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Abstract. The problem of estimating the'" frequency momeng},, for any
non-negative integral value &f, over a data stream by looking at the items ex-
actly once as they arrive, was considered in a seminal paper by Alon, Matias and
Szegedy [1, 2]. They present a sampling based algorithm to estifanhere,

k > 2, using space(n'~/®)). Coppersmith and Kumar [7] and [10], using
different methods, present algorithms for estimatiigwith space complexity
O(nl‘l/““‘”). In this paper, we present an algorithm for estimatiigwith

space complexity) (n'~2/(*+1)) for k > 2, thereby, improving the space com-
plexity compared to the algorithms in [1, 2, 7, 10] foe> 4.

1 Introduction

Data streams are characterized by large volumes of data that arrive rapidly and contin-
uously. Due to the volume of the data, it is desirable to design algorithms that estimate
metrics over the data streams, withb-linearspace complexity. One such metric is
frequency moments, studied in a seminal paper by Alon, Matias and Szegedy [1, 2]. In
this paper, we study and present novel algorithms for this problem.

We view a stream as a sequence of arrivals of iténshere,l is the identity of
an item. The items are assumed to draw their identities from the ddivairThe fre-
quency of an item with identity, denoted byf;, is the number of occurrencesiaince
the inception of the stream. Thus, each arrival of an item increases its frequency by
1. Thek! frequency moment of the stream, denotedmy is defined as", £, for
k > 2 andk integral. This problem was first studied in a seminal paper by Alon, Matias
and Szegedy [1, 2]. Itis interesting for several reasons. Historically, it is one of the very
first problems studied in the data streaming model and helped to consolidate the area
of data streaming algorithms. Secondly, the techniques presented in [1, 2] have led to
new solution techniques for several practical problems on data streams, for example,
maintenance of histograms [12] and maintenance of thé tiopguent items [6].

1.1 Prior Work

The k" moment estimation algorithm, presented in [1, 2] (which we call the AMS al-
gorithm) is based on sampling and estimatgs for £ > 2, to within any speci-
fied approximation parametér < ¢ < 1, and with confidence exceeding a user-
specified parametér< 1. The space complexity of the AMS algorithm@gn! /%),



where,n is the number of distinct elements in the stream. Recently, Coppersmith and
Kumar [7] have presented an algorithm for this problem whose space complexity is
O(n'~1Y/(=1) for k > 3. Independently, the work in [10] presents an algorithm for
this problem with the same space complexity, using a different techhique

Lower bounds.The work in [1, 2] shows space lower bounds for this problem to be
2(n'=5/F), for anyk > 5. Subsequently, the space lower bounds have been strength-
ened ta2(e2n'~(+9)/k) for k > 2, ¢ > 0 by Bar-Yossef, Jayram, Kumar and Sivaku-
mar [3] and to2(n'—2/*) by Chakrabarti, Khot and Sun [5]. Saks and Sun [14] show
that estimating the.,, distanced between two streaming vectors to within a factor of
d’ requires spac€(n'—2/P—49),

Other Related Work.For the special case of computidg, [1, 2] presents a)(1)

space and time complexity algorithm, wherejs the sum of the frequencies. Random
linear combinations based on random variables drawn from stable distributions were
considered by [13] to estimat&,, for 0 < p < 2. The work in [8] presents a sketch
technique to estimate the difference between two streams based bpriegric norm.

There has been substantial work to estim@di.e., the number of distinct items in a
stream) and related metrics (i.e., set expression cardinalities) for general update streams
[9,1,4,11].

1.2 Contributions

In this paper, we present thgbrid algorithm for estimating,, for £ > 3, to within
any specified accuracy parameter< e < 1/2, and with confidence exceeding a
user-specified confidence parameiek 1. The space complexity of the algorithm
is O(nlfﬁ) bits. Formally, the contribution of the paper is stated as follows.

