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Abstract. The problem of estimating thekth frequency momentFk, for any
non-negative integral value ofk, over a data stream by looking at the items ex-
actly once as they arrive, was considered in a seminal paper by Alon, Matias and
Szegedy [1, 2]. They present a sampling based algorithm to estimateFk where,
k ≥ 2, using spacẽO(n1−1/k)). Coppersmith and Kumar [7] and [10], using
different methods, present algorithms for estimatingFk with space complexity
Õ(n1−1/(k−1)). In this paper, we present an algorithm for estimatingFk with
space complexitỹO(n1−2/(k+1)), for k > 2, thereby, improving the space com-
plexity compared to the algorithms in [1, 2, 7, 10] fork ≥ 4.

1 Introduction

Data streams are characterized by large volumes of data that arrive rapidly and contin-
uously. Due to the volume of the data, it is desirable to design algorithms that estimate
metrics over the data streams, withsub-linearspace complexity. One such metric is
frequency moments, studied in a seminal paper by Alon, Matias and Szegedy [1, 2]. In
this paper, we study and present novel algorithms for this problem.

We view a stream as a sequence of arrivals of itemsl, where,l is the identity of
an item. The items are assumed to draw their identities from the domain[N ]. The fre-
quency of an item with identityl, denoted byfl, is the number of occurrences ofl since
the inception of the stream. Thus, each arrival of an item increases its frequency by
1. Thekth frequency moment of the stream, denoted byFk, is defined as

∑
l f

k
l , for

k > 2 andk integral. This problem was first studied in a seminal paper by Alon, Matias
and Szegedy [1, 2]. It is interesting for several reasons. Historically, it is one of the very
first problems studied in the data streaming model and helped to consolidate the area
of data streaming algorithms. Secondly, the techniques presented in [1, 2] have led to
new solution techniques for several practical problems on data streams, for example,
maintenance of histograms [12] and maintenance of the top-k frequent items [6].

1.1 Prior Work

Thekth moment estimation algorithm, presented in [1, 2] (which we call the AMS al-
gorithm) is based on sampling and estimatesFk, for k ≥ 2, to within any speci-
fied approximation parameter0 < ε < 1, and with confidence exceeding a user-
specified parameterδ < 1. The space complexity of the AMS algorithm is̃O(n1−1/k),



where,n is the number of distinct elements in the stream. Recently, Coppersmith and
Kumar [7] have presented an algorithm for this problem whose space complexity is
Õ(n1−1/(k−1)), for k ≥ 3. Independently, the work in [10] presents an algorithm for
this problem with the same space complexity, using a different technique1.

Lower bounds.The work in [1, 2] shows space lower bounds for this problem to be
Ω(n1−5/k), for anyk > 5. Subsequently, the space lower bounds have been strength-
ened toΩ(ε2n1−(2+ε)/k), for k > 2, ε > 0 by Bar-Yossef, Jayram, Kumar and Sivaku-
mar [3] and toΩ(n1−2/k) by Chakrabarti, Khot and Sun [5]. Saks and Sun [14] show
that estimating theLp distanced between two streaming vectors to within a factor of
dδ requires spaceΩ(n1−2/p−4δ).

Other Related Work.For the special case of computingF2, [1, 2] presents añO(1)
space and time complexity algorithm, where,m is the sum of the frequencies. Random
linear combinations based on random variables drawn from stable distributions were
considered by [13] to estimateFp, for 0 < p ≤ 2. The work in [8] presents a sketch
technique to estimate the difference between two streams based on theL1 metric norm.
There has been substantial work to estimateF0 (i.e., the number of distinct items in a
stream) and related metrics (i.e., set expression cardinalities) for general update streams
[9, 1, 4, 11].

1.2 Contributions

In this paper, we present thehybrid algorithm for estimatingFk, for k ≥ 3, to within
any specified accuracy parameter0 < ε < 1/2, and with confidence exceeding a
user-specified confidence parameterδ < 1. The space complexity of the algorithm
is Õ(n1− 2

k+1 ) bits. Formally, the contribution of the paper is stated as follows.

