Prior work. Hybrid frequency moments $F_{p,q}(A)$ are a generalization of the frequency moment $F_p(a)$ of an *n*-dimensional vector a, defined as $F_p(a) = \sum_{j=1}^{n} |a_i|^p$. The problem of estimating $F_p(a)$ has been studied in the data stream model where the input is a stream of updates to the components of a. This problem has been influential in the development of algorithms for data streams. We will say that a randomized algorithm computes an ϵ -approximation to a real valued quantity L, provided, it returns \hat{L} such that $|\hat{L} - L| < \epsilon L$, with probability $\geq \frac{3}{4}$.

Alon, Matias and Szegedy [1] present a seminal randomized sketch technique for ϵ -approximation of $F_2(a)$ in the data streaming model using space $O(\epsilon^{-2} \log F_1(a))$ bits. Using the techniques of [1], it is easily shown that deterministically estimating $F_p(a)$ for any real $p \ge 0$ requires $\Omega(n)$ space [11]. Hence, work in the area of sub-linear space estimation of moments has considered only randomized algorithms. Estimation of $F_0(a)$ was first considered by Flajolet and Martin in [9]; the work in [1] presents a modern version of this technique for estimating $F_0(a)$ to within a constant multiplicative factor and using space $O(\log n)$. Gibbons and Tirthapura [13] present an ϵ -approximation algorithm using space $O(\epsilon^{-2} \log F_1(a))$; this is further improved in [3]. The use of p-stable sketches was proposed by Indyk [14] for estimating $F_p(a)$, for 0 , usingspace $\tilde{O}(1)$. Indyk and Woodruff [15] present a near optimal space algorithm for estimating F_p , for p > 2. Woodruff [21] presents an $\Omega(\epsilon^{-2})$ space lower bound for the problem of estimating F_p , for all $p \ge 0$, implying that the stable sketches technique is space optimal up to poly-logarithmic factors. A space lower bound of $\Omega(n^{1-2/p})$ was shown for the problem of estimating F_p for $p \ge 2$ in a series of developments [1, 2, 5]. Cormode and Muthukrishnan [8] present an algorithm for obtaining an ϵ -approximation for $F_{0,2}(A)$ using space $O(\sqrt{n})$. This is the only prior work on estimating hybrid moments of a matrix in the data stream model.

Contributions. We present randomized algorithms for the problem of estimating hybrid moments $F_{p,q}(A)$ of a matrix A in the data stream model. We consider the range $p \in [0,2]$ and $q \in [0,2]$. We present a novel variation of the stable sketches technique to obtain a $\tilde{O}(1)$ space algorithm for estimating $F_{p,q}$ in the range $p \in [0,2]$ and $q \in [0,1]$. For $p \in [0,2]$ and $q \in (1,2]$, we present an algorithm for estimating $F_{p,q}$ that uses $\tilde{O}(n^{1-1/q}/\epsilon^3)$ space.

2 Review: Hss algorithm

In this section, we review the *Hierarchical Sampling over Sketches* (Hss) proposed in [4] for estimating a class of metrics over data-streams of the following form

$$\Psi(\mathcal{S}) = \sum_{i:f_i \neq 0} \psi(|f_i|) \quad . \tag{1}$$

Sampling sub-streams. The HSS algorithm uses a sampling scheme as follows. From the input stream S, sub-streams S_0, \ldots, S_L are created such that $S_0 = S$ and for $1 \leq l \leq L$, S_l is obtained from S_{l-1} by sub-sampling each distinct item appearing in S_{l-1} independently with probability $\frac{1}{2}$. At level 0, $S_0 = S$. S_l is a randomly sampled sub-stream of S_{l-1} with probability 1/2, for $l \geq 1$, based on the identity of the items. The sub-sampling scheme is implemented as follows. We assume that n is a power of 2. Let $h : [n] \to [0, \max(n^2, W)]$ be a random hash function drawn from a pair-wise independent hash family and $W \geq 2F_1$. Let $L_{\max} = \lceil \log(\max(n^2, W)) \rceil$. Define the random function level : $[n] \to [1, L_{\max}]$ as follows.

$$\operatorname{level}(i) = \begin{cases} 1 & \text{if } h(i) = 0\\ \operatorname{lsb}(h(i)) & 2 \leq \operatorname{level}(i) \leq L_{\max} \end{cases}.$$

where, lsb(x) is the position of the least significant "1" in the binary representation of x. The probability distribution of the random level function is as follows.

$$\Pr\left\{\operatorname{level}(i)=l\right\} = \begin{cases} \frac{1}{2} + \frac{1}{n} & \text{if } l = 1\\ \frac{1}{2^l} & \text{otherwise} \end{cases}$$

At each level $l \in \{0, 1, \ldots, L_{\max}\}$, the Hss algorithm keeps a frequency estimation datastructure denoted by DS_l , that takes as input the sub-stream S_l , and returns an approximation to the frequencies of items that map to S_l . The DS_l structure can be any standard data structure such as the COUNT-MIN sketch sketch structure [7] or the COUNTSKETCH structure [6], or any other data structure. Each stream update (pos, i, v) belonging to S_l is propagated to the frequent items data structures DS_l for $0 \le l \le \text{level}(i)$. Let k(l) denote a space parameter for the data structure DS_l , for example, k(l) is the size of the hash tables in the COUNT-MIN sketch or COUNTSKETCH structures. The values of k(l) are the same for levels $l = 1, 2, \ldots, L$ and is four times the value for k(0), that is, $k(1) = \ldots = k(L) = 4k(0)$. This non-uniformity is a technicality required by Lemma 1. We refer to k = k(0) as the space parameter of the Hss structure.

Approximating f_i . Let $\Delta_l(k)$ denote the additive error of the frequency estimation by the data structure DS_l at level l and using space parameter k. That is, we will assume that

$$|\hat{f}_{i,l} - f_i| \leq \Delta_l(k)$$
 with probability $1 - 2^{-t}$

where, t is a parameter and $\hat{f}_{i,l}$ is the estimate for the frequency of f_i obtained using the frequent items structure $DS_l(k)$.

Given a data stream, $\operatorname{rank}(r)$ is an item with the r^{th} largest absolute value of the frequency, where, ties are broken arbitrarily. We say that an item *i* has $\operatorname{rank} r$ if $\operatorname{rank}(r) = i$. For a given value

of $k, 1 \le k \le n$, the set Top(k) is the set of items with rank $\le k$. The residual second moment [6] of a data stream, denoted by $F_2^{res}(k)$, is defined as the second moment of the frequency of the data stream after the top-k frequencies have been removed, that is, $F_2^{res}(k) = \sum_{r>k} f_{rank(r)}^2$. The residual first moment [7] of a data stream, denoted by F_1^{res} , is analogously defined as the first frequency moment of the data stream after the top-k frequencies have been removed, that is, $F_1^{res} = \sum_{r>k} |f_{rank(r)}|$.

Let $F_1^{res}(k,l)$ and $F_2^{res}(k,l)$ respectively denote $F_1^{res}(k)$ and $F_2^{res}(k)$ of the sub-stream S_l . Lemma 1 relates the random values $F_1^{res}(k,l)$ and $F_2^{res}(k,l)$ to their corresponding non-random values $F_1^{res}(k)$ and $F_2^{res}(k)$, respectively.

Convention. For the sake of simplicity in notation, in this section, we will use f_i to denote $|f_i|$.