Theorem 1. For everye < 1/2 and0 < § < 1, there exists an algorithm that returns
an estimatef’, such thatPr {|Fk — F| < eFk} > 1 — § using space

0 (& nlt=s0) - (12) "V log 2 i, )

The hybrid algorithm is based on a non-trivial combination of the classical algo-
rithm for estimating moments [1, 2], and the@GNTSKETCH technique[6] for estimat-
ing frequent items over a stream. The space complexity of the hybrid algorithm, that is,

O(nl‘ﬁ), is significantly superior to that of existing algorithms for this problem [7,
10], that is,O(nl‘ﬁ), for £ > 4. Somewhat surprisingly, the hybrid technique uses
completely different techniques from the ones used in [7] or [10].

1.3 Organization

The rest of the paper is organized as follows. Section 2 presents our algorithm to esti-
mateFy, and Section 3 presents its analysis. Finally, we conclude in Section 4.

! The algorithms in [7, 10] can handle insertions and deletions as well.



2 The Hybrid Estimator

In this section, we describe our estimator precisely. Before doing so, we first present an
overview of the hybrid algorithm.

2.1 Anoverview of hybrid algorithm

The hybrid estimator uses two data structures in parallel, namely, the median of av-
erages sampling based AMS estimator fqr presented in [1, 2], and thedNTS-
KETCH data structure of Charikar, Chen and Farach-Colton[6]. TheCrSKETCH al-
gorithm [6] is an application of the sketch technique [1, 2] to identify theagle-
ments in the stream, in terms of their frequencies. It uses spaBg, and returns all
denseelements, that is, items with frequen¢y = 2(F:/B). These estimates are
then scaled appropriately to accurately estimate the dense comporéntiefined as
Fk(:d) - Zz densefzk'

Concurrently, we run the AMS algorithm and maintain v independent copies
of the AMS estimator, divided inte groups ofu estimators each (to enable a me-
dian of averages computation). Each AMS estimator is derived from a single element
sample, and the hybrid estimator first discards all those samples that refer to dense ele-
ments. The result is a collection fduced samplegach sample group retaining say,
u'(a) < u samples]l < a < v. Next, the reduced samples are used to estimate the
sparse component @f;, defined asy, = >, | on.qense/ T USiNg the median of averages
calculation of the AMS estimator [1, 2]. Finally, the sum of the estimates for dense and
sparse components is returned.

This summarizes the hybrid estimator except for a caveat. If there exists a small-
sized sample group, that is, a group whose reducedsizg < [u, (where, =
B(e) is fixed later) then we return O as the estimate for the sparse component. In this
case, we show that the sparse component is at §nostes the dense component, and
therefore, the total error in estimation remains within the specified tolerance (with high
probability).

Notation. The estimation procedure, at any time during the processing of the stream,
classifies all items that have appeared in the stream into two categories, naensky,

andsparse The dense component of th& moment, denoted bFlid), is the contribu-

tion made in the calculation df;, the dense elements, that}sf,d) =", dense/ ¥+ Anal-

ogously, the sparse componentiaf, denoted byFy, is defined a7, = >, o dense./~ -

Clearly, the dense and sparse components, thﬂt,gfl%,and Fj, respectively, are both
random variables, and satisfy the relatirﬁéfi) + F], = F}.

2.2 Dense Component Estimator

The dense component estimation procedure works by slightly modifyingdhaneSs-
KETCH algorithm of Charikar, Chen and Farach-Colton [6], as follows.

The COUNTSKETCH algorithm maintains a heap of size(B), that keeps track
of the potential topB items and their frequencies. We modify this procedure slightly,



in order to have high confidence in the estimates, and return ar ifesm the heap,
provided, its estimated frequencﬁ-,, crosses a threshold; = %. Here,Y is an
estimate off'; to within a factor of(1 + £) obtained using the sketching algorithm of
[1, 2], andc = c(e) is a constant. An item idefinedto bedenséf it is returned by the
COUNTSKETCH algorithm (subject to crossing the threshold). An item that is not dense
is calledsparse The estimatoD for the dense component is defined as follows.

D= f
i dense
Since, the procedure is a minor modification of theu®TSKETCH algorithm, we di-
rectly state its properties, without much elaboration or proof. The precise notion of
when an item is dense or sparse is not crucial to the remainder of the paper, as long as
the following properties hold.