Theorem 1. For everyε < 1/2 and0 < δ < 1, there exists an algorithm that returns

an estimatêFk such thatPr
{
|F̂k − Fk| < εFk

}
≥ 1− δ using space

O
(

k
ε · n

(1− 2
k+1 )) ·

(
1+ε
1−ε

)2(k−1) log m
δ

)
bits. ut

The hybrid algorithm is based on a non-trivial combination of the classical algo-
rithm for estimating moments [1, 2], and the COUNTSKETCH technique[6] for estimat-
ing frequent items over a stream. The space complexity of the hybrid algorithm, that is,
Õ(n1− 2

k+1 ), is significantly superior to that of existing algorithms for this problem [7,
10], that is,Õ(n1− 1

k−1 ), for k ≥ 4. Somewhat surprisingly, the hybrid technique uses
completely different techniques from the ones used in [7] or [10].

1.3 Organization

The rest of the paper is organized as follows. Section 2 presents our algorithm to esti-
mateFk, and Section 3 presents its analysis. Finally, we conclude in Section 4.

1 The algorithms in [7, 10] can handle insertions and deletions as well.



2 The Hybrid Estimator

In this section, we describe our estimator precisely. Before doing so, we first present an
overview of the hybrid algorithm.

2.1 An overview of hybrid algorithm

The hybrid estimator uses two data structures in parallel, namely, the median of av-
erages sampling based AMS estimator forFk presented in [1, 2], and the COUNTS-
KETCH data structure of Charikar, Chen and Farach-Colton[6]. The COUNTSKETCH al-
gorithm [6] is an application of the sketch technique [1, 2] to identify the top-k ele-
ments in the stream, in terms of their frequencies. It uses spaceÕ(B), and returns all
denseelements, that is, items with frequencyf2

i = Ω(F2/B). These estimates are
then scaled appropriately to accurately estimate the dense component ofFk, defined as
F

(d)
k =

∑
i densef

k
i .

Concurrently, we run the AMS algorithm and maintainu · v independent copies
of the AMS estimator, divided intov groups ofu estimators each (to enable a me-
dian of averages computation). Each AMS estimator is derived from a single element
sample, and the hybrid estimator first discards all those samples that refer to dense ele-
ments. The result is a collection ofreduced samples; each sample group retaining say,
u′(a) ≤ u samples,1 ≤ a ≤ v. Next, the reduced samples are used to estimate the
sparse component ofFk, defined asF ′

k =
∑

i non-densef
k
i , using the median of averages

calculation of the AMS estimator [1, 2]. Finally, the sum of the estimates for dense and
sparse components is returned.

This summarizes the hybrid estimator except for a caveat. If there exists a small-
sized sample group, that is, a group whose reduced sizeu′(a) < βu, (where,β =
β(ε) is fixed later) then we return 0 as the estimate for the sparse component. In this
case, we show that the sparse component is at mostε

2 times the dense component, and
therefore, the total error in estimation remains within the specified tolerance (with high
probability).

Notation. The estimation procedure, at any time during the processing of the stream,
classifies all items that have appeared in the stream into two categories, namely,dense
andsparse. The dense component of thekth moment, denoted byF (d)

k , is the contribu-

tion made in the calculation ofFk the dense elements, that is,F
(d)
k =

∑
i densef

k
i . Anal-

ogously, the sparse component ofFk, denoted byF ′
k, is defined asF ′

k =
∑

i not densef
k
i .

Clearly, the dense and sparse components, that is,F
(d)
k andF ′

k, respectively, are both

random variables, and satisfy the relation,F
(d)
k + F ′

k = Fk.

2.2 Dense Component Estimator

The dense component estimation procedure works by slightly modifying the COUNTS-
KETCH algorithm of Charikar, Chen and Farach-Colton [6], as follows.

The COUNTSKETCH algorithm maintains a heap of sizẽO(B), that keeps track
of the potential top-B items and their frequencies. We modify this procedure slightly,



in order to have high confidence in the estimates, and return an itemi from the heap,
provided, its estimated frequency,̂fi, crosses a threshold,T = c·Y

B . Here,Y is an
estimate ofF2 to within a factor of(1 ± ε

3 ) obtained using the sketching algorithm of
[1, 2], andc = c(ε) is a constant. An item isdefinedto bedenseif it is returned by the
COUNTSKETCH algorithm (subject to crossing the threshold). An item that is not dense
is calledsparse. The estimatorD for the dense component is defined as follows.

D =
∑

i dense

f̂k
i

Since, the procedure is a minor modification of the COUNTSKETCH algorithm, we di-
rectly state its properties, without much elaboration or proof. The precise notion of
when an item is dense or sparse is not crucial to the remainder of the paper, as long as
the following properties hold.