Lemma 1. [10]

 $\begin{array}{ll} 1. \ \ For \ l \geq 1 \ \ and \ k \geq 2, \ \Pr\left\{F_1^{res}(k,l) \leq \frac{F_1^{res}(2^{l-2}k)}{2^{l-1}}\right\} \geq 1 - 2e^{-k/6}. \\ 2. \ \ For \ l \geq 1, \ \Pr\left\{F_2^{res}(k,l) \leq \frac{F_2^{res}(2^{l-2}k)}{2^{l-1}}\right\} \geq 1 - 2e^{-k/6}. \end{array}$

Group definitions. At each level l, the sampled stream S_l is provided as input to a data structure DS_l , that when queried, returns an estimate $\hat{f}_{i,l}$ for any $i \in [n]$ satisfying

$$|\hat{f}_{i,l} - f_i| \leq \Delta_l$$
, with prob. $1 - 2^{-t}$

Here, t is a parameter that will be fixed in the analysis and the additive error Δ_l is a function of the algorithm used by DS_l . Fix a parameter $\bar{\epsilon}$ which will be closely related to the given accuracy parameter ϵ , and is chosen depending on the problem. For example, in order to estimate F_p , $\bar{\epsilon}$ is set to $\frac{\epsilon}{4p}$. Therefore,

$$\hat{f}_{i,l} \in (1 \pm \bar{\epsilon}) f_i$$
, provided, $f_i > \frac{\Delta_l}{\bar{\epsilon}}$, and $i \in \mathcal{S}_l$, with prob. $1 - 2^{-t}$

Define the following event

GOODEST $\equiv |\hat{f}_{i,l} - f_i| < \Delta_l$, for each $i \in S_l$ and $l \in \{0, 1, \dots, L\}$.

By union bound,

$$\Pr\{\text{GOODEST}\} \ge 1 - n(L+1)2^{-t} .$$
(2)

The analysis is conditioned on the event GOODEST.

Define a sequence of geometrically decreasing thresholds T_0, T_1, \ldots, T_L as follows.

$$T_l = \frac{T_0}{2^l}, \quad l = 1, 2, \dots, L \text{ and } \frac{1}{2} < T_L \le 1$$
 (3)

Consequently, $L = \lceil \log T_0 \rceil$. Note that L and L_{\max} are distinct parameters. The threshold values T_l 's are used to partition the elements of the stream into groups G_0, \ldots, G_L as follows.

$$G_0 = \{i \in \mathcal{S} : |f_i| \ge T_0\}$$
 and $G_l = \{i \in \mathcal{S} : T_l < |f_i| \le T_{l-1}\}, l = 1, 2, \dots, L$

An item *i* is said to be *discovered as frequent* at level *l*, provided, *i* maps to S_l and $\hat{f}_{i,l} \geq Q_l$, where, $Q_l, l = 0, 1, 2..., L$, is a parameter family. The values of Q_l are chosen as follows.

$$Q_l = T_l (1 - \bar{\epsilon}) \tag{4}$$

The space parameter k(l) is chosen at level l as follows.

$$\Delta_0 = \Delta_0(k) \le \bar{\epsilon}Q_0, \qquad \qquad \Delta_l = \Delta_l(4k) \le \bar{\epsilon}Q_l, l = 1, 2, \dots, L \quad . \tag{5}$$

The value of T_0 is a critical parameter for the HSS parameter and its precise choice depends on the problem that is being solved. For example, for estimating F_p , T_0 is chosen as $\frac{1}{\bar{\epsilon}(1-\bar{\epsilon})} \left(\frac{\hat{F}_2}{k}\right)^{1/2}$. *Hierarchical samples.* Items are sampled and placed into sampled groups $\bar{G}_0, \bar{G}_1, \ldots, \bar{G}_L$ as follows. The estimated frequency of an item *i* is defined as

$$\hat{f}_i = \hat{f}_{i,r}$$
, where, r is the lowest level such that $\hat{f}_{i,r} > Q_r$

The sampled groups are defined as follows.

$$\bar{G}_0 = \{i : |\hat{f}_i| \ge T_0\}$$
 and $\bar{G}_l = \{i : T_l < |\hat{f}_i| \le T_{l-1} \text{ and } i \in \mathcal{S}_l\}, 1 \le l \le L$

The choices of the parameter settings satisfy the following properties. We use the following standard notation. For $a, b \in \mathbb{R}$ and a < b, (a, b) denotes the open interval defined by the set of points between a and b (end points not included), [a, b] represents the closed interval of points between aand b (both included) and finally [a, b) and (a, b] respectively, represent the two half-open intervals. Partition a frequency group G_l , for $1 \le l \le L - 1$, into three adjacent sub-regions:

$$lmargin(G_l) = [T_l, T_l + \bar{\epsilon}Q_l], \quad l = 0, 1, ..., L - 1 \text{ and is undefined for } l = L.$$

$$rmargin(G_l) = [Q_{l-1} - \bar{\epsilon}Q_{l-1}, T_{l-1}), \quad l = 1, 2, ..., L \text{ and is undefined for } l = 0.$$

$$mid(G_l) = (T_l + \bar{\epsilon}Q_l, Q_{l-1} - \bar{\epsilon}Q_l), \quad 1 \le l \le L - 1$$

These regions respectively denote the *lmargin* (left-margin), *rmargin* (right-margin) and *middle*region of the group G_l . An item *i* is said to belong to one of these regions if its true frequency lies in that region. The middle-region of groups G_0 and G_L are each extended to include the right and left margins, respectively. That is,

$$lmargin(G_0) = [T_0, T_0 + \bar{\epsilon}Q_0) \text{ and } \operatorname{mid}(G_0) = [T_0 + \bar{\epsilon}Q_0, F_1]$$

$$rmargin(G_L) = [Q_{L-1} - \bar{\epsilon}Q_{L-1}, T_{L-1}) \text{ and } \operatorname{mid}(G_0) = [0, Q_{L-1} - \bar{\epsilon}Q_{L-1}) .$$

Estimator. The sample is used to compute the estimate $\hat{\Psi}$. We also define an idealized estimator $\bar{\Psi}$ that assumes that the frequent items structure is an oracle that does not make errors.

$$\hat{\Psi} = \sum_{l=0}^{L} \sum_{i \in \bar{G}_l} \psi(\hat{f}_i) \cdot 2^l \qquad \qquad \bar{\Psi} = \sum_{l=0}^{L} \sum_{i \in \bar{G}_l} \psi(f_i) \cdot 2^l \tag{6}$$

Lemma 2 shows that the expected value of $\overline{\Psi}$ is Ψ , assuming the event GOODEST holds.

Lemma 2. [10] $\mathsf{E}[\bar{\Psi} \mid \text{GOODEST}] = \Psi$.

Notation. Let l(i) denote the index of the group G_l such that $i \in G_l$.

Lemma 3. [10]

$$\operatorname{Var}\left[\bar{\Psi} \mid \operatorname{GOODEST}\right] \leq \sum_{\substack{i \in [n] \\ i \notin (G_0 - \operatorname{Imargin}(G_0))}} \psi^2(f_i) \cdot 2^{l(i)+1} \ .$$

The error incurred by the estimate $\hat{\Psi}$ is $|\hat{\Psi} - \Psi|$, and can be bounded as the sum of two error components.

$$|\hat{\Psi} - \Psi| \le |ar{\Psi} - \Psi| + |\hat{\Psi} - ar{\Psi}| = \mathcal{E}_1 + \mathcal{E}_2$$

Here, $\mathcal{E}_1 = |\Psi - \bar{\Psi}|$ is the error due to sampling and $\mathcal{E}_2 = |\hat{\Psi} - \bar{\Psi}|$ is the error due to the estimation of the frequencies. By Chebychev's inequality

$$\mathsf{Pr}\left\{\mathcal{E}_1 \leq 3(\mathsf{Var}\big[\bar{\Psi}\big])^{1/2} \mid \mathsf{GOODEST}\right\} \geq \frac{8}{9}$$

Notation. Define a real valued function $\pi : [n] \to \mathbb{R}$ as follows.

$$\pi_{i} = \begin{cases} \Delta_{l(i)} \cdot |\psi'(\xi_{i}(f_{i}, \Delta_{l}))| & \text{if } i \in G_{0} - lmargin(G_{0}) \text{ or } i \in \operatorname{mid}(G_{l}) \\ \Delta_{l(i)} \cdot |\psi'(\xi_{i}(f_{i}, \Delta_{l}))| & \text{if } i \in lmargin(G_{l}), \text{ for some } l > 1 \\ \Delta_{l(i)-1} \cdot |\psi'(\xi_{i}(f_{i}, \Delta_{l-1}))| & \text{if } i \in rmargin(G_{l}) \end{cases}$$

where, the notation $\xi_i(f_i, \Delta_l)$ returns the value of t that maximizes $|\psi'(t)|$ in the interval $[f_i - \Delta_l, f_i + \Delta_l]$.

$$\Pi_1 = \sum_{i \in [n]} \pi_i,\tag{7}$$

$$\Pi_2 = 3 \left(\sum_{i \in [n] i \notin G_0 - lmargin(G_0)} \pi_i^2 \cdot 2^{l(i)+1} \right)^{1/2}$$
(8)

$$\Lambda = 3 \left(\sum_{l=1}^{L} \psi(T_{l-1}) \psi(G_l) 2^{l+1} + \psi(T_0 + \Delta_0) \psi(lmargin(G_0)) \right)^{1/2}$$
(9)

Here, the notation $\psi(G_l)$ denotes $\sum_{i \in G_l} \psi(f_i)$ and likewise $\psi(lmargin(G_0)) = \sum_{i \in lmargin(G_0)} \psi(f_i)$. It can be shown that

$$\Lambda \geq 3(\mathsf{Var}[\bar{\Psi}])^{1/2} \geq \mathcal{E}_1, \quad \text{assuming GOODEST}$$
.