First, D estimatesF,Ed) closely and with high confidence. Secondly, the procedure
gives an upper bound on the frequencies of the sparse values (with high confidence),
denoted byT;, and a lower bound on the frequencies of dense frequencies, denoted by
Ty, as follows.

) )

= T,=-—=— where)?=
B’ d )\2~B)

The properties are formally stated in Lemma 2.

T, = 1)

Lemma 2. Let0 < € < 1/3 and0 < ¢ < 1. There exists an algorithm that returns
a set of dense items, and a vallk using space (k - % -log % + k2 - log =), and
satisfying the following properties.

LPr{Ip- R <eF"} >1-0.
2. if f2 > T,, thenPr {iis dens¢ > 1 — 2.
3. if f2 < T, thenPr {iis notdensp > 1 — 2. O

Threshold Consistencyin later analysis, several lemmas assume that the sparse fre-
quencies are at mo§t, and dense frequencies are at I€éBgtand the results of these
lemmas are later combined using the union bound, by adding the error probabilities.
For ease of reference, we introduce the following notation. We say that the classifica-
tion of items into dense and sparse categorighrisshold consistentf the following
two conditions hold.

(1) For every sparse item f? < Ty, and, (2) for every dense itein fZ > T,. By
Lemma 2 parts (2) and (3), threshold consistency holds with probability at leas) (

2.3 Sparse Component Estimator and Hybrid Estimator

The sparse component estimatokeepsu - v independent copies of the AMS sample
based estimatak’, divided into groups of; copies each. The values ofandv will be
fixed later. The samples are denotedXia|[b], a € {1,...,v}, andb € {1,...,u}.

Let S = S(a) denote the sample groupX|[a|[1],..., X[a][u]}, 1 < a < v. The
estimator works in two steps, namely, it fireluceseach sample group, and then, uses
the reduced sample groups to estimate the sparse compéijent,



Reducing Sample Group€£ach AMS estimatoX [a][r] is calculated agg* — (g —

1)*) - m, from an individual sample that is a pair of the foii g), where,i is the
identity of an element anglis a count of the frequency éffrom the (random) position

in the stream where the counter was started. We remove all those sample entries in
which the element has been identified as a dense element. The resultant sample is
called thereduced sample groug’ = S’(a). The size of the reduced sample group
|S’(a)] is denoted byi/(a).

Sparse EstimatorFor eachl < a < v, we first check to see whethef(a) > 3 - u,
where,3 = ((e) is a fraction that is specified later. If this condition fails for one or
more values ofi, then the estimatoF is set to 0. Otherwise, the algorithm of [1, 2] is
run using each reduced sample gratfjfa) to obtain the averag®&’(a) of the u’(a)
estimates, foll < a < v. The estimato® returns the median of these estimates, that
is, E = median<,<,E’(a).

Hybrid estimator. Finally, the hybrid estimator simply returns the sum of the dense
component estimator and the sparse component estimator, that is, it Etesns + E.

3 Analysis

In this section, we analyze the properties of the sparse component estimator and the
hybrid estimator. The analysis proceeds in three parts. In the first part, we show that
the process of reduction of samples by removing those samples whose items have been
identified as dense items, reduces the variance, as compared to the variance of the orig-
inal AMS estimator. In the second part, we show that the technique of reduction, to-
gether with simple choices of constants, ensures that an estimation of the sparse com-
ponent,F}, can be performed to within an accuracy(dtt €) factor of Fy,. Finally, we
combine the results to prove accuracy and confidence properties of the hybrid estimator.

3.1 Reducing variance ofAMS estimator

The variance of an (elementary) AMS estimataFisFy, 1. Therefore, after reducing
the sample, each reduced sample has vari@tied?, ;. In this section, we bound the
expressiorFy - 7, . We begin with the following elementary fact about expectations.

Lemma 3. Let X be a random variable angl(-) be a function that is convex over the
set of values thak assumes. Thep(E[X]) < E[g(X)].

Proof.
g(E[X]) = g(ZPr{X:x}-x)SZPr{X:x}-g(x) = E[g(X)] . O

This simple fact has interesting and relevant corollaries.

