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What is Entropy?

O A measure of randomness or information content
O Thermodynamics, anyone?

O For probability distribution p = (py, Py, - Pp),
entropy H(p) := Xcqn P; l0g(1/p;)

O Rich mathematical theory (information theory),
initiated by Claude Shannon
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O A huge amount of data whizzing by

O Relevance: explosion of data in our heavily
networked world

O 3 billion telephone calls/day, in U.S.
O 1 billion IP packets/hour, at an average router
O 2.5 billion emails/hour, worldwide (2006 est.)

Want to mine such a huge data stream,
but can’t store it all

»
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O Input stream = sequence (a,, @, ..., 4,
O Each token g, € [n] := {1, 2, ..., n}
O m, n huge

© Compute function ¢(ay, a,, ..., a,,) using
O sublinear space << m, n; ideally, polylog(m, n)
O small number of passes; ideally, one pass

What is a Data Stream?

O 1 billion credit card transactions/month, worldwide
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Data Stream Model
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Example Problems

O Tokens often uninteresting as numbers
O Interesting: frequency distribution of tokens

fo:=#li:a;=a}, i€][n]

O Statistical analysis of stream: y(fy, f5, -, f,)
O Most popular token: compute max, {f,}

O Heavy hitters: compute {a : f, > m/10}

O Frequency moments: compute 3 (f,)¥

Entropy Norm

O Previously: estimate (kth power of) k-norm

Fk = Eae[n] fak
O Now: estimate

Fy = Eae[n] folog f,
Called the entropy norm of the stream

O Key application: detecting anomalies in IP traffic
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Frequency Moments

O The problem that started the “modern age”
O Estimate Fy := 3 crq fo© [Alon,Matias,Szegedy’96]

O Fairly well understood at this point

O Sublinear space requires randomization and approximation

O Upper bound: O(n'-2) for k > 2; O(1) for k € {0,1,2}
[AMS’96] [Coppersmith,Kumar’96] [Indyk,Woodruff’05]

O Lower bound: Q(n'-2/k), also e-approx requires Q(g=2)

[BarYossef,J,K,S’02] [Chakrabarti,Khot,S I 03]
\ [Woo \’(D
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Empirical Entropy

O Frequencies fy, f,, ..., f, define empirical
probability distribution on tokens

O Empirical entropy
H = 3 acin (fo/ m) log(m/f,)

O Applications in databases and networking

O Estimating F,;, H proposed in applied work, but no
nontrivial algorithms (until this year)
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The Main Problem

H 5= Eae[n] (fa/m) log(m/fa)
B s Eae[n] fa log fa

O Compute g-approx to H in space o(m) words
O i.e., output estimate that w.h.p. lies in [(1-¢g)H, (1+¢)H]

O Try doing the same for Fy
O Note: F,; = m(log m - H), but that doesn’t help

\And other entropy-like quantities

New Results

O For estimating H
O One-pass c-approx in space O(s-2log m)
O Considerably simpler than previous one-pass algorithm
O Lower bound of Q(c2/log?¢")
O For estimating higher order entropy H,
O Multiplicative approx lower bound of Q(m/log m)
O Additive e-approx in space O(k%¢-2log? m log? n)
O Also: estimating unbiased random walk entropy

[Chakrabarti,Cormode,McGrego
To appear,
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O For estimating Fy
O If F; > m/A, e-approx in space O(Ae2log m) words
O Else, O(1)-approx needs space Q(A) bits

(Slightly) Old Results

[Chakrabarti,DoBa,Muthukrishnan’06]

O For estimating H
O O(1)-appra@rfetarde- D itogpace tepanthtst on H

O Two-pass e-approx in space O(g-2 logZm)
O One-pass s-approx in space = O(e~3 log’m)

N\

O Wish to compute Q

O Design random variable X (basic estimator):
OE[X]=Q
O Var[X] as small as possible
O X easy to update as stream is read (= small space)

O If Var[X] tiny, then w.h.p. X =, Q
O Else, reduce variance: maintain several

independent Xs and average
Implicit in [Alon,Matias,Szeg

[Bhuvanagiri,Gangi

[Guha,McGregor,Venkatasubramanian’06]

[Chakrabarti,DoBa,Muthukrishnan’06]
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Estimators
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Estimators:
Brief Analysis

Designing an Estimator

O Input (a,, a,, ..., a,); f; = frequency of a € [n]
O Want to compute ¥ i,y ¢(f,)/m, for some ¢

O To compute H, use ¢(x) = x log(m/x)
O To compute F, use ¢(x) = mx log x

O Basic estimator X, E[X] = Q

O Let Y = average of 3e-2Var[X]/Q? copies of X
Then, Pr[|Y-Q| > ¢Q] < 1/3  (Chebyshev)
O Let Z = average of 5¢-2Max[X]/Q copies of X