Lemma 4. [10]

$$\mathsf{E}[\mathcal{E}_2 \mid \text{GOODEST}] \leq \Pi_1, \text{ and } \mathsf{Var}[\mathcal{E}_2 \mid \text{GOODEST}] \leq \frac{\Pi_2^2}{9}$$

Therefore, $\Pr \{ \mathcal{E}_2 \leq \Pi_1 + \Pi_2 \mid \text{GOODEST} \} \geq \frac{8}{9}.$

Lemma 5 presents the overall expression of error and its probability.

Lemma 5. [10] Let $\bar{\epsilon} \leq \frac{1}{3}$. Then,

$$\Pr\left\{|\hat{\Psi} - \Psi| \le \Lambda + \Pi_1 + \Pi_2\right\} > \frac{7}{9}(1 - (n(L+1))2^{-t}) \ .$$

3 Preliminaries

In this section, we review salient properties of stable distributions and briefly review Indyk's [14] and Li's [18] techniques for estimating moments of one-dimensional vectors in the data streaming model. We use the notation $y \sim D$ to denote that a given random variable y follows a probability distribution D.

Indyk's estimator. The use of p-stable sketches was pioneered by Indyk [14] for estimating F_p , for 0 . A stable sketch is a linear combination

$$X = \sum_{i=1}^{n} a_i s_i$$

where $s_i \sim S(p, 1), i \in [n]$ and *i.i.d.*. The first parameter in S(p, 1) is the stability parameter and the second parameter is the scale factor (set to 1). By property of stable distributions,

$$X \sim S\left(p, (F_p(a))^{1/q}\right)$$

For estimating F_1 , Indyk keeps $t = O(\frac{1}{\epsilon^2})$ independent 1-stable (Cauchy) sketches X_1, X_2, \ldots, X_t and defines the estimator

$$\hat{F}_1 = (4/\pi) \cdot \operatorname{median}_{r=1}^t |X_r|^q.$$

This estimator is shown to satisfy $\hat{F}_1 \in (1 \pm \epsilon)F_1$ with probability 15/16.

Further, Indyk shows that for stable distributions it suffices to, (a) truncate the support of the distribution S(p, 1) beyond $(nmM)^{O(1)}$, and, (b) consider the approximation to the continuous S(p, 1) distribution by discretizing it by a grid with interval size $(nmM/\epsilon)^{O(1)}$.

Indyk's application of Nisan's PRG. One final difficulty remains, namely, that the sketches $s_i \sim S(p,1)$ were assumed to be independent. To simulate this would require $\Omega(n)$ random bits. Indyk proposes the following use of Nisan's pseudo-random generator (PRG) [20] for fooling space bounded computations. The total space S used by the randomized machine, not counting the random bits used, is $O(\epsilon^{-2}\log(\epsilon^{-1}nmM))$. First envision that the input stream is reordered so that all updates to a given item *i* arrive consecutively. Since sketches are linear, the value of the sketches are independent of the order. For each element i, the stable random variables $s_i(u)$ for u = 1, 2, ..., tare computed from the *i*th chunk of S random bits obtained from Nisan's generator that stretches a seed of length $S \log n$ to nS bits, where, $S = O(\epsilon^{-2} \log(nmM\epsilon^{-1}))$. By Nisan's PRG, this fools any space S algorithm. The random seed size becomes $S \log n = O(\epsilon^{-2} \log(nmM\epsilon^{-1}) \log(n))$ and this dominates the space requirement of the F_1 estimation algorithm. The time taken to obtain the *i*th random bit chunk is $O(\epsilon^{-2}\log(\epsilon^{-1})(\log n))$ simple field operations on a field of size $O(nmM\epsilon^{-1})$. Indyk outlines an argument to extend the analysis of the estimator for F_1 to general F_p for $p \in (0,2)$, by replacing 1-stable sketches by p-stable sketches. However, the space requirement as a function of p was not explicitly determined, which was subsequently resolved by Li using the geometric means estimator.

Li's estimator. Li [18] proposes several new estimators for the estimation of F_p for $p \in (0, 2)$. These estimators are defined on *p*-stable sketches $X_u = \sum_{i \in [n]} f_i s_i(u), u = 1, 2, ..., t$. The geometric means estimator is defined as

$$\hat{Y}_{p,t} = C(p, p/t)^{-t} \prod_{i=1}^{t} |X_i|^{p/t}.$$

where,

$$C(p,q) = \frac{2}{\pi} \Gamma\left(1 - \frac{q}{\alpha}\right) \Gamma(q) \sin\left(\frac{\pi}{2}(q)\right), -1 < q < p$$

This estimator is unbiased, that is, $\mathsf{E}[Y_{p,t}] = F_p$. Li [18] proves the following tail-bound²:

$$|\hat{Y}_{p,t} - F_p| < \epsilon F_p$$
 with prob. 1/8 provided, $t \ge \frac{96(p^2 + 2)}{12\pi^2\epsilon^2}$

For reference, we define the constant

$$K_L(p) = \frac{96(p^2 + 2)}{12\pi^2\epsilon^2} = O(\epsilon^{-2}) .$$
(10)

 $K_L(p)$ is not principally dependent on p, since, $p \in (0, 2]$.

Li uses Indyk's idea of applying Nisan's PRG to reduce the number of random bits. The space requirement is $O(\epsilon^{-2}\log(\epsilon^{-1}nmM)(\log n))$ and update time requirement remains $O(\epsilon^{-2}(\log \epsilon^{-1})\log(n))$ operations on $\log(nmM)$ bit numbers. An interesting contribution of Li's work is to show that F_p can be estimated using space $\tilde{O}(\epsilon^{-2})$, independent of the value of p.

Kane, Nelson, Woodruff's (KNW) estimator for F_p . Kane, Nelson and Woodruff [17] present two estimators for estimating F_p for $p \in (0, 2)$ that we denote by KNW-I and KNW-II. Both these estimators use space that is tight with respect to the lower bounds, which was also improved in the same paper [17]. The estimators view the computation of the *p*-stable sketches as the multiplication of the $t \times n$ random matrix A with the *n*-dimensional frequency vector f. Each $A_{i,j} \sim \mathcal{D}_p$, where, \mathcal{D}_p is the discretized and truncated version of St(p, 1). However, unlike Indyk and Li's proposal to use fully independent $A_{i,j}$'s, the KNW-I estimator requires just the following limited independence. (i) For each row value *i*, the column entries (i.e., $A_{i,j}$'s) are $O(\epsilon^{-p} \log^{3p}(1/\epsilon))$ -wise independent, and, (ii) the rows of A are pair-wise independent. This can be achieved using a random seed of size $O(t \log(nmM)) = O(\epsilon^{-p} \log^{3p}(1/\epsilon) \log(nmM))$. The update processing time requirement is $O(\epsilon^{-2-p} \log^{3p}(1/\epsilon))$. The KNW-II estimator further reduces the independence requirement among the variates in a single row of A to $\log(\epsilon^{-1})/\log\log(\epsilon^{-1})$. This reduces the estimation time to $O(\epsilon^{-2}(\log \epsilon^{-1})^2/(\log\log \epsilon^{-1}))$ simple operations on fields of size $(nmM)^{O(1)}$.

