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Abstract. We consider the problem of estimating hybrid frequency moments of two dimensional data

streams. In this model, data is viewed to be organized in a matrix form (Ai,j)1≤i,j,≤n. The entries

Ai,j are updated coordinate-wise, in arbitrary order and possibly multiple times. The updates include

both increments and decrements to the current value of Ai,j . The hybrid frequency moment Fp,q(A)

is defined as
∑n
j=1

(∑n
i=1∣Ai,j ∣

p
)q

and is a generalization of the frequency moment of one-dimensional

data streams.

We present an Õ(1) space1 algorithm for the problem of estimating Fp,q for p ∈ [0, 2] and q ∈ [0, 1].

We also present a Õ(n1−1/q) space algorithm for estimating Fp,q for p ∈ [0, 2] and q ∈ (1, 2].

1 Introduction

The data stream model of computation is an abstraction for a variety of practical applications

arising in network monitoring, sensor networks, RF-id processing, database systems, online web-

mining, etc.. A problem of basic utility and relevance in this setting is the following hybrid fre-

quency moments estimation problem. Consider a networking application where a stream of packets

with schema (src-addr, dest-addr,nbytes, time) arrives at a router. The problem is to warn against

the following scenario arising out of a distributed denial of service attack, where, a few destina-

tion addresses receive messages from an unusually large number of distinct source addresses. This

can be quantified as follows: let A be an n × n matrix where Ai,j is the count of the number

of messages from node i to node j. Then A0
i,j is 1 if i sends a message to j and is 0 otherwise.

Thus,
∑n

i=1A
0
i,j counts the number of distinct sources that send at least one message to j. Define

the hybrid moment F0,2(A) =
∑n

j=1(
∑n

i=1A
0
i,j)

2. In an attack scenario, F0,2(A) becomes large

compared to its average value. Since n can be very large (e.g., in the millions), it is not feasible to

store and update the traffic matrix A at network line speeds. We propose instead to use the data

streaming approach to this problem, namely, to design a sub-linear space data structure that, (a)

processes updates to the entries of A, and, (b) provides a randomized algorithm for approximating

the value of F0,2(A).

Quantities such as F0,2(A) are known as the hybrid moment of a matrix A. They are more

generally defined [19] as follows. Given an n × n integer matrix A with columns A1, A2, . . . , An,

the hybrid frequency moment Fp,q(A) is the qth moment of the n-dimensional vector

[Fp(A1), Fp(A2), . . . , Fp(An)]. That is,

Fp,q(A) =
n∑
j=1

(
n∑
i=1

Api,j

)q
=

n∑
j=1

(Fp(Aj))
q .
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1 The Õ notation suppresses factors of the form (logO(1) n) ⋅ (logO(1) F1,1) ⋅ �−
(1).



Data Stream Model. We will be interested in algorithms in the data stream model, that is, the

input is abstracted as a potentially infinite sequence � of records of the form (pos, i, j,�), where,

i, j ∈ {1, 2, . . . , n} and � ∈ ℤ is the change to the value of Ai,j . The pos attribute is simply the

sequence number of the record. Each input record (pos, i, j,�) changes Ai,j to Ai,j +�. In other

words, the Ai,j is the sum of the changes made to the (i, j)th entry since the inception of the

stream:

Ai,j =
∑

(pos,i,j,�)∈�

�, 1 ≤ i, j ≤ n .

In this paper, we consider the problems of estimating Fp,q and allow general matrix streams, that

is, matrix entries may be positive, zero or negative.

Prior work. Hybrid frequency moments Fp,q(A) are a generalization of the frequency moment

Fp(a) of an n-dimensional vector a, defined as Fp(a) =
∑n

j=1∣ai∣p. The problem of estimating

Fp(a) has been studied in the data stream model where the input is a stream of updates to the

components of a. This problem has been influential in the development of algorithms for data

streams. We will say that a randomized algorithm computes an �-approximation to a real valued

quantity L, provided, it returns L̂ such that ∣L̂− L∣ < �L, with probability ≥ 3
4 .

Alon, Matias and Szegedy [1] present a seminal randomized sketch technique for �-approximation

of F2(a) in the data streaming model using space O(�−2 logF1(a)) bits. Using the techniques of

[1], it is easily shown that deterministically estimating Fp(a) for any real p ≥ 0 requires 
(n)

space [11]. Hence, work in the area of sub-linear space estimation of moments has considered

only randomized algorithms. Estimation of F0(a) was first considered by Flajolet and Martin in

[9]; the work in [1] presents a modern version of this technique for estimating F0(a) to within

a constant multiplicative factor and using space O(log n). Gibbons and Tirthapura [13] present

an �-approximation algorithm using space O(�−2 logF1(a)); this is further improved in [3]. The

use of p-stable sketches was proposed by Indyk [14] for estimating Fp(a), for 0 < p ≤ 2, using

space Õ(1). Indyk and Woodruff [15] present a near optimal space algorithm for estimating Fp,

for p > 2. Woodruff [21] presents an 
(�−2) space lower bound for the problem of estimating Fp,

for all p ≥ 0, implying that the stable sketches technique is space optimal up to poly-logarithmic

factors. A space lower bound of 
(n1−2/p) was shown for the problem of estimating Fp for p ≥ 2 in

a series of developments [1, 2, 5]. Cormode and Muthukrishnan [8] present an algorithm for obtain-

ing an �-approximation for F0,2(A) using space Õ(
√
n). This is the only prior work on estimating

hybrid moments of a matrix in the data stream model.

Contributions. We present randomized algorithms for the problem of estimating hybrid moments

Fp,q(A) of a matrix A in the data stream model. We consider the range p ∈ [0, 2] and q ∈ [0, 2].

We present a novel variation of the stable sketches technique to obtain a Õ(1) space algorithm

for estimating Fp,q in the range p ∈ [0, 2] and q ∈ [0, 1]. For p ∈ [0, 2] and q ∈ (1, 2], we present an

algorithm for estimating Fp,q that uses Õ(n1−1/q/�3) space.



2 Review: Hss algorithm

In this section, we review the Hierarchical Sampling over Sketches (Hss) proposed in [4] for

estimating a class of metrics over data-streams of the following form

	(S) =
∑
i:fi ∕=0

 (∣fi∣) . (1)

Sampling sub-streams. The Hss algorithm uses a sampling scheme as follows. From the input

stream S, sub-streams S0, . . . ,SL are created such that S0 = S and for 1 ≤ l ≤ L, Sl is obtained

from Sl−1 by sub-sampling each distinct item appearing in Sl−1 independently with probability
1
2 . At level 0, S0 = S. Sl is a randomly sampled sub-stream of Sl−1 with probability 1/2, for

l ≥ 1, based on the identity of the items. The sub-sampling scheme is implemented as follows.