Then, Pr{|Z-Q| > ¢Q] < 1/3  (Chernoff) O Pick J €¢ [m]

OletR=#k:a,=a,,J=<k=mj}

O Y (or Z) serves as a final estimator O Basic estimator X = ¢(R) - ¢(R-1)

“.Space « Var[X]/Q? or Max[X]/Q (j) \ (j)
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Key AvgioyiThmisit\Stde

O Want: 3y 0(f,)/m i.e., sample one token
0 Pick J €, [m] from the input stream
OletR=#k:a,=a,J=k=mj}

O Basic estimator X = ¢(R) - ¢(R-1)
BN/ VR VRNV §
E[X] -}j ) (60 -9tr-D)= > o(f)

r=1 a€ln]

Dealing with H = o(1)

O If H << 1, space usage (log m)/H could be high
O WhenisH<1?

O Only when some f, > m/2
O i.e., when the input stream A has a dominator, a*

O If we knew about a* in advance...
O Let A’ = A - (all occurrences of a*)

O Using some calculus, we can show O Design estimator X' for A’, similar to X for A

O For Fy, Var[X]/F,? is “small” O Compute H from X and |A'|
O For H, Max[X]/H is “small”...... well...... = (log m)/H Easy two-pass algorithm, but how about one-??!?
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Dealing with H = o(1)

O In one pass, we need to
O Sample one token from A
O Sample one token from A', if a* exists
O |dentify a*
O Estimate |A’| within 1x¢

O Last two tasks: nice undergrad exercise today
Once a research problem: [Misra,Gries’82]

0,0
*/ "~ sampling Two Tokens

C A A D C B A
© wn o~ © o ~ o
§ ® o 8 7 ¢ 8
SRS © SRS SERED

A|B A

min tag amongsin tag
remaining tokens second smallest
Assign tags, choose first token as beforetag, but we don’t
Delete all occurrences of first token want this; same
O Choose token with min remaining tag; c Uit Péﬂqelgttfg}
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© sampling One Token

C A A B B/A\B D C A B A
(e} v G g =) [o\ N} (2] (o)) on TE (o]
(=] S — (o)} G~ 0 O N <t [ (9N (=}
i o0 GIRE i, JToil 'S iy S GUER R i SR OF S
S (=} S =) S (==} (==} (==} S =) (<) S
A A A

min tag

Assign random tag € [0,1] for each token

Choose token with min tag (= uniform random choice)
plementation: keep track of

in tag, corresponding token, number of repea
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Implementation:
Some Details

Maintain (tag1, tok1, rep1), (tag2, tok2, rep2); tagl < tag2
tok1 will be sample from A, tok2 will be sample from A’
On reading next token, a:
x = random tag € [m3]
if a == tok1:
if X < tag1 then (tag1,tok1,rep1) = (x,a,1) else rep1++
else:
if a == tok2 then rep2++
if x < tagt:
(tag2,tok2,rep2) = (tag1,tok1,rep1)
(tag1,tok1,rep1) = (x,a,1)
else:
\ if X < tag2 then (tag2,tok2,rep2) = (x,a,1)




Example Run

(@!

0.391

a=A4

X = 0.208

(tag1,tok1,rep1) = (@.20808, 1)
(tag2,tok2,rep2) = (080808, 2) T

¢ ©
O Tower Bound, Reduction

Observe: there are
0 2A(x,Y) tok w1th fre ¢y each

N Aty RSt el erREs O, 1"
,H=1log N + er/y,\pstlmatlon algorithm %7
O Alice runs %7 on ((1,%,), (2,X), «r (N,Xy))

ithe® Micdogmis dvar memsyagmxentzze BohIN

O Bob continues %7 on ((1,y,), (2,Y;), - (N,yN))
0 dlstmgmsh appro>f1mate 6—/ w1th161 (1( {\l log Nf 1)
O'For thlS Alid®’s memory(¢ontentss Q(W)lblts (6,1)
anslatiop: (1ze rox,requi 7%/19g? g7') bits

1 1 0 0 1 o '
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Lower Bound

GAP-HAMM communication problem:

O Alice holds x € {0,1}N, Bob holds y € {0,13N
O Promise: A(x,y) is either < N/2 or = N/2 + /N
O Which is the case?

O Model: one message from Alice to Bob

Requires Q(N) bits of communication

Extensions

O Approximating H within a sliding window
O Width-W window: O(log W) space blowup

O Algorithm needs to know m in advance
O After a tweak it no longer does

O Algorithm needs O(m log m) random bits
O Can be reduced to O(polylog m)