HSS estimator. An estimator for F_p based on the HSS technique was presented in [12] for estimating F_p . Though it uses sub-optimal space $O(\epsilon^{-2-p}(\log(nmM)^2(\log n)))$, it has the best update processing time so far, namely, $O(\log^2(nmM))$.

 $^{^{2}}$ Li proves a left and right tail bound separately; here we combine them into a single inequality

Estimating $F_{p,q}$: Simple cases. Estimation of hybrid moments generalizes the problem of estimating the regular moment $F_p(a)$ for an *n*-dimensional vector *a*. In particular, for any *p*, $F_{p,1}(A) = F_p(a)$ where *a* is the *n*²-dimensional vector obtained by stringing out the matrix *A* row-wise (or column-wise). Therefore, $F_{p,1}(A)$ can be estimated using standard techniques for estimating F_p of one-dimensional vectors. This implies that for $0 \le p \le 2$, the space requirement for estimating $F_{p,1}$ is $\tilde{O}(\epsilon^{-2})$.

4 Bi-linear stable sketches for estimating $F_{p,q}, \, p \in [0,2], \, q \in [0,1]$

In this section, we present a technique for estimating $F_{p,q}$ in the range $p \in [0,2]$ and $q \in [0,1]$ using bilinear stable sketches.

Consider two families of fully independent stable variables $\{x_{i,j} : 1 \leq i \leq j \leq n\}$ and $\{\xi_j : 1 \leq j \leq n\}$, where, $x_{i,j} \sim S(p,1)$ and $\xi_j \sim S(q,1)$. A p,q bi-linear stable sketch is defined as

$$X = \sum_{j=1}^{n} \sum_{i=1}^{n} A_{i,j} x_{i,j} \xi_j^{1/p} \; .$$

Corresponding to each stream update (pos, i, j, Δ) , the bi-linear sketch is updated as follows:

$$X := X + \Delta \cdot x_{i,j} \cdot \xi_j^{1/p}$$

A collection of s_1s_2 bi-linear sketches $\{X_{u,v} \mid 1 \le u \le s_1, 1 \le v \le s_2\}$ is kept such that for each distinct value of v, the family of sketches $\{X_{u,v}\}_{u=1,2,\dots,s_1}$ uses the independent family of stable variables $\{x_{i,j}(u,v)\}$ but uses the same family of stable variables $\{\xi_j(v)\}$. That is,

$$X(u,v) = \sum_{j=1}^{n} \sum_{i=1}^{n} A_{i,j} x_{i,j}(u,v) (\xi_j(v))^{1/p}, \qquad u = 1, \dots, s_1, v = 1, \dots, s_2 .$$
(11)

We note that for $0 < q \leq 1$, there exist stable distributions S(q, 1) with non-negative support. Thus, $\xi_j \sim S(q, 1)$ is non-negative and $\xi_j^{1/p}$ is non-negative. The estimate $\hat{F}_{p,q}$ is obtained using the following steps.

Algorithm BILINSTABLE $(p, q, s_1, s_2, \{X(u, v)\}_{u \in [1, s_1], v \in [1, s_2]})$.

1. For $v = 1, 2, \ldots, s_2$, calculate $\hat{Y}(v)$ as follows.

$$\hat{Y}(v) = \text{StableEst}^{(p)}(\{X(u,v)\}_{u=1,\dots,s_1})$$
.

2. Return the estimate $\hat{F}_{p,q}$ as follows.

$$\hat{F}_{p,q} = \text{StableEst}^{(q)}(\{\hat{Y}(v) \mid v = 1, \dots, s_2\})$$

Fig. 1. Algorithm BILINSTABLE for estimating $F_{p,q}$

4.1 Analysis

In this section, we present an analysis of the bi-linear stable sketch algorithm. The cases, p = 0 and q = 0 are considered separately.

Lemma 6. For each 0 , <math>0 < q < 1 and $\epsilon < 1/8$, the estimator BILINSTABLE $(p, q, s_1, s_2, \{X(u, v)\}_{u \in [1,s_1], v \in [1,s_2]})$ with parameters $s_2 = \frac{K_L(q)}{\epsilon^2}$ and $s_1 = \frac{K_L(p)}{\epsilon^2} \log \frac{1}{\epsilon}$ satisfies $|\hat{F}_{p,q} - F_{p,q}| \le 3\epsilon F_{p,q}$ with probability $\frac{7}{8}$. The constant $K_L(p)$ is the constant of Li's geometric means estimator for p-stable sketches, given by (10).

Proof. Fix a value of v and for this value of v, let y be a value of the random vector $\xi(v)$ obtained by choosing $\xi_j(v)$ randomly from the stable distribution S(q, 1), for each j = 1, 2, ..., n and independently. Denote the random variable X(u, v) conditional on the choice $\xi(v) = y$ as $X(u, v|\xi(v) = y)$. Therefore,

$$X(u, v | \xi(v) = y) = \sum_{j=1}^{n} \sum_{i=1}^{n} A_{i,j} x_{i,j}(u, v) y_j^{1/p}$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \left(A_{i,j} y_j^{1/p} \right) x_{i,j}(u, v)$$

Moreover, it is important to note that the random variables $X(u, v | \xi(v) = y)$ are independent since the random variables $\{x_{i,j}(u, v)\}_{1 \le i, j, u \le n}$ are independent.

So we have by standard property of stable distributions that

$$X(u, v | \xi(v) = y) \sim S(p, b(y))$$

where,

$$b(y) = \left(\sum_{j=1}^{n} \sum_{i=1}^{n} |A_{i,j}y_j^{1/p}|^p\right)^{1/p} = \left(\sum_{j=1}^{n} y_j \sum_{i=1}^{n} |A_{i,j}|^p\right)^{1/p} = \left(\sum_{j=1}^{n} y_j (||A_j||_p)^p\right)^{1/p}$$

The second equality (crucially) uses the fact that for 0 < q < 1, the stable distribution S(q, 1) has non-negative support implying that y_j is non-negative.

Let $Y(v \mid \xi(v) = y)$ be the random variable obtained by applying StableEst to the values $X(1, v \mid \xi(v) = y), \ldots, X(s_1, v \mid \xi = y)$. We now choose Li's estimator and accordingly set $s_1 = K_L \epsilon^{-2} \log(1/\delta')$, where, $K = K_L$ is the constant for Li's estimator. By properties of StableEst we have,

$$\hat{Y}(v \mid \xi(v) = y) = \lambda_v(y) \sum_{j=1}^n (\|A_j\|_p)^p y_j,$$

where, $\Pr\{1 - \epsilon \le \lambda_v(y) \le 1 + \epsilon\} \ge 1 - \delta'$. Therefore,

$$\hat{Y}(v) = \lambda_v(\xi(v)) \sum_{j=1}^n (\|A_j\|_p)^p \xi_j(v),$$
(12)

where, $\Pr \{1 - \epsilon \le \lambda_v(\xi(v)) \le 1 + \epsilon\} \ge 1 - \delta'$.

The next step in the estimator of Figure 1 is to apply StableEst^(q) to the set of random variables $\{\hat{Y}(v) \mid v = 1, 2, \ldots, s_2\}$. To analyze this step, let us consider the StableEst estimators of Indyk and Li, denoted by StableEst_I and StableEst_L respectively. Using Indyk's median estimator,

StableEst_I^(q) {
$$\hat{Y}(v) | v = 1, 2, ..., s_2$$
} = C_I median_{v=1}^{s₂} { $|\hat{Y}(v)|^q$ }
= C_I median_{v=1}^{s₂} { $|\lambda_v(\xi(v))|^q \left| \sum_{j=1}^n (||A_j||_p)^p \xi_j(v) \right|^q \right}$.