We assume that n is a power of 2. Let ℎ : [n]→ [0,max(n2,W )] be a random hash function drawn

from a pair-wise independent hash family and W ≥ 2F1. Let Lmax = ⌈log(max(n2,W ))⌉. Define

the random function level : [n]→ [1, Lmax] as follows.

level(i) =

⎧⎨⎩1 if ℎ(i) = 0

lsb(ℎ(i)) 2 ≤ level(i) ≤ Lmax .

where, lsb(x) is the position of the least significant “1” in the binary representation of x. The

probability distribution of the random level function is as follows.

Pr {level(i) = l} =

⎧⎨⎩1
2 + 1

n if l = 1

1
2l

otherwise.

At each level l ∈ {0, 1, . . . , Lmax}, the Hss algorithm keeps a frequency estimation data-

structure denoted by DSl, that takes as input the sub-stream Sl, and returns an approximation

to the frequencies of items that map to Sl. The DSl structure can be any standard data structure

such as the Count-Min sketch sketch structure [7] or the Countsketch structure [6], or any

other data structure. Each stream update (pos, i, v) belonging to Sl is propagated to the frequent

items data structures DSl for 0 ≤ l ≤ level(i). Let k(l) denote a space parameter for the data

structure DSl, for example, k(l) is the size of the hash tables in the Count-Min sketch or

Countsketch structures. The values of k(l) are the same for levels l = 1, 2, . . . , L and is four

times the value for k(0), that is, k(1) = . . . = k(L) = 4k(0). This non-uniformity is a technicality

required by Lemma 1. We refer to k = k(0) as the space parameter of the Hss structure.

Approximating fi. Let �l(k) denote the additive error of the frequency estimation by the data

structure DSl) at level l and using space parameter k. That is, we will assume that

∣f̂i,l − fi∣ ≤ �l(k) with probability 1− 2−t

where, t is a parameter and f̂i,l is the estimate for the frequency of fi obtained using the frequent

items structure DSl(k).

Given a data stream, rank(r) is an item with the rtℎ largest absolute value of the frequency,

where, ties are broken arbitrarily. We say that an item i has rank r if rank(r) = i. For a given value



of k, 1 ≤ k ≤ n, the set Top(k) is the set of items with rank ≤ k. The residual second moment

[6] of a data stream, denoted by F res
2 (k), is defined as the second moment of the frequency of

the data stream after the top-k frequencies have been removed, that is, F res
2 (k) =

∑
r>k f

2
rank(r).

The residual first moment [7] of a data stream, denoted by F res
1 , is analogously defined as the

first frequency moment of the data stream after the top-k frequencies have been removed, that is,

F res
1 =

∑
r>k ∣frank(r)∣.

Let F res
1 (k, l) and F res

2 (k, l) respectively denote F res
1 (k) and F res

2 (k) of the sub-stream Sl.
Lemma 1 relates the random values F res

1 (k, l) and F res
2 (k, l) to their corresponding non-random

values F res
1 (k) and F res

2 (k), respectively.

Convention. For the sake of simplicity in notation, in this section, we will use fi to denote ∣fi∣.

Lemma 1. [10]

1. For l ≥ 1 and k ≥ 2, Pr
{
F res

1 (k, l) ≤ F res
1 (2l−2k)

2l−1

}
≥ 1− 2e−k/6.

2. For l ≥ 1, Pr
{
F res

2 (k, l) ≤ F res
2 (2l−2k)

2l−1

}
≥ 1− 2e−k/6.

Group definitions. At each level l, the sampled stream Sl is provided as input to a data

structure DSl, that when queried, returns an estimate f̂i,l for any i ∈ [n] satisfying

∣f̂i,l − fi∣ ≤ �l, with prob. 1− 2−t .

Here, t is a parameter that will be fixed in the analysis and the additive error �l is a function of

the algorithm used by DSl. Fix a parameter �̄ which will be closely related to the given accuracy

parameter �, and is chosen depending on the problem. For example, in order to estimate Fp, �̄ is

set to �
4p . Therefore,

f̂i,l ∈ (1± �̄)fi, provided, fi >
�l

�̄
, and i ∈ Sl, with prob. 1− 2−t .

Define the following event

GoodEst ≡ ∣f̂i,l − fi∣ < �l, for each i ∈ Sl and l ∈ {0, 1, . . . , L} .

By union bound,

Pr {GoodEst} ≥ 1− n(L+ 1)2−t . (2)

The analysis is conditioned on the event GoodEst.

Define a sequence of geometrically decreasing thresholds T0, T1, . . . , TL as follows.

Tl =
T0

2l
, l = 1, 2, . . . , L and

1

2
< TL ≤ 1 . (3)

Consequently, L = ⌈log T0⌉. Note that L and Lmax are distinct parameters. The threshold values

Tl’s are used to partition the elements of the stream into groups G0, . . . , GL as follows.

G0 = {i ∈ S : ∣fi∣ ≥ T0} and Gl = {i ∈ S : Tl < ∣fi∣ ≤ Tl−1}, l = 1, 2, . . . , L .



An item i is said to be discovered as frequent at level l, provided, i maps to Sl and f̂i,l ≥ Ql,

where, Ql, l = 0, 1, 2 . . . , L, is a parameter family. The values of Ql are chosen as follows.

Ql = Tl(1− �̄) (4)

The space parameter k(l) is chosen at level l as follows.

�0 = �0(k) ≤ �̄Q0, �l = �l(4k) ≤ �̄Ql, l = 1, 2, . . . , L . (5)

The value of T0 is a critical parameter for the Hss parameter and its precise choice depends on

the problem that is being solved. For example, for estimating Fp, T0 is chosen as 1
�̄(1−�̄)

(
F̂2
k

)1/2
.

Hierarchical samples. Items are sampled and placed into sampled groups Ḡ0, Ḡ1, . . . , ḠL as follows.

The estimated frequency of an item i is defined as

f̂i = f̂i,r, where, r is the lowest level such that f̂i,r > Qr .

The sampled groups are defined as follows.

Ḡ0 = {i : ∣f̂i∣ ≥ T0} and Ḡl = {i : Tl < ∣f̂i∣ ≤ Tl−1 and i ∈ Sl}, 1 ≤ l ≤ L .