Corollary 4. If j < k, then,F; < nl~# F}.



Proof. Let S denote the set of items in the stream with non-zero frequency (i.e., items
that have occurred) and let = |S|. Let X denote the random variable that picks a
random item among these items, and returns its frequencyYL_et X7. By Lemma 3,

and lettingg(Y') = V& (which is a convex function, fat > j), we have the following.

] o
g(E[Y]) <E[g(Y)] & (?) g% & Fj<n'"tFF . O

Lemma 5 shows that if the classification of the items into sparse and dense categories
is threshold consistent (which holds with high probability), then, the variance of the
AMS estimator improves significantly, that i8] - 3, < n'=ET F?, instead of,
F1Fy, <n'~#%F2, as proved in [1,2].

Lemma 5. LetB > n!~ T and suppose that the classification of the items into sparse
and dense categories is threshold consistent, with the sparse thréirleid%. Then,

2
F| Fjj y <n'"®1 . F}
Proof.

Fg/k,1 < (maxi sparsefi)k_lF];

k—1
<T,? Fj,, bythreshold consistency; < T, fori sparse

B (FQ)(kl)/2 -
=3 .

k—1

Y\ 2 .
< (;) Fy, since,F;, < Fy
2\ 5t
1-2pk : 2
< <”Bk> F, since,Fy < nl—% - ¥, by Corollary 4,
k=1
2

1-2 5 (k—
n-k 2 (k=1) g 2
< ( > ) FF 7 T since,B > n!'
k

Substituting in the expression fét £, _,, and noting thaf] < F, we have

k—1 21
/B nli TR D
F1F2k—1 S F‘1 cm ke (k+1) . Fk k

1 k—1 . 1 1
<n!'"% .pEG®D . FZ since,F; < n'T% - F)F, by Corollary 4

§n1_%+1~Fk2 . ad



Tightness of the boundNVe now show that the above bound is attained, to within con-
stant factors, on the following input. Consider a distribution of frequenciesoitems,
where, there are!/(*t1) jtems with frequency.!/(*+1)| and the remaining items have
frequency 1.

For this instancep < Fy < 2n. Therefore,T, = % > =D = nFT, It
follows that there are no dense items. Therefore,

’ 1 2k—1 9 _2
Fy_ 1 = Fop_q1 ~nFin*1 =p“ &1 andF, ~n

where,~ denotes “within a factor of 2”. Thus,

1 2

2 _ 2 2
FiFy | =FiFo_1 ~n-n?" "1 =nl mip? ~pl w1 F2

showing that the bound is attained to within constant factors.

3.2 Analysis of Sparse Component Estimator

Overview of proof.The sparse component estimakoreturns 0, if the size of a reduced
sample is below a certain threshagdd . Clearly, such a strategy would not work if
there is a significant probability that the reduced sample size becomes smaller than the
threshold, and the sparse component remains a significant fractfgn ®ur first goal

is to eliminate this possibility. This is done in a few steps. First, we show that if the
sparse componerft] is at leaste - F}, then, this implies thaf is at leastc’ - F;,

for some constant'(¢). Next, observe that the size of each reduced sample group, on

expectation, is%u. Thus, by designing constants large enough, and using Chernoff’s
bounds, we can ensure that with high probability;if> €- F}, then there is a threshold
B = B(e), such that the size of each reduced sample is at [kast

This line of argument is pursued in Lemmas 6, 7 and 8, and establishes that if the
estimator encounters a small reduced sample {i’es; 5 - u), then,F| < e - Fy,, with
high probability, implying that the dense component is a good approximation of the
frequency moment. Since the dense component is always estimated closely, and with
high confidence, an accurate estimatiorfpfis returned.

Next, we assume that all reduced samples are large enoughu{{®.,> G - v,
for everyl < a < w). Then, we use the bound on the variance of the AMS es-
timator, as proved in Lemma 5, together with Chebychev’s inequality, to show that
Pr{|E'(a) — F}| < €- F} > 2, for every sample group. Finally, the constant con-
fidence is boosted by taking the medianvo& ©(log %) independent sample groups.
This is proved in Lemmas 9 and 10.