Since, $\lambda_v(\xi(v)) \in [1 - \epsilon, 1 + \epsilon]$ with prob. $1 - \delta'$, we have

$$\text{StableEst}_{I}^{(q)}\left\{\hat{Y}(v) \mid v=1,2,\ldots,s_{2}\right\} \in (1\pm\epsilon)^{q} \cdot C_{I} \text{median}_{v=1}^{s_{2}}\left\{\left|\sum_{j=1}^{n} (\|A_{j}\|_{p})^{p} \xi_{j}(v)\right|^{q}\right\}$$
with prob. $1-s_{2}\delta'$

Since,

$$C_{I} \operatorname{median}_{v=1}^{s_{2}} \left\{ \left| \sum_{j=1}^{n} (\|A_{j}\|_{p})^{p} \xi_{j}(v) \right|^{q} \right\} = \operatorname{StableEst}_{I}^{(q)} \left\{ \sum_{j=1}^{n} (\|A_{j}\|_{p})^{p} \xi_{j}(v) \mid v = 1, 2, \dots, s_{2} \right\}$$

it follows that

$$StableEst_{I}^{(q)} \left\{ \hat{Y}(v) \mid v = 1, 2, \dots, s_{2} \right\} \in (1 \pm \epsilon)^{q} StableEst_{I}^{(q)} \left\{ \sum_{j=1}^{n} (\|A_{j}\|_{p})^{p} \xi_{j}(v) \mid v = 1, 2, \dots, s_{2} \right\}$$
with prob. $1 - s_{2} \delta'$. (13)

A similar analysis can be done for Li's estimator.

StableEst_L^(q) {
$$\hat{Y}(v) | v = 1, 2, ..., s_2$$
} = $C_L \prod_{v=1}^{s_2} |\hat{Y}(v)|^{q/s_2}$
= $C_L \prod_{v=1}^{s_2} ||\lambda_v(\xi(v))|^{q/s_2} \Big| \sum_{j=1}^n (||A_j||_p)^p \xi_j(v) \Big|^{q/s_2}$

Since, $\lambda_v(\xi(v)) \in [1 - \epsilon, 1 + \epsilon]$ with prob. $1 - \delta'$, we have

StableEst_L^(q)
$$\{\hat{Y}(v) \mid v = 1, 2, ..., s_2\} \in C_L \prod_{v=1}^{s_2} (1 \pm \epsilon)^{q/s_2} \left| \sum_{j=1}^n (\|A_j\|_p)^p \xi_j(v) \right|^{q/s_2}$$

with prob. $1 - s_2 \delta'$

Therefore,

$$\text{StableEst}_{L}^{(q)}\left\{\hat{Y}(v) \mid v = 1, 2, \dots, s_{2}\right\} \in (1 \pm \epsilon)^{q} \text{StableEst}_{L}^{(q)}\left\{\sum_{j=1}^{n} (\|A_{j}\|_{p})^{p} \xi_{j}(v) \mid v = 1, 2, \dots, s_{2}\right\}$$

with prob. $1 - s_2 \delta'$. (14)

The forms of equations (13) and (14) are similar and so we drop the subscript I or L.

Since $\xi_j(v) \sim S(q, 1)$ and independent, and $F_{p,q}(A) = \sum_{j=1}^n (\|A_j\|_p)^p$, it follows that

$$\sum_{j=1}^{n} (\|A_j\|_p)^p \xi_j(v) \sim S(q, (F_{p,q}(A))^{1/q})$$

We can now use one of the StableEst algorithms, namely, Indyk's estimator or Li's estimator. Let $s_2 = \frac{K}{\epsilon^2}$, where, $K = K_I$ if we use Indyk's stable estimator or $K = K_L$ for Li's estimator.

StableEst^(q)
$$\left\{ \sum_{j=1}^{n} (\|A_j\|_p)^p \xi_j(v) \mid v = 1, 2, \dots, s_2 \right\} \in (1 \pm \epsilon) \sum_{j=1}^{n} (\|A_j\|_p)^p$$

with probability 15/16. Combining with (13) or (14), we have,

StableEst^(q)
$$\left\{ \hat{Y}(v) \mid v = 1, 2, \dots, s_2 \right\} \in (1 \pm \epsilon)^{q+1} F_{p,q}(A)$$
 with prob. $1 - s_2 \delta' - \frac{1}{16}$. (15)

Letting $\delta' < 1/(16s_2)$, the success probability of the above equation becomes at least 14/16. Since, $\hat{F}_{p,q}(A)$ is defined as StableEst^(q) $\left\{ \hat{Y}(v) \mid v = 1, 2, \dots, s_2 \right\}$, and $\epsilon \le 1/8$, we have,

$$\left|\hat{F}_{p,q}(A) - F_{p,q}(A)\right| \le 4\epsilon F_{p,q}(A)$$
 with prob. 7/8.

4.2 Boundary cases

The above method does not work for estimating $F_{p,q}$ when, either q = 1 or when either p or q is 0. The first case, namely, q = 1 is not solved using the above method since, all families of stable distribution with stability parameter 1 (i.e., the Cauchy distributions) have negative support. That is, if $\xi_j \sim S(1,1)$, then, ξ_j could be negative and so the bilinear summand $A_{i,j}x_{i,j}\xi_j^{1/p}$ may not be a real number. However, as was discussed in Section 3, the estimation for $F_{p,1}$ for the case $p \in [0,2]$ can be performed nearly optimally in terms of space by viewing A as a single long vector of dimension n^2 and using the one-dimensional frequency moment estimation algorithm.

The second problem case arises when either p or q is 0, since, stable distributions are not known for these parameters. We address this case next. A solution to these issues is obtained by approximating $F_{p,q}$ by $F_{p',q'}$, where, p' and q' are chosen to be appropriately close to p to qrespectively. Lemma 7 presents the statement of this claim.

Lemma 7. For every $\epsilon < 1/8$, $0 \le p \le 1$ and $0 \le q \le 1$

$$F_{p',q'} \ge F_{p,q} \ge (1 - 2\epsilon)F_{p',q'}$$
 (16)

where, $p' = \max(p, t)$, $q' = \max(q, \epsilon)$ and $t \le \frac{\epsilon}{\log F_{1,1}}$.

Proof. By viewing the expression $F_{p,q}$ as a function of q and expanding $F_{p,q'}$ around $F_{p,q}$ for q' > q using Taylor's series, we obtain

$$F_{p,q'} \le F_{p,q} + (q'-q)F_{p,q'} \ln F_{p,q'} \tag{17}$$

since,

$$\frac{d}{dx}F_{p,x} = \frac{d}{dx}\sum_{j=1}^{n} (F_p(A_j))^x = \sum_{j=1}^{n} (F_p(A_j))^x \ln F_p(A_j)$$

For $0 \le p \le 1$ and q' < 1, we have $F_{p,q'} \le F_{1,1}$. Substituting in (17), we have

$$F_{p,q'} \ge F_{p,q} \ge F_{p,q'} \left(1 - \frac{q'-q}{\ln F_{1,1}}\right)$$
 (18)

By viewing $F_{p,q'}$ as a function of p and using Taylor's series to expand $F_{p,q'}$ around p for p' > p, we have,

$$F_{p',q'} \leq F_{p,q'} + (p'-p)q'F_{p',q'}\ln F_{1,1}$$
.

Therefore,

$$F_{p',q'} \ge F_{p,q'} \ge F_{p',q'} (1 - q'(p' - p) \ln F_{1,1})$$
 (19)

Substituting from (18), we have,

$$F_{p',q'} \ge F_{p,q} \ge F_{p',q'} \left(1 - \frac{q'-q}{\ln F_{1,1}} \right) \left(1 - q'(p'-p)\ln F_{1,1} \right) \quad . \tag{20}$$

By choosing $q' = \max(q, \epsilon)$ yields $\frac{q'-q}{\ln F_{1,1}} \leq \frac{\epsilon}{\ln F_{1,1}}$. Now suppose p' is chosen to be $\max(p, t)$ where, $t \leq \frac{\epsilon}{\ln F_{1,1}}$. This implies

$$1 - q'(p'-p)\ln F_{1,1} \ge 1 - q'\epsilon \ge 1 - \epsilon$$

since $q' = \max(q, \epsilon) \le 1$. Substituting into (20) we obtain

$$F_{p',q'} \ge F_{p,q} \ge F_{p',q'} (1-\epsilon)^2 \ge (1-2\epsilon)F_{p',q'}$$

By Lemma 7, to obtain an ϵ -approximation to $F_{0,0}$, it suffices to obtain an $\epsilon/2$ -approximation to $F_{\epsilon/\log F_{1,1},\epsilon/\log F_{1,1}}$.