The choices of the parameter settings satisfy the following properties. We use the following stan-

dard notation. For a, b ∈ ℝ and a < b, (a, b) denotes the open interval defined by the set of points

between a and b (end points not included), [a, b] represents the closed interval of points between a

and b (both included) and finally [a, b) and (a, b] respectively, represent the two half-open intervals.

Partition a frequency group Gl, for 1 ≤ l ≤ L− 1, into three adjacent sub-regions:

lmargin(Gl) = [Tl, Tl + �̄Ql], l = 0, 1, . . . , L− 1 and is undefined for l = L.

rmargin(Gl) = [Ql−1 − �̄Ql−1, Tl−1), l = 1, 2, . . . , L and is undefined for l = 0.

mid(Gl) = (Tl + �̄Ql, Ql−1 − �̄Ql), 1 ≤ l ≤ L− 1

These regions respectively denote the lmargin (left-margin), rmargin (right-margin) and middle-

region of the group Gl. An item i is said to belong to one of these regions if its true frequency

lies in that region. The middle-region of groups G0 and GL are each extended to include the right

and left margins, respectively. That is,

lmargin(G0) = [T0, T0 + �̄Q0) and mid(G0) = [T0 + �̄Q0, F1]

rmargin(GL) = [QL−1 − �̄QL−1, TL−1) and mid(G0) = [0, QL−1 − �̄QL−1) .

Estimator. The sample is used to compute the estimate 	̂ . We also define an idealized estimator

	̄ that assumes that the frequent items structure is an oracle that does not make errors.

	̂ =

L∑
l=0

∑
i∈Ḡl

 (f̂i) ⋅ 2l 	̄ =

L∑
l=0

∑
i∈Ḡl

 (fi) ⋅ 2l (6)

Lemma 2 shows that the expected value of 	̄ is 	 , assuming the event GoodEst holds.



Lemma 2. [10] E
[
	̄ ∣ GoodEst

]
= 	 .

Notation. Let l(i) denote the index of the group Gl such that i ∈ Gl.

Lemma 3. [10]

Var
[
	̄ ∣ GoodEst

]
≤

∑
i∈[n]

i/∈(G0−lmargin(G0))

 2(fi) ⋅ 2l(i)+1 .

The error incurred by the estimate 	̂ is ∣	̂ − 	 ∣, and can be bounded as the sum of two error

components.

∣	̂ − 	 ∣ ≤ ∣	̄ − 	 ∣+ ∣	̂ − 	̄ ∣ = ℰ1 + ℰ2

Here, ℰ1 = ∣	 − 	̄ ∣ is the error due to sampling and ℰ2 = ∣	̂ − 	̄ ∣ is the error due to the estimation

of the frequencies. By Chebychev’s inequality

Pr
{
ℰ1 ≤ 3(Var

[
	̄
]
)1/2 ∣ GoodEst

}
≥ 8

9
.

Notation. Define a real valued function � : [n]→ ℝ as follows.

�i =

⎧⎨⎩
�l(i) ⋅ ∣ ′(�i(fi, �l))∣ if i ∈ G0 − lmargin(G0) or i ∈ mid(Gl)

�l(i) ⋅ ∣ ′(�i(fi, �l))∣ if i ∈ lmargin(Gl), for some l > 1

�l(i)−1 ⋅ ∣ ′(�i(fi, �l−1))∣ if i ∈ rmargin(Gl)

where, the notation �i(fi, �l) returns the value of t that maximizes ∣ ′(t)∣ in the interval [fi −
�l, fi +�l].

�1 =
∑
i∈[n]

�i, (7)

�2 = 3

( ∑
i∈[n]i ∕∈G0−lmargin(G0)

�2
i ⋅ 2l(i)+1

)1/2

(8)

� = 3

( L∑
l=1

 (Tl−1) (Gl)2
l+1 +  (T0 +�0) (lmargin(G0))

)1/2

(9)

Here, the notation  (Gl) denotes
∑

i∈Gl  (fi) and likewise  (lmargin(G0)) =
∑

i∈lmargin(G0)  (fi).

It can be shown that

� ≥ 3(Var
[
	̄
]
)1/2 ≥ ℰ1, assuming GoodEst .

Lemma 4. [10]

E
[
ℰ2 ∣ GoodEst

]
≤ �1, and Var

[
ℰ2 ∣ GoodEst

]
≤ �2

2

9
.

Therefore, Pr {ℰ2 ≤ �1 +�2 ∣ GoodEst} ≥ 8
9 .

Lemma 5 presents the overall expression of error and its probability.

Lemma 5. [10] Let �̄ ≤ 1
3 . Then,

Pr
{
∣	̂ − 	 ∣ ≤ �+�1 +�2

}
>

7

9
(1− (n(L+ 1))2−t) .



3 Preliminaries

In this section, we review salient properties of stable distributions and briefly review Indyk’s [14]

and Li’s [18] techniques for estimating moments of one-dimensional vectors in the data streaming

model. We use the notation y ∼ D to denote that a given random variable y follows a probability

distribution D.

Indyk’s estimator. The use of p-stable sketches was pioneered by Indyk [14] for estimating Fp, for

0 < p ≤ 2. A stable sketch is a linear combination

X =
n∑
i=1

aisi

where si ∼ S(p, 1), i ∈ [n] and i.i.d.. The first parameter in S(p, 1) is the stability parameter and

the second parameter is the scale factor (set to 1). By property of stable distributions,

X ∼ S
(
p, (Fp(a))1/q

)
.

For estimating F1, Indyk keeps t = O( 1
�2

) independent 1-stable (Cauchy) sketches X1, X2, . . . , Xt

and defines the estimator

F̂1 = (4/�) ⋅mediantr=1∣Xr∣q.

This estimator is shown to satisfy F̂1 ∈ (1± �)F1 with probability 15/16.

Further, Indyk shows that for stable distributions it suffices to, (a) truncate the support of the

distribution S(p, 1) beyond (nmM)O(1), and, (b) consider the approximation to the continuous

S(p, 1) distribution by discretizing it by a grid with interval size (nmM/�)O(1).

Indyk’s application of Nisan’s PRG. One final difficulty remains, namely, that the sketches

si ∼ S(p, 1) were assumed to be independent. To simulate this would require 
(n) random bits.