We begin with the following elementary fact.

Lemma 6. Supposéa,as, ..., a,) and(by,bs, ..., b,) are positive vectors such that
max; as < min, b.. Suppose that > 2, and, for somex > 0,>°7_ a* > a>°7_, b
Then}?_,as >ad ?_ b,

Proof. Suppose_"_, a; < a).?_; b, anda > 0. Then,

P q k q k

s=1 s « ZT:1 by =1 by

D q - q
Zs:l as «a Zr:l b"" r=1 bT




s,7 s,7
This contradicts the assumption that iaxas < min_, b,.. O

The following lemma quantifies the following idea, that if the sparse component is
larger thane times the dense component (meaning, that it is large enough to be con-

sidered), that iSF}, > e - Féd), then, there is some functiati(¢) such that, the sum
of the sparse frequencies is at ledstimes the sum of the dense frequencies, that is,

F > - Fl(d). A proof of this intuitive property assures us that with the appropriate
choice of constants, the process of reduction retains a significant proportion of samples,

provided, the sparse component was large enough to begin withF{j.e: e - F,Sd)).

Lemma 7. Suppose that the classification of the items into dense and sparse categories
is threshold consistent, with sparse threshéld= %2. If | > eF,ﬁd), then, F| >

T Y.

Proof. For a sparse elemestleta, = f2, and for a dense elementletd, = X - f,.
By threshold consistency, it follows that

Iy
. B

F
e} <To=—2, and b >T;=

We therefore have the following.
d € €
F>cFY o Za’;>VZb’: & Za’§>Vbe
s ” s s

The right most relation allows us to use Lemma 6, to yi¢ld, a, > & >, b,.. By
definitions ofa, andb,., we have,

Sa>gdb e YA AL e H> gAY o

Lemma 8 observes that, a sample contains a sparse item with prob&bjliy. There-

fore, using appropriate constants, Chernoff's bounds and Lemma 7, Lemma 8 argues
that if the sparse component is large enough, then, there are enough reduced samples
(with high probability).

Lemma 8. Let0 < € < % and0 < § < 1. There exists a constapit= (¢), such that,

if F,>e€- F,Ed) andu > %log 5, then,u/ > Bu, with probability at leastl — 4.

Proof. Consider a single AMS estimatdf [a][c]. The probability that this estimator
refers to a sparse elementjis= Fy/Fy, since a given sample is equally likely to

refer to each arrival over the stream. Sinég, > eF,Ed), it follows from Lemma 7



that F| > ﬁFfd). Let v denote the constang=. Thus,p > -, for brevity,
let 3 = s=1—. In a group ofu independent estimators, denotes the number of

2(1+7)
estimators that refer to sparse elements. Tﬁl[sd] =p-u>20u>16-log % By
Chernoff’'s bounds,

e[

s >1—e 85 > 1§ 0

1
Pr{u > pu} > Pr {u’ > QE[U’]} >1—e"

Lemma 9 applies Lemmas 6 through Lemma 8, and presents a sufficient condition
for the accurate estimation &f,. Note that, by accurate estimationBf, we mean an
estimateE such thatF is within £} — e - Fj, < E < F] + ¢ - F, (and not the usual
E € (1+¢)F)).

Lemma9. Let0 < € < % and0 < ¢ < 1 and suppose that the classification of
the items into sparse and dense categories is threshold consistent. Then, there exists a
constant3 = (e), such that, if the following premise holds,

y (d) 8 1 8k - Fy - Fy. 4 1 3
Fk>6Fk‘, andu>Blogg,u>ﬁ€—2}?]g,v>5loggandv(5§E
then, the following statement is true.

Pr{|E — F}| > eF}, andu/(a) > Bu,1 <a <v} < (v+ 1)d.

Proof. Suppose thaf] > e’F,Ed). By Lemma 8, and using the value gfprovided
there, with probability at leadt-J, the size of the reduced sample inan AMS estimator
group is at least’ > Su. Using union bounds, it follows that this property holds for
each of the the estimator groups with a probability of at ledst v - 4.