Following discussion in [14], q-stable sketches can be simulated using $O((1/q)\log n)$ bits of precision before and after the binary point. This follows from Levy's classical theorem on stable distribution: if $X \sim S(q, 1)$ then $\Pr\{|X| < C_q n^{c/q}\} > 1 - 1/n^c$ for any c > 0, where, C_q is a constant dependent on q and is bounded above by an absolute constant. Thus, it is possible to approximate a single q-stable random variable using $O(c(1/q)\log n)$ random bits such that the resulting computation has error probability at most n^{1-c} .

Reducing random bits. There are $n^2 \cdot s_1 \cdot s_2$ p-stable random variables and $n \cdot s_2$ q-stable random variables. The random bits required under normal processing is $O(cs_2 \log n((1/p)s_1n^2 + (1/q)s_2)n)$ that generates the necessary random variates with a distribution D such that the ℓ_1 difference of D from the corresponding true stable distribution is at most n^{-c} . For large enough constant c, the difference is negligible. We now use a technique of Indyk [14] to reduce the number of random bits. We briefly review Indyk's technique with regards to our problem.

First envision that the input stream is reordered so that all updates to a given matrix entry $A_{i,i}$ arrive consecutively. Then, for each element (i, j), the stable random variables $x_{i,j}(u, v)$ and $\xi_j(v)$ are computed from a set of independent random bits and the corresponding sketches are updated. The algorithm uses n^2 chunks of random bits, one chunk for each (i, j) and each chunk is of the size of $R = O(s_1 s_2 \log n(1/p) + s_2 \log n(1/q))$ bits. Denote the chunks as $\bar{X}_1, \ldots, \bar{X}_{n^2}$. The space requirement for storing the sketches is say S bits, where, $S = O(K_L(p)K_L(q)\epsilon^{-4}(\log \epsilon^{-1})(\log F_{1,1}))$. Now Nisan's pseudorandom generator (PRG) [20] for fooling space bounded Turing machines can be used to design a PRG G that expands $O(S \log R)$ bits to a sequence of n^2 chunks of size R bits each, denoted by $\widetilde{X}_1, \ldots, \widetilde{X}_{n^2}$. The construction of G guarantees that using \widetilde{X}_j instead of \bar{X}_j results in negligible error probability $(2^{-O(S)})$. Thus, in the ordered stream, the update corresponding to matrix entry (i, j) is updated using the random bits in $X_{i,j}$. Since the difference is negligible, the pseudo-random sketches can be used to estimate the hybrid moment $F_{p,q}(A)$. Finally, Indyk observes that the sketches are updated using addition, which is a commutative and associative operation. Hence, G can be used just as well for the original stream that is arbitrarily ordered. We also note that the PRG G of Nisan is efficient in the sense that any S-length chunk X_i can be computed using $O(\log R)$ arithmetic operations over O(S)-bit words.

This gives us the following theorem. The constants in the space complexity expression are independent of p, q and n.

Theorem 1. For every $p \in [0,2]$ and $q \in [0,1]$ and $\epsilon \leq 1/8$, there exists a randomized algorithm that returns $\hat{F}_{p,q}$ satisfying $|\hat{F}_{p,q} - F_{p,q}| < \epsilon F_{p,q}$ with probability 3/4 using space $O(S \log(n^2))$, where, $S = O((\ln F_{1,1})\epsilon^{-4})\log(\epsilon)^{-1})$.

5 Estimating hybrid moments: $F_{p,q}$ for $p \in [0,2], q \in (1,2]$

In this section, we consider the problem of estimating the frequency moment $F_{p,q}(A)$, when $p \in [0,2]$ and $q \in (1,2]$.

We design a data structure ESTFREQ (p, k, δ) that processes the stream updates. Here $p \in [0, 2]$, the matrix A is updated as a coordinate-wise stream, k is a space parameter k and δ is a confidence parameter. After the stream is processed, given any column index $j \in \{1, 2, ..., n\}$ of the matrix A, the structure returns an estimate $\hat{F}_p(A_j)$ of $F_p(A_j)$ satisfying

$$|\hat{F}_p(A_j) - F_p(A_j)| \le \frac{F_{p,1}(A)}{k}$$

with probability $1 - \delta$. We first present the design of this structure.

5.1 The EstFreq data structure

The ESTFREQ (p, k, δ) data structure keeps a collection of $t = O(\log(1/\delta))$ hash tables T_1, \ldots, T_t , each consisting of b = 8k buckets numbered $0, \ldots, b - 1$. Associated with each hash table T_k is a hash function $h_k : \{1, \ldots, n\} \to \{0, \ldots, b - 1\}$. The hash functions $\{h_k\}_{1 \le k \le t}$ are each drawn independently from a pair-wise independent family of hash functions. Associated with each hash table T_k we keep a family of p-stable random variables

$$\{x_{i,j,u,k} \mid 1 \le i, j \le n, 1 \le u \le U, 1 \le k \le t\}$$

where, $U = \Theta(1/\epsilon^2)$. We will assume that for any given i, j, u, k, a pseudo-random generator can be used to obtain the value of $x_{i,j,u,k}$ along the lines discussed by Indyk in [14]. Each bucket of a table T_k is an array of U p-stable sketches of the form

$$T_k[b,u] = \sum_{h(j)=b} \sum_{i=1}^n A_{i,j} x_{i,j,u,k}, \quad u = 1, 2, \dots, U$$

Each stream update of the form $(index, i, j, \Delta)$ is processed as follows.

$$Update(i, j, \Delta)$$
for $k := 1$ to t do
 $b := h_k(j)$
for $u := 1$ to U do
 $T_k[b, u] := T_k[b, u] + \Delta \cdot x_{i,j,u,k}$
endfor

endfor

The estimator for $F_p(A_j)$ is defined as follows. First, an estimate for $F_p(A_j)$ is obtained from each of the t tables and then the median of these estimates is returned. An estimate is obtained from each table T_k by first mapping j to its bucket $b = h_k(j)$ and then returning the StableEst of the *p*-stable sketches associated with this bucket as follows. Finally, the median of these estimates is returned. That is,

$$\hat{F}_p(A_j) = \text{median}_{k=1}^t \text{StableEst}^{(p)}(\{T_k[h_k(j), u]\}_{u=1, 2, \dots, U})$$

We will now analyze the data structure.

Lemma 8. Let the number of buckets in each hash table of the ESTFREQ(p, k, A) structure be 8k and the number of hash tables be $O(\log(1/\delta))$. Also suppose that the number of stable sketches in each bucket of the hash tables is $O(1/\epsilon^2)$. Then,

$$|\hat{F}_p(A_j) - F_p(A_j)| < \frac{\epsilon}{2} F_p(A_j) + \frac{(1 + \epsilon/2)}{k} F_{p,1}(A)$$

with probability $1 - \delta$.

Proof. Fix a column A_j and fix a table T_k . Consider the bucket $b = h_k(j)$ to which A_j maps in this table. Let $X = X_{j,k}$ denote the following random variable.

$$X_{j,k} = \sum_{h_k(j')=h_k(j)} F_p(A_{j'})$$
.