Indyk proposes the following use of Nisan’s pseudo-random generator (PRG) [20] for fooling space

bounded computations. The total space S used by the randomized machine, not counting the ran-

dom bits used, is O(�−2 log(�−1nmM)). First envision that the input stream is reordered so that all

updates to a given item i arrive consecutively. Since sketches are linear, the value of the sketches are

independent of the order. For each element i, the stable random variables si(u) for u = 1, 2, . . . , t

are computed from the ith chunk of S random bits obtained from Nisan’s generator that stretches

a seed of length S log n to nS bits, where, S = O(�−2 log(nmM�−1)). By Nisan’s PRG, this fools

any space S algorithm. The random seed size becomes S log n = O(�−2 log(nmM�−1) log(n))

and this dominates the space requirement of the F1 estimation algorithm. The time taken to

obtain the ith random bit chunk is O(�−2 log(�−1)(log n)) simple field operations on a field of

size O(nmM�−1). Indyk outlines an argument to extend the analysis of the estimator for F1 to

general Fp for p ∈ (0, 2), by replacing 1-stable sketches by p-stable sketches. However, the space

requirement as a function of p was not explicitly determined, which was subsequently resolved by

Li using the geometric means estimator.



Li’s estimator. Li [18] proposes several new estimators for the estimation of Fp for p ∈ (0, 2). These

estimators are defined on p-stable sketches Xu =
∑

i∈[n] fisi(u), u = 1, 2, . . . , t. The geometric

means estimator is defined as

Ŷp,t = C(p, p/t)−t
t∏
i=1

∣Xi∣p/t.

where,

C(p, q) =
2

�
�
(
1− q

�

)
� (q) sin

(�
2

(q)
)
,−1 < q < p .

This estimator is unbiased, that is, E
[
Yp,t
]

= Fp . Li [18] proves the following tail-bound2:

∣Ŷp,t − Fp∣ < �Fp with prob. 1/8 provided, t ≥ 96(p2 + 2)

12�2�2
.

For reference, we define the constant

KL(p) =
96(p2 + 2)

12�2�2
= O(�−2) . (10)

KL(p) is not principally dependent on p, since, p ∈ (0, 2].

Li uses Indyk’s idea of applying Nisan’s PRG to reduce the number of random bits. The space

requirement isO(�−2 log(�−1nmM)(log n)) and update time requirement remainsO(�−2(log �−1) log(n))

operations on log(nmM) bit numbers. An interesting contribution of Li’s work is to show that Fp

can be estimated using space Õ(�−2), independent of the value of p.

Kane, Nelson, Woodruff’s (KNW) estimator for Fp. Kane, Nelson and Woodruff [17] present two

estimators for estimating Fp for p ∈ (0, 2) that we denote by knw-I and knw-II. Both these

estimators use space that is tight with respect to the lower bounds, which was also improved in the

same paper [17]. The estimators view the computation of the p-stable sketches as the multiplication

of the t×n random matrix A with the n-dimensional frequency vector f . Each Ai,j ∼ Dp, where,

Dp is the discretized and truncated version of St(p, 1). However, unlike Indyk and Li’s proposal to

use fully independent Ai,j ’s, the knw-I estimator requires just the following limited independence.

(i) For each row value i, the column entries (i.e., Ai,j ’s) are O(�−p log3p(1/�))-wise independent,

and, (ii) the rows of A are pair-wise independent. This can be achieved using a random seed of

size O(t log(nmM)) = O
(
�−p log3p(1/�) log(nmM)

)
. The update processing time requirement is

O(�−2−p log3p(1/�)). The knw-II estimator further reduces the independence requirement among

the variates in a single row of A to log(�−1)/ log log(�−1). This reduces the estimation time to

O
(
�−2(log �−1)2/(log log �−1)

)
simple operations on fields of size (nmM)O(1).

Hss estimator. An estimator for Fp based on the Hss technique was presented in [12] for esti-

mating Fp. Though it uses sub-optimal space O(�−2−p(log(nmM)2(log n)), it has the best update

processing time so far, namely, O(log2(nmM)).

2 Li proves a left and right tail bound separately; here we combine them into a single inequality



Estimating Fp,q: Simple cases. Estimation of hybrid moments generalizes the problem of es-

timating the regular moment Fp(a) for an n-dimensional vector a. In particular, for any p,

Fp,1(A) = Fp(a) where a is the n2-dimensional vector obtained by stringing out the matrix A

row-wise (or column-wise). Therefore, Fp,1(A) can be estimated using standard techniques for

estimating Fp of one-dimensional vectors. This implies that for 0 ≤ p ≤ 2, the space requirement

for estimating Fp,1 is Õ(�−2).

4 Bi-linear stable sketches for estimating Fp,q, p ∈ [0, 2], q ∈ [0, 1]

In this section, we present a technique for estimating Fp,q in the range p ∈ [0, 2] and q ∈ [0, 1]

using bilinear stable sketches.

Consider two families of fully independent stable variables {xi,j : 1 ≤ i ≤ j ≤ n} and

{�j : 1 ≤ j ≤ n}, where, xi,j ∼ S(p, 1) and �j ∼ S(q, 1). A p, q bi-linear stable sketch is defined as

X =
n∑
j=1

n∑
i=1

Ai,jxi,j�
1/p
j .

Corresponding to each stream update (pos, i, j,�), the bi-linear sketch is updated as follows:

X := X +� ⋅ xi,j ⋅ �1/p
j .

A collection of s1s2 bi-linear sketches {Xu,v ∣ 1 ≤ u ≤ s1, 1 ≤ v ≤ s2} is kept such that for each

distinct value of v, the family of sketches {Xu,v}u=1,2,...,s1 uses the independent family of stable

variables {xi,j(u, v)} but uses the same family of stable variables {�j(v)}. That is,

X(u, v) =
n∑
j=1

n∑
i=1

Ai,jxi,j(u, v)(�j(v))1/p, u = 1, . . . , s1, v = 1, . . . , s2 . (11)

We note that for 0 < q ≤ 1, there exist stable distributions S(q, 1) with non-negative support.

Thus, �j ∼ S(q, 1) is non-negative and �
1/p
j is non-negative. The estimate F̂p,q is obtained using

the following steps.

Algorithm BilinStable(p, q, s1, s2, {X(u, v)}u∈[1,s1],v∈[1,s2]) .

1. For v = 1, 2, . . . , s2, calculate Ŷ (v) as follows.

Ŷ (v) = StableEst(p)({X(u, v)}u=1,...,s1) .

2. Return the estimate F̂p,q as follows.

F̂p,q = StableEst(q)({Ŷ (v) ∣ v = 1, . . . , s2})

Fig. 1. Algorithm BilinStable for estimating Fp,q



4.1 Analysis

In this section, we present an analysis of the bi-linear stable sketch algorithm. The cases, p = 0

and q = 0 are considered separately.