Fix a value of the group index. Using Chebychev's inequality,

Var |E'(a
Pr{|E'(a) — F}| > eF}y} < % (@)
el
It follows from [1, 2] that
kF|F,
V. El _ 1+ 2k—1
ar[ (a)] 71/(&)
Substituting in (2), we have,
ko FiFy 4 ko FF_, 1 1
Pr{|E'(a) — F} <= < . —4+vd < -
e{IB (@) = Fil > R S ety < g S < g s <

assuming thavd < 4. Sincev > 5log 5, by taking the mediarE of the family
{E'(a)}1<a<vs Pr{|E(a) — F{| > €F} < 4. By union bound, the total error proba-

bility is at most(v + 1)4. O

Lemma 10 summarizes the main property of the sparse estimator.



Lemma 10. Lete < 1/2 andd < 135. There exists a constapt= j3(¢), such that, if

u>8-k- nl_%ﬂ/(ﬂ -e?) andv > 5log %, then the following statements hold.

1. If there exists a sample group such thak Su, then,E = 0 and
Pr {F,g <e- F,Ed)} > 1—(v+1)-6. ThusPr {|E — Fl| < e+ F,} > 1—(v-+1)-6.
2. Otherwise, for any sample grouBr {|E — F}| <e-F} >1— (v +1)-4.

Proof. Follows directly from Lemmas 9 and 5. O

3.3 Analysis of Hybrid Estimator

Recall that théhybrid estimatorH returns the sum of the dense component estimator
and the sparse component estimator, that is, it retbras D + E. Lemma 11 presents
theaccuracy and confidence guarantees of the hybrid estimator.

Lemma 11. Lete < 1/2 andd§ < 5. There exists constants= 3(¢) and A = A(e),

such that, ifu > 8 - k-n'" %71 /(3-¢2),v > 5log 2 and B = O(£ . p!~ %71 . log 1),
then,Pr{\H— Fk| < EF;C} >1-4. O

Proof. We invoke Lemmas 2 and 10, using accuracy parameéter 5 and confidence
parametery’ = % each. There are two cases, namely, (a) there exists a reduced
sample group, whose sizé < 3 - u, or, (b) all reduced groups have size at least.

Case 1There is at least one value @ffor whichu/'(a) < fu. The estimatoF is set

to 0 in this case, and therefoé = D. Suppose thak}, > e’F,Ed), then by Lemma 10,

the probability of this observation is at mgst+ 1)¢’. Therefore,F], < e’F,ﬁd) holds
with probability at least — (v + 1) - ¢’. Since,

|H—Fi| = |D - Fi| = D (R" + F)| < |D - F{"| + F
it follows that,
Pr{|H — F| < ¢F,} > Pr {|D — F9| < ¢F, andF) < e’Fk}
Pr{|D - F\"| < ¢F" andF] < ¢'F} }
>1-6 —(v+1)8 >1-34,

by Lemmas 2, 10 and the union bound.
Case 2For every value, 1 < a < v, u/(a) > fu. Then,

Pr{|H — Fy| < eFy} = Pr{|D + E — F},| < eF},}
> Pr {|D — F9| < ¢F, and|E - F}| < e'Fk}
>1-6—(v+1)§ >1—4,
by Lemmas 2, 10 and the union bound. O

We can now prove the main theorem in the paper.



Proof (of Theorem 1.By the argument in the proof of Lemma 7, it follows th&t=

2(k—1) -
. (1‘5) . The space complexity of the proceduréisv+ g). Using Lemma 11,

2 1+€
together with the above value gf andB = nl‘ﬁ, we obtain the statement of the
theorem. ad

4 Conclusions

The paper presents a hybrid method for estimatingttfefrequency moment, for

k > 2, for data streams using spa@énlf%ﬂ) bits. It is based on a non-trivial com-
bination of the classical algorithm for estimating moments [1, 2], and theN3 S-
KETCH technique for estimating frequent items over a stream. The space complexity of

the hybrid algorithm is better than the known space complexi@(ofl*ﬁ) for this
problem [7, 10]. Somewhat surprisingly, the hybrid technique does not use any ideas
from [7, 10].
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