It follows from the pair-wise independence of h_k that

$$\mathsf{E}[X - F_p(A_j)] = \frac{1}{8k}(F_{p,1}(A) - F_p(A_j)) \; .$$

By Markov's inequality,

$$\Pr\left\{X - F_p(A_j) > F_{p,1}(A)/k\right\} < 1/8 .$$
(21)

Let $Y_k = \text{StableEst}^{(p)}(\{T_k[h_k(j), u]\}_{u=1,2,\dots,U})$. Then, $|Y_k - X| \leq \epsilon X$ with probability 1 - 1/16 (say) since there are $O(1/\epsilon^2)$ *p*-stable sketches in each bucket. Conditional on the event $|Y_k - X| \leq \epsilon X$, we have

$$\begin{aligned} |Y_k - F_p(A_j)| &\leq \epsilon X + (X - F_p(A_j)) \\ &= (1 + \epsilon)(X - F_p(A_j)) + \epsilon F_p(A_j) \\ &\leq \frac{(1 + \epsilon)F_{p,1}(A)}{k} + \epsilon F_p(A_j) \end{aligned}$$

where the last inequality holds with probability 1 - 1/8 - 1/8 = 3/4 by union bound. Unconditioning the dependence on the event $|Y_k - X| \leq \epsilon X$ which holds with probability 1 - 1/16 the success probability is at least 3/4 - 1/16 = 11/16. By classical Chernoff's bounds, the probability of success can be boosted to $1 - \delta$ by returning the median of $O(\log(1/\delta))$ independent measurements.

Let ϵ be $\epsilon/2$ to obtain the statement of the lemma by increasing the number of stable sketches per bucket by a constant factor.

5.2 Estimating $F_{p,q}$

In this section, we use the ESTFREQ structure in conjunction with the HSS technique to estimate $F_{p,q}$ for $p \in [0, 2]$ and $q \in (1, 2]$.

We will instantiate the HSS technique to use an ESTFREQ (p, k, δ) data structure at level l = 0and an ESTFREQ $(p, 4k, \delta)$ structure as the frequent items structure at each level $l = 1, \ldots, L$. Set $\delta = 1/n^2$. Define the thresholds as follows. Let $\bar{\epsilon} = \epsilon/(4q)$.

$$T_0 = \frac{F_{p,1}}{k\bar{\epsilon}}$$
 and $T_l = \frac{T_0}{2^l}$

The groups are defined as follows.

$$G_0 = \{A_j \mid F_p(A_j) \ge T_0\} \text{ and } G_l = \{A_j \mid T_l < F_p(A_j) \le T_{l-1}\}$$

The function to be estimated is

$$\Psi(A) = \sum_{j=1}^{n} (F_p(A_j))^q$$

We can now directly use the properties of the HSS technique to calculate the error.

Lemma 9.

$$\mathsf{Var}\big[\bar{\Psi} \mid \mathsf{GOODEST}\big] \leq \frac{4F_{p,1}F_{p,2q-1}}{\bar{\epsilon}k}$$

Therefore, $\mathcal{E}_1 \leq \epsilon F_{p,q}$ provided, $k \geq \frac{36 \cdot n^{1-1/q}}{q \cdot \epsilon^3}$.

Proof. By Lemma 3,

$$\begin{aligned}
\text{Var}\big[\bar{\Psi} \mid \text{GOODEST}\big] &\leq \sum_{\substack{i \in [n] \\ i \notin (G_0 - lmargin(G_0))}} \psi^2(f_i) \cdot 2^{l(i)+1} \\
&= \sum_{A_j \in lmargin(G_0)} 2(F_p(A_j))^{2q} + \sum_{l=1}^L \sum_{A_j \in G_l} (F_p(A_j))^{2q} \cdot 2^{l+1} \end{aligned} (22)$$

We first consider the second summation expression above.

$$\sum_{l=1}^{L} \sum_{A_j \in G_l} (F_p(A_j))^{2q} \cdot 2^{l+1} \leq \sum_{l=1}^{L} \sum_{A_j \in G_l} (T_{l-1}) (F_p(A_j))^{2q-1} \cdot 2^{l+1}$$
$$\leq \sum_{l=1}^{L} \sum_{A_j \in G_l} \frac{T_0}{2^{l-1}} (F_p(A_j))^{2q-1} \cdot 2^{l+1}$$
$$\leq 4T_0 \sum_{l=1}^{L} (F_p(A_j))^{2q-1} .$$
(23)

The first summand of (22) simplifies to

$$\sum_{\substack{A_j \in lmargin(G_0)}} 2(F_p(A_j))^{2q} \le 2T_0(1+\bar{\epsilon}) \sum_{\substack{A_j \in lmargin(G_0)}} (F_p(A_j))^{2q-1} \\ \le 4T_0 \sum_{\substack{A_j \in lmargin(G_0)}} (F_p(A_j))^{2q-1} .$$

Adding with the RHS of (23), we have

$$\operatorname{Var}\left[\bar{\Psi} \mid \operatorname{GOODEST}\right] \le 4T_0 \sum_{A_j \in Imargin(G_0)} (F_p(A_j))^{2q-1} + 4T_0 \sum_{l=1}^L \sum_{A_j \in G_l} (F_p(A_j))^{2q-1} \\ \le 4T_0 F_{p,2q-1}(A) = \frac{4F_{p,1}F_{p,2q-1}}{\bar{\epsilon}k} \quad .$$
(24)

.

We can now obtain an upper bound on \mathcal{E}_1 . Using the definition of \mathcal{E}_1 and (24), we obtain

$$\mathcal{E}_1 \le 3(\mathsf{Var}\big[\bar{\Psi}\big])^{1/2} \le 6\left(\frac{F_{p,1}F_{p,2q-1}}{\bar{\epsilon}k}\right)^{1/2}$$

Using standard identities, $F_{p,1} \leq n^{1-1/q} F_{p,q}^{1/q}$. Further,

$$F_{p,2q-1} = \sum_{j=1}^{n} (F_p(A_j))^{2q-1} \le \left(\max_{j=1}^{n} (F_p(A_j))^{q-1} \right) \sum_{j=1}^{n} (F_p(A_j))^q$$
$$\le \left(\max_{j=1}^{n} (F_p(A_j))^q \right)^{(q-1)/q} F_{p,q}(A)$$
$$\le \left(\sum_{j=1}^{n} (F_p(A_j))^q \right)^{(q-1)/q} F_{p,q}(A)$$
$$= F_{p,q}^{2-1/q} .$$

Therefore,

$$\mathcal{E}_2 \le 3 \left(\frac{n^{1-1/q} (F_{p,q})^2}{\bar{\epsilon}k} \right)^{1/2} \le \epsilon F_{p,q}$$

provided,

$$k = \frac{36 \cdot n^{1-1/q}}{\bar{\epsilon}\epsilon^2} = \frac{36 \cdot n^{1-1/q}}{q \cdot \epsilon^3}$$

.

This proves the lemma.

г			
I			
L			
	_	_	

As is usual in most calculations involving the HSS technique, the dominant error is the variance of $\bar{\Psi}$, whereas, the error \mathcal{E}_2 is minor. The same property is seen in this instance as well.

Lemma 10. If $k \ge n^{1-1/q}$ and $\bar{\epsilon} \le \epsilon/(4q)$, then, $\Pi_1 \le \epsilon F_{p,q}$ and $\Pi_2 \le \epsilon F_{p,q}$.

Proof. Recall that the function $\pi : [n] \to \mathbb{R}$ is defined as follows.

$$\pi_{i} = \begin{cases} \Delta_{l(i)} \cdot |\psi'(\xi_{i}(f_{i}, \Delta_{l}))| & \text{if } i \in G_{0} - lmargin(G_{0}) \text{ or } i \in \operatorname{mid}(G_{l}) \\ \Delta_{l(i)} \cdot |\psi'(\xi_{i}(f_{i}, \Delta_{l}))| & \text{if } i \in lmargin(G_{l}), \text{ for some } l > 1 \\ \Delta_{l(i)-1} \cdot |\psi'(\xi_{i}(f_{i}, \Delta_{l-1}))| & \text{if } i \in rmargin(G_{l}) \end{cases}$$

where, the notation $\xi_i(f_i, \Delta_l)$ returns the value of t that maximizes $|\psi'(t)|$ in the interval $[f_i - \Delta_l, f_i + \Delta_l]$.