Lemma 6. For each 0 < p ≤ 2, 0 < q < 1 and � < 1/8, the estimator BilinStable(p, q, s1, s2,

{X(u, v)}u∈[1,s1],v∈[1,s2]) with parameters s2 = KL(q)
�2

and s1 = KL(p)
�2

log 1
� satisfies ∣F̂p,q − Fp,q∣ ≤

3�Fp,q with probability 7
8 . The constant KL(p) is the constant of Li’s geometric means estimator

for p-stable sketches, given by (10).

Proof. Fix a value of v and for this value of v, let y be a value of the random vector �(v)

obtained by choosing �j(v) randomly from the stable distribution S(q, 1), for each j = 1, 2, . . . , n

and independently. Denote the random variable X(u, v) conditional on the choice �(v) = y as

X(u, v∣�(v) = y). Therefore,

X(u, v∣�(v) = y) =

n∑
j=1

n∑
i=1

Ai,jxi,j(u, v)y
1/p
j

=

n∑
j=1

n∑
i=1

(
Ai,jy

1/p
j

)
xi,j(u, v)

Moreover, it is important to note that the random variables X(u, v∣�(v) = y) are independent

since the random variables {xi,j(u, v)}1≤i,j,u≤n are independent.

So we have by standard property of stable distributions that

X(u, v∣�(v) = y) ∼ S(p, b(y))

where,

b(y) =

⎛⎝ n∑
j=1

n∑
i=1

∣∣Ai,jy1/p
j

∣∣p⎞⎠1/p

=

⎛⎝ n∑
j=1

yj

n∑
i=1

∣∣Ai,j∣∣p
⎞⎠1/p

=

⎛⎝ n∑
j=1

yj(∥Aj∥p)p
⎞⎠1/p

.

The second equality (crucially) uses the fact that for 0 < q < 1, the stable distribution S(q, 1)

has non-negative support implying that yj is non-negative.

Let Ŷ (v ∣ �(v) = y) be the random variable obtained by applying StableEst to the values

X(1, v∣�(v) = y), . . . , X(s1, v∣� = y). We now choose Li’s estimator and accordingly set s1 =

KL�
−2 log(1/�′)), where, K = KL is the constant for Li’s estimator. By properties of StableEst we

have,

Ŷ (v ∣ �(v) = y) = �v(y)
n∑
j=1

(∥Aj∥p)pyj ,

where, Pr {1− � ≤ �v(y) ≤ 1 + �} ≥ 1− �′. Therefore,

Ŷ (v) = �v(�(v))

n∑
j=1

(∥Aj∥p)p�j(v), (12)



where, Pr {1− � ≤ �v(�(v)) ≤ 1 + �} ≥ 1− �′.
The next step in the estimator of Figure 1 is to apply StableEst(q) to the set of random variables{

Ŷ (v) ∣ v = 1, 2, . . . , s2

}
. To analyze this step, let us consider the StableEst estimators of Indyk

and Li, denoted by StableEstI and StableEstL respectively. Using Indyk’s median estimator,

StableEst
(q)
I {Ŷ (v) ∣ v = 1, 2, . . . , s2} = CImedians2v=1

{
∣Ŷ (v)∣q

}
= CImedians2v=1

{
∣�v(�(v))∣q

∣∣∣∣ n∑
j=1

(∥Aj∥p)p�j(v)

∣∣∣∣q} .

Since, �v(�(v)) ∈ [1− �, 1 + �] with prob. 1− �′, we have

StableEst
(q)
I

{
Ŷ (v) ∣ v = 1, 2, . . . , s2

}
∈ (1± �)q ⋅ CImedians2v=1

{∣∣∣∣ n∑
j=1

(∥Aj∥p)p�j(v)

∣∣∣∣q}
with prob. 1− s2�

′ .

Since,

CImedians2v=1

{∣∣∣∣ n∑
j=1

(∥Aj∥p)p�j(v)

∣∣∣∣q} = StableEst
(q)
I

{ n∑
j=1

(∥Aj∥p)p�j(v) ∣ v = 1, 2, . . . , s2

}
it follows that

StableEst
(q)
I

{
Ŷ (v) ∣ v = 1, 2, . . . , s2

}
∈ (1±�)qStableEst

(q)
I

{ n∑
j=1

(∥Aj∥p)p�j(v) ∣ v = 1, 2, . . . , s2

}
with prob. 1− s2�

′. (13)

A similar analysis can be done for Li’s estimator.

StableEst
(q)
L

{
Ŷ (v) ∣ v = 1, 2, . . . , s2

}
= CL

s2∏
v=1

∣∣Ŷ (v)
∣∣q/s2

= CL

s2∏
v=1

∣∣∣�v(�(v))∣q/s2
∣∣∣∣ n∑
j=1

(∥Aj∥p)p�j(v)

∣∣∣∣q/s2
Since, �v(�(v)) ∈ [1− �, 1 + �] with prob. 1− �′, we have

StableEst
(q)
L

{
Ŷ (v) ∣ v = 1, 2, . . . , s2

}
∈ CL

s2∏
v=1

(1± �)q/s2
∣∣∣∣ n∑
j=1

(∥Aj∥p)p�j(v)

∣∣∣∣q/s2
with prob. 1− s2�

′

Therefore,

StableEst
(q)
L

{
Ŷ (v) ∣ v = 1, 2, . . . , s2

}
∈ (1±�)qStableEst

(q)
L

{ n∑
j=1

(∥Aj∥p)p�j(v) ∣ v = 1, 2, . . . , s2

}
with prob. 1− s2�

′. (14)



The forms of equations (13) and (14) are similar and so we drop the subscript I or L.

Since �j(v) ∼ S(q, 1) and independent, and Fp,q(A) =
∑n

j=1(∥Aj∥p)p, it follows that

n∑
j=1

(∥Aj∥p)p�j(v) ∼ S(q, (Fp,q(A))1/q) .

We can now use one of the StableEst algorithms, namely, Indyk’s estimator or Li’s estimator.

Let s2 = K
�2

, where, K = KI if we use Indyk’s stable estimator or K = KL for Li’s estimator.

StableEst(q)

{ n∑
j=1

(∥Aj∥p)p�j(v) ∣ v = 1, 2, . . . , s2

}
∈ (1± �)

n∑
j=1

(∥Aj∥p)p

with probability 15/16. Combining with (13) or (14), we have,

StableEst(q)

{
Ŷ (v) ∣ v = 1, 2, . . . , s2

}
∈ (1± �)q+1Fp,q(A) with prob. 1− s2�

′ − 1

16
. (15)

Letting �′ < 1/(16s2), the success probability of the above equation becomes at least 14/16. Since,

F̂p,q(A) is defined as StableEst(q)

{
Ŷ (v) ∣ v = 1, 2, . . . , s2

}
, and � ≤ 1/8, we have,

∣∣F̂p,q(A)− Fp,q(A)
∣∣ ≤ 4�Fp,q(A) with prob. 7/8 .

⊓⊔

4.2 Boundary cases

The above method does not work for estimating Fp,q when, either q = 1 or when either p or q is

0. The first case, namely, q = 1 is not solved using the above method since, all families of stable

distribution with stability parameter 1 (i.e., the Cauchy distributions) have negative support.

That is, if �j ∼ S(1, 1), then, �j could be negative and so the bilinear summand Ai,jxi,j�
1/p
j may

not be a real number. However, as was discussed in Section 3, the estimation for Fp,1 for the case

p ∈ [0, 2] can be performed nearly optimally in terms of space by viewing A as a single long vector

of dimension n2 and using the one-dimensional frequency moment estimation algorithm.

The second problem case arises when either p or q is 0, since, stable distributions are not

known for these parameters. We address this case next. A solution to these issues is obtained

by approximating Fp,q by Fp′,q′ , where, p′ and q′ are chosen to be appropriately close to p to q

respectively. Lemma 7 presents the statement of this claim.

Lemma 7. For every � < 1/8, 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1

Fp′,q′ ≥ Fp,q ≥ (1− 2�)Fp′,q′ (16)

where, p′ = max(p, t), q′ = max(q, �) and t ≤ �
logF1,1

.

Proof. By viewing the expression Fp,q as a function of q and expanding Fp,q′ around Fp,q for q′ > q

using Taylor’s series, we obtain

Fp,q′ ≤ Fp,q + (q′ − q)Fp,q′ lnFp,q′ (17)



since,

d

dx
Fp,x =

d

dx

n∑
j=1

(Fp(Aj))
x =

n∑
j=1

(Fp(Aj))
x lnFp(Aj) .

For 0 ≤ p ≤ 1 and q′ < 1, we have Fp,q′ ≤ F1,1. Substituting in (17), we have

Fp,q′ ≥ Fp,q ≥ Fp,q′
(

1− q′ − q
lnF1,1

)
. (18)

By viewing Fp,q′ as a function of p and using Taylor’s series to expand Fp,q′ around p for p′ > p,

we have,

Fp′,q′ ≤ Fp,q′ + (p′ − p)q′Fp′,q′ lnF1,1 .

Therefore,

Fp′,q′ ≥ Fp,q′ ≥ Fp′,q′(1− q′(p′ − p) lnF1,1) . (19)

Substituting from (18), we have,

Fp′,q′ ≥ Fp,q ≥ Fp′,q′
(

1− q′ − q
lnF1,1

)(
1− q′(p′ − p) lnF1,1

)
. (20)

By choosing q′ = max(q, �) yields q′−q
lnF1,1

≤ �
lnF1,1

. Now suppose p′ is chosen to be max(p, t) where,

t ≤ �
lnF1,1

. This implies

1− q′(p′ − p) lnF1,1 ≥ 1− q′� ≥ 1− �

since q′ = max(q, �) ≤ 1. Substituting into (20) we obtain

Fp′,q′ ≥ Fp,q ≥ Fp′,q′(1− �)2 ≥ (1− 2�)Fp′,q′

⊓⊔

By Lemma 7, to obtain an �-approximation to F0,0, it suffices to obtain an �/2-approximation to

F�/ logF1,1,�/ logF1,1
.

Following discussion in [14], q-stable sketches can be simulated using O((1/q) log n) bits of

precision before and after the binary point. This follows from Levy’s classical theorem on stable

distribution: if X ∼ S(q, 1) then Pr
{
∣X∣ < Cqn

c/q
}
> 1 − 1/nc for any c > 0, where, Cq is a

constant dependent on q and is bounded above by an absolute constant. Thus, it is possible to

approximate a single q-stable random variable using O(c(1/q) log n) random bits such that the

resulting computation has error probability at most n1−c.

Reducing random bits. There are n2 ⋅ s1 ⋅ s2 p-stable random variables and n ⋅ s2 q-stable random

variables. The random bits required under normal processing is O(cs2 log n((1/p)s1n
2 +(1/q)s2)n)

that generates the necessary random variates with a distribution D such that the ℓ1 difference of

D from the corresponding true stable distribution is at most n−c. For large enough constant c,

the difference is negligible. We now use a technique of Indyk [14] to reduce the number of random

bits. We briefly review Indyk’s technique with regards to our problem.



First envision that the input stream is reordered so that all updates to a given matrix entry Ai,j

arrive consecutively. Then, for each element (i, j), the stable random variables xi,j(u, v) and �j(v)

are computed from a set of independent random bits and the corresponding sketches are updated.

The algorithm uses n2 chunks of random bits, one chunk for each (i, j) and each chunk is of the size

of R = O(s1s2 log n(1/p) + s2 log n(1/q)) bits. Denote the chunks as X̄1, . . . , X̄n2 . The space re-

quirement for storing the sketches is say S bits, where, S = O(KL(p)KL(q)�−4(log �−1)(logF1,1)).

Now Nisan’s pseudorandom generator (PRG) [20] for fooling space bounded Turing machines can

be used to design a PRG G that expands O(S logR) bits to a sequence of n2 chunks of size R

bits each, denoted by X̃1, . . . , X̃n2 . The construction of G guarantees that using X̃j instead of

X̄j results in negligible error probability (2−O(S)). Thus, in the ordered stream, the update cor-

responding to matrix entry (i, j) is updated using the random bits in X̃i,j . Since the difference

is negligible, the pseudo-random sketches can be used to estimate the hybrid moment Fp,q(A).

Finally, Indyk observes that the sketches are updated using addition, which is a commutative and

associative operation. Hence, G can be used just as well for the original stream that is arbitrarily

ordered. We also note that the PRG G of Nisan is efficient in the sense that any S-length chunk

X̃j can be computed using O(logR) arithmetic operations over O(S)-bit words.

This gives us the following theorem. The constants in the space complexity expression are

independent of p, q and n.