Therefore, if $A_j \in G_l$, then,

$$\pi_{A_j} \leq \Delta_{l-1} (F_p(A_j)(1+\bar{\epsilon}))^{q-1}$$

$$\leq 2\bar{\epsilon} F_p(A_j) (F_p(A_j))^{q-1} \leq \epsilon F_p(A_j)$$

since, $(1 + \bar{\epsilon})^{q-1} \leq 2$ by the choice of $\bar{\epsilon} = \epsilon/(4q)$. Therefore,

$$\Pi_1 \le \epsilon F_{p,1}(A) \quad .$$

Similarly, if $A_j \in G_l$, then,

$$\pi_{A_j}^2 \le 2\bar{\epsilon}^2 \frac{F_{p,1}(A)}{2^l \cdot k} (F_p(A_j))^{2q-1} \cdot 2^{l+1} \le 4\bar{\epsilon}^2 \frac{F_{p,1}(A)(F_p(A_j))^{2q-1}}{k}$$

Therefore,

$$\Pi_2 \leq \left(\sum_{\substack{j \in [n] \\ A_j \notin lmargin(G_0)}} \pi_{A_j}^2 2^{l(i)+1}\right)^{1/2}$$
$$\leq 2\bar{\epsilon} \left(\frac{F_{p,1}(A)F_{p,2q-1}(A)}{k}\right)^{1/2}$$
$$\leq 2\bar{\epsilon} \frac{n^{1-1/q}F_{p,q}(A)}{k} \leq \epsilon F_{p,q}(A)$$

since, $k \ge n^{1-1/q}$.

We therefore have the following theorem. An additional factor of $\log n + \log(1/\epsilon)$ arises due to the derandomization using Nisan's PRG [20] in the manner used by Indyk [14].

Theorem 2. For each $p \in (0,2]$ and $q \in (1,2]$, there exists an algorithm that estimates $F_{p,q}(A)$ to within relative accuracy of ϵ using space

$$O\left(\frac{n^{1-1/q}}{\epsilon^3}(\log n)^2(\log(n/\epsilon))\right)$$

with probability at least 7/8.

Lower Bounds. Some lower bounds may be obtained quite simply for the problem of estimating $F_{p,q}$ by reducing the problem of estimating the pqth one-dimensional moment $F_{p\cdot q}$ to $F_{p,q}$ as follows [22]. Consider an *n*-dimensional vector *a* and view it as the first row of the $n \times n$ matrix *A*, the rest of whose entries are zeros. Then, by definition, $F_{p,q}(A) = F_{p\cdot q}(a)$. Since, it is known that $F_{pq}(a)$ has a space lower bound of $\Omega(n^{1-2/(pq)})$ for pq > 2, the same holds for $F_{p,q}$ as well.

In particular, for p = q = 2, this reduction of $F_{pq}(a)$ to $F_{p,q}(A)$ implies a lower bound of space $\tilde{O}(\sqrt{n})$, which is the space required by the Hss algorithm of Section 5 (ignoring $(1/\epsilon^{O(1)})$ and poly-logarithmic factors).

For $pq \in [0,2]$, F_{pq} has a lower bound of $\Omega(1/\epsilon^2)$ [21]. This implies that the bilinear stable sketches technique presented for the range $p \in [0,2]$ and $q \in [0,1]$ is close to optimal, up to polynomial factors in $1/\epsilon$ and poly-logarithmic factors in n and $F_{1,1}(A)$.

Recently, Jayram and Woodruff [16] have shown a space lower bound of $\Omega(n^{1-1/q})$ for estimating $F_{1,q}$ and $F_{0,q}$, whenever $q \ge 1$. This shows that the HSS algorithm described in this section for estimating $F_{p,q}$ is nearly space optimal for p = 0 or 1 and $q \in [1, 2]$. The problem of obtaining lower bounds for estimating $F_{p,q}$ for $p \in (0, 2)$ and $q \in (0, 2)$, (with the exception of the above cases) is open.

References

- Noga Alon, Yossi Matias, and Mario Szegedy. "The space complexity of approximating frequency moments". J. Comp. Sys. and Sc., 58(1):137–147, 1998.
- Z. Bar-Yossef, T.S. Jayram, R. Kumar, and D. Sivakumar. "An information statistics approach to data stream and communication complexity". In *Proceedings of ACM STOC*, pages 209–218, Princeton, NJ, 2002.
- Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. "Counting distinct elements in a data stream". In *Proceedings of International Workshop on Randomization and Computation (RANDOM)*, Cambridge, MA, 2002.
- L. Bhuvanagiri and S. Ganguly. "Estimating Entropy over Data Streams". In Proceedings of European Symposium on Algorithms (ESA), pages 148–159, 2006.
- A. Chakrabarti, S. Khot, and X. Sun. "Near-Optimal Lower Bounds on the Multi-Party Communication Complexity of Set Disjointness". In *Proceedings of International Conference on Computational Complexity* (CCC), Aarhus, Denmark, 2003.
- Moses Charikar, Kevin Chen, and Martin Farach-Colton. "Finding frequent items in data streams". Theoretical Computer Science, 312(1):3–15, 2004. Preliminary version appeared in Proceedings of ICALP 2002, pages 693– 703.
- Graham Cormode and S. Muthukrishnan. "An Improved Data Stream Summary: The Count-Min Sketch and its Applications". J. Algorithms, 55(1):58–75, April 2005.
- 8. Graham Cormode and S. Muthukrishnan. "Space Efficient Mining of Multigraph Streams". In Proceedings of ACM International Symposium on Principles of Database Systems (PODS), 2005.
- P. Flajolet and G.N. Martin. "Probabilistic Counting Algorithms for Database Applications". J. Comp. Sys. and Sc., 31(2):182–209, 1985.
- S. Ganguly and L. Bhuvanagiri. "Hierarchical Sampling from Sketches: Estimating Functions over Data Streams". Algorithmica, 53:549–582, 2009.
- S. Ganguly and A. Majumder. "CR-precis: A Deterministic Summary Structure for Update Streams". In Proceedings of Int'l Symp. on Algorithms, Probabilistic and Experimental Methodologies (ESCAPE), LNCS 4614, pages 48–59, 2007.
- 12. Sumit Ganguly and Graham Cormode. "On Estimating Frequency Moments of Data Streams". In Proceedings of International Workshop on Randomization and Computation (RANDOM), 2007.
- P. B. Gibbons and S. Tirthapura. "Estimating simple functions on the union of data streams". In *Proceedings* of ACM SPAA, pages 281–291, Heraklion, Crete, Greece, 2001.

- Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. J. ACM, 53(3):307–323, 2006. Preliminary Version appeared in Proceedings of IEEE FOCS 2000, pages 189-197.
- Piotr Indyk and David Woodruff. "Optimal Approximations of the Frequency Moments". In Proceedings of ACM Symposium on Theory of Computing STOC, pages 202–298, Baltimore, Maryland, USA, June 2005.
- T.S. Jayram and David P. Woodruff. "The Data StreamSpace Complexity of Cascaded Norms". In Proceedings of IEEE Foundations of Computer Science (FOCS), 2009.
- 17. Daniel M. Kane, Jelani Nelson, and David P. Woodruff. "On the Exact Space Complexity of Sketching and Streaming Small Norms". In *Proceedings of ACM Symposium on Discrete Algorithms (SODA)*, 2010.
- 18. Ping Li. Estimators and tail bounds for dimension reduction in ℓ_{α} (0 < $\alpha \le 2$) using stable random projections. In Proceedings of ACM Symposium on Discrete Algorithms (SODA), pages 10–19, 2008.
- 19. A. McGregor. "Open problems in data streams and related topics: IITK Workshop on Algorithms for Data Streams, 2006". http://www.cse.iitk.ac.in/users/sganguly/openproblems.pdf.
- N. Nisan. "Pseudo-Random Generators for Space Bounded Computation". In Proceedings of ACM Symposium on Theory of Computing STOC, pages 204–212, May 1990.
- 21. David P. Woodruff. "Optimal space lower bounds for all frequency moments". In Proceedings of ACM Symposium on Discrete Algorithms (SODA), pages 167–175, 2004.
- 22. David P. Woodruff. Personal Communication, August 2008.