Theorem 1. For every p ∈ [0, 2] and q ∈ [0, 1] and � ≤ 1/8, there exists a randomized algorithm

that returns F̂p,q satisfying ∣F̂p,q − Fp,q∣ < �Fp,q with probability 3/4 using space O(S log(n2)),

where, S = O((lnF1,1)�−4) log(�)−1). ⊓⊔

5 Estimating hybrid moments: Fp,q for p ∈ [0, 2], q ∈ (1, 2]

In this section, we consider the problem of estimating the frequency moment Fp,q(A), when p ∈
[0, 2] and q ∈ (1, 2].

We design a data structure Estfreq(p, k, �) that processes the stream updates. Here p ∈ [0, 2],

the matrix A is updated as a coordinate-wise stream, k is a space parameter k and � is a confidence

parameter. After the stream is processed, given any column index j ∈ {1, 2, . . . , n} of the matrix

A, the structure returns an estimate F̂p(Aj) of Fp(Aj) satisfying

∣F̂p(Aj)− Fp(Aj)∣ ≤
Fp,1(A)

k

with probability 1− �. We first present the design of this structure.

5.1 The EstFreq data structure

The Estfreq(p, k, �) data structure keeps a collection of t = O(log(1/�)) hash tables T1, . . . , Tt,

each consisting of b = 8k buckets numbered 0, . . . , b − 1. Associated with each hash table Tk is

a hash function ℎk : {1, . . . , n} → {0, . . . , b − 1}. The hash functions {ℎk}1≤k≤t are each drawn

independently from a pair-wise independent family of hash functions. Associated with each hash

table Tk we keep a family of p-stable random variables

{xi,j,u,k ∣ 1 ≤ i, j ≤ n, 1 ≤ u ≤ U, 1 ≤ k ≤ t}



where, U = �(1/�2). We will assume that for any given i, j, u, k, a pseudo-random generator can

be used to obtain the value of xi,j,u,k along the lines discussed by Indyk in [14]. Each bucket of a

table Tk is an array of U p-stable sketches of the form

Tk[b, u] =
∑
ℎ(j)=b

n∑
i=1

Ai,jxi,j,u,k, u = 1, 2, . . . , U .

Each stream update of the form (index, i, j,�) is processed as follows.

Update(i, j,�)

for k := 1 to t do

b := ℎk(j)

for u := 1 to U do

Tk[b, u] := Tk[b, u] +� ⋅ xi,j,u,k
endfor

endfor

The estimator for Fp(Aj) is defined as follows. First, an estimate for Fp(Aj) is obtained from each

of the t tables and then the median of these estimates is returned. An estimate is obtained from

each table Tk by first mapping j to its bucket b = ℎk(j) and then returning the StableEst of the

p-stable sketches associated with this bucket as follows. Finally, the median of these estimates is

returned. That is,

F̂p(Aj) = mediantk=1StableEst(p)({Tk[ℎk(j), u]}u=1,2,...,U )

We will now analyze the data structure.

Lemma 8. Let the number of buckets in each hash table of the Estfreq(p, k,A) structure be 8k

and the number of hash tables be O(log(1/�)). Also suppose that the number of stable sketches in

each bucket of the hash tables is O(1/�2). Then,

∣F̂p(Aj)− Fp(Aj)∣ <
�

2
Fp(Aj) +

(1 + �/2)

k
Fp,1(A)

with probability 1− �.

Proof. Fix a column Aj and fix a table Tk. Consider the bucket b = ℎk(j) to which Aj maps in

this table. Let X = Xj,k denote the following random variable.

Xj,k =
∑

ℎk(j′)=ℎk(j)

Fp(Aj′) .

It follows from the pair-wise independence of ℎk that

E
[
X − Fp(Aj)

]
=

1

8k
(Fp,1(A)− Fp(Aj)) .

By Markov’s inequality,

Pr {X − Fp(Aj) > Fp,1(A)/k} < 1/8 . (21)



Let Yk = StableEst(p)({Tk[ℎk(j), u]}u=1,2,...,U ). Then, ∣Yk−X∣ ≤ �X with probability 1−1/16 (say)

since there are O(1/�2) p-stable sketches in each bucket. Conditional on the event ∣Yk−X∣ ≤ �X,

we have

∣Yk − Fp(Aj)∣ ≤ �X + (X − Fp(Aj))

= (1 + �)(X − Fp(Aj)) + �Fp(Aj)

≤ (1 + �)Fp,1(A)

k
+ �Fp(Aj) .

where the last inequality holds with probability 1 − 1/8 − 1/8 = 3/4 by union bound. Uncondi-

tioning the dependence on the event ∣Yk − X∣ ≤ �X which holds with probability 1 − 1/16 the

success probability is at least 3/4 − 1/16 = 11/16. By classical Chernoff’s bounds, the proba-

bility of success can be boosted to 1 − � by returning the median of O(log(1/�)) independent

measurements.

Let � be �/2 to obtain the statement of the lemma by increasing the number of stable sketches

per bucket by a constant factor. ⊓⊔

5.2 Estimating Fp,q

In this section, we use the Estfreq structure in conjunction with the Hss technique to estimate

Fp,q for p ∈ [0, 2] and q ∈ (1, 2].

We will instantiate the Hss technique to use an Estfreq(p, k, �) data structure at level l = 0

and an Estfreq(p, 4k, �) structure as the frequent items structure at each level l = 1, . . . , L. Set

� = 1/n2. Define the thresholds as follows. Let �̄ = �/(4q).

T0 =
Fp,1
k�̄

and Tl =
T0

2l
.

The groups are defined as follows.

G0 = {Aj ∣ Fp(Aj) ≥ T0} and Gl = {Aj ∣ Tl < Fp(Aj) ≤ Tl−1}

The function to be estimated is

	(A) =
n∑
j=1

(Fp(Aj))
q .

We can now directly use the properties of the Hss technique to calculate the error.

Lemma 9.

Var
[
	̄ ∣ GoodEst

]
≤ 4Fp,1Fp,2q−1

�̄k
.

Therefore, ℰ1 ≤ �Fp,q provided, k ≥ 36⋅n1−1/q

q⋅�3 .

Proof. By Lemma 3,

Var
[
	̄ ∣ GoodEst

]
≤

∑
i∈[n]

i/∈(G0−lmargin(G0))

 2(fi) ⋅ 2l(i)+1

=
∑

Aj∈lmargin(G0)

2(Fp(Aj))
2q +

L∑
l=1

∑
Aj∈Gl

(Fp(Aj))
2q ⋅ 2l+1 (22)



We first consider the second summation expression above.

L∑
l=1

∑
Aj∈Gl

(Fp(Aj))
2q ⋅ 2l+1 ≤

L∑
l=1

∑
Aj∈Gl

(Tl−1)(Fp(Aj))
2q−1 ⋅ 2l+1

≤
L∑
l=1

∑
Aj∈Gl

T0

2l−1
(Fp(Aj))

2q−1 ⋅ 2l+1

≤ 4T0

L∑
l=1

(Fp(Aj))
2q−1 . (23)

The first summand of (22) simplifies to∑
Aj∈lmargin(G0)

2(Fp(Aj))
2q ≤ 2T0(1 + �̄)

∑
Aj∈lmargin(G0)

(Fp(Aj))
2q−1

≤ 4T0

∑
Aj∈lmargin(G0)

(Fp(Aj))
2q−1 .

Adding with the RHS of (23), we have

Var
[
	̄ ∣ GoodEst

]
≤ 4T0

∑
Aj∈lmargin(G0)

(Fp(Aj))
2q−1 + 4T0

L∑
l=1

∑
Aj∈Gl

(Fp(Aj))
2q−1

≤ 4T0Fp,2q−1(A) =
4Fp,1Fp,2q−1

�̄k
. (24)

We can now obtain an upper bound on ℰ1. Using the definition of ℰ1 and (24), we obtain

ℰ1 ≤ 3(Var
[
	̄
]
)1/2 ≤ 6

(
Fp,1Fp,2q−1

�̄k

)1/2

.

Using standard identities, Fp,1 ≤ n1−1/qF
1/q
p,q . Further,

Fp,2q−1 =
n∑
j=1

(Fp(Aj))
2q−1 ≤

(
n

max
j=1

(Fp(Aj))
q−1

) n∑
j=1

(Fp(Aj))
q

≤
(

n
max
j=1

(Fp(Aj))
q

)(q−1)/q

Fp,q(A)

≤

⎛⎝ n∑
j=1

(Fp(Aj))
q

⎞⎠(q−1)/q

Fp,q(A)

= F 2−1/q
p,q .

Therefore,

ℰ2 ≤ 3

(
n1−1/q(Fp,q)

2

�̄k

)1/2

≤ �Fp,q

provided,

k =
36 ⋅ n1−1/q

�̄�2
=

36 ⋅ n1−1/q

q ⋅ �3
.

This proves the lemma. ⊓⊔



As is usual in most calculations involving the Hss technique, the dominant error is the variance

of 	̄ , whereas, the error ℰ2 is minor. The same property is seen in this instance as well.

Lemma 10. If k ≥ n1−1/q and �̄ ≤ �/(4q), then, �1 ≤ �Fp,q and �2 ≤ �Fp,q.

Proof. Recall that the function � : [n]→ ℝ is defined as follows.

�i =

⎧⎨⎩
�l(i) ⋅ ∣ ′(�i(fi, �l))∣ if i ∈ G0 − lmargin(G0) or i ∈ mid(Gl)

�l(i) ⋅ ∣ ′(�i(fi, �l))∣ if i ∈ lmargin(Gl), for some l > 1

�l(i)−1 ⋅ ∣ ′(�i(fi, �l−1))∣ if i ∈ rmargin(Gl)

where, the notation �i(fi, �l) returns the value of t that maximizes ∣ ′(t)∣ in the interval [fi −
�l, fi +�l].

Therefore, if Aj ∈ Gl, then,

�Aj ≤ �l−1(Fp(Aj)(1 + �̄))q−1

≤ 2�̄Fp(Aj)(Fp(Aj))
q−1 ≤ �Fp(Aj)

since, (1 + �̄)q−1 ≤ 2 by the choice of �̄ = �/(4q). Therefore,

�1 ≤ �Fp,1(A) .

Similarly, if Aj ∈ Gl, then,

�2
Aj ≤ 2�̄2

Fp,1(A)

2l ⋅ k
(Fp(Aj))

2q−1 ⋅ 2l+1 ≤ 4�̄2
Fp,1(A)(Fp(Aj))

2q−1

k
.

Therefore,

�2 ≤
( ∑

j∈[n]
Aj ∕∈lmargin(G0)

�2
Aj2

l(i)+1
)1/2

≤ 2�̄

(
Fp,1(A)Fp,2q−1(A)

k

)1/2

≤ 2�̄
n1−1/qFp,q(A)

k
≤ �Fp,q(A)

since, k ≥ n1−1/q. ⊓⊔

We therefore have the following theorem. An additional factor of log n + log(1/�) arises due

to the derandomization using Nisan’s PRG [20] in the manner used by Indyk [14].

Theorem 2. For each p ∈ (0, 2] and q ∈ (1, 2], there exists an algorithm that estimates Fp,q(A)

to within relative accuracy of � using space

O

(
n1−1/q

�3
(log n)2(log(n/�))

)
with probability at least 7/8. ⊓⊔



Lower Bounds. Some lower bounds may be obtained quite simply for the problem of estimating

Fp,q by reducing the problem of estimating the pqth one-dimensional moment Fp⋅q to Fp,q as

follows [22]. Consider an n-dimensional vector a and view it as the first row of the n× n matrix

A, the rest of whose entries are zeros. Then, by definition, Fp,q(A) = Fp⋅q(a). Since, it is known

that Fpq(a) has a space lower bound of 
(n1−2/(pq)) for pq > 2, the same holds for Fp,q as well.

In particular, for p = q = 2, this reduction of Fpq(a) to Fp,q(A) implies a lower bound of space

Õ(
√
n), which is the space required by the Hss algorithm of Section 5 (ignoring (1/�O(1)) and

poly-logarithmic factors).

For pq ∈ [0, 2], Fpq has a lower bound of 
(1/�2) [21]. This implies that the bilinear stable

sketches technique presented for the range p ∈ [0, 2] and q ∈ [0, 1] is close to optimal, up to

polynomial factors in 1/� and poly-logarithmic factors in n and F1,1(A).

Recently, Jayram and Woodruff [16] have shown a space lower bound of 
(n1−1/q) for esti-

mating F1,q and F0,q, whenever q ≥ 1. This shows that the Hss algorithm described in this section

for estimating Fp,q is nearly space optimal for p = 0 or 1 and q ∈ [1, 2]. The problem of obtaining

lower bounds for estimating Fp,q for p ∈ (0, 2) and q ∈ (0, 2), (with the exception of the above

cases) is open.
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