First,D estimatesF (d)
k closely and with high confidence. Secondly, the procedure

gives an upper bound on the frequencies of the sparse values (with high confidence),
denoted byTs, and a lower bound on the frequencies of dense frequencies, denoted by
Td, as follows.

Ts =
F2

B
, Td =

F2

λ2 ·B
, where,λ2 =

Ts

Td
≤ (1 + ε)2

(1− ε)2
(1)

The properties are formally stated in Lemma 2.

Lemma 2. Let 0 < ε < 1/3 and0 < δ < 1. There exists an algorithm that returns
a set of dense items, and a valueD, using spaceO(k · B

ε · log m
δ + k2 · log m

δ ), and
satisfying the following properties.

1. Pr
{
|D − F

(d)
k | < εF

(d)
k

}
> 1− δ.

2. if f2
i > Td, thenPr {i is dense} > 1− δ

m .
3. if f2

i < Ts, thenPr {i is not dense} > 1− δ
m . ut

Threshold Consistency.In later analysis, several lemmas assume that the sparse fre-
quencies are at mostTs and dense frequencies are at leastTd, and the results of these
lemmas are later combined using the union bound, by adding the error probabilities.
For ease of reference, we introduce the following notation. We say that the classifica-
tion of items into dense and sparse categories isthreshold consistent, if the following
two conditions hold.

(1) For every sparse itemi, f2
i < Ts, and, (2) for every dense itemi, f2

i > Td. By
Lemma 2 parts (2) and (3), threshold consistency holds with probability at least (1−δ).

2.3 Sparse Component Estimator and Hybrid Estimator

The sparse component estimatorE keepsu · v independent copies of the AMS sample
based estimatorX, divided into groups ofu copies each. The values ofu andv will be
fixed later. The samples are denoted asX[a][b], a ∈ {1, . . . , v}, andb ∈ {1, . . . , u}.
Let S = S(a) denote the sample group{X[a][1], . . . , X[a][u]}, 1 ≤ a ≤ v. The
estimator works in two steps, namely, it firstreduceseach sample group, and then, uses
the reduced sample groups to estimate the sparse component,F ′

k.



Reducing Sample Groups.Each AMS estimatorX[a][r] is calculated as(gk − (g −
1)k) · m, from an individual sample that is a pair of the form(i, g), where,i is the
identity of an element andg is a count of the frequency ofi from the (random) position
in the stream where the counter was started. We remove all those sample entries in
which the elementi has been identified as a dense element. The resultant sample is
called thereduced sample groupS′ = S′(a). The size of the reduced sample group
|S′(a)| is denoted byu′(a).

Sparse Estimator.For each1 ≤ a ≤ v, we first check to see whetheru′(a) ≥ β · u,
where,β = β(ε) is a fraction that is specified later. If this condition fails for one or
more values ofa, then the estimatorE is set to 0. Otherwise, the algorithm of [1, 2] is
run using each reduced sample groupS′(a) to obtain the averageE′(a) of the u′(a)
estimates, for1 ≤ a ≤ v. The estimatorE returns the median of these estimates, that
is, E = median1≤a≤vE′(a).

Hybrid estimator. Finally, the hybrid estimator simply returns the sum of the dense
component estimator and the sparse component estimator, that is, it returnsH = D+E.

3 Analysis

In this section, we analyze the properties of the sparse component estimator and the
hybrid estimator. The analysis proceeds in three parts. In the first part, we show that
the process of reduction of samples by removing those samples whose items have been
identified as dense items, reduces the variance, as compared to the variance of the orig-
inal AMS estimator. In the second part, we show that the technique of reduction, to-
gether with simple choices of constants, ensures that an estimation of the sparse com-
ponent,F ′

k, can be performed to within an accuracy of(1± ε) factor ofFk. Finally, we
combine the results to prove accuracy and confidence properties of the hybrid estimator.

3.1 Reducing variance ofAMS estimator

The variance of an (elementary) AMS estimator isF1 ·F2k−1. Therefore, after reducing
the sample, each reduced sample has varianceF ′

1 ·F ′
2k−1. In this section, we bound the

expressionF ′
1 ·F ′

2k−1. We begin with the following elementary fact about expectations.

Lemma 3. Let X be a random variable andg(·) be a function that is convex over the
set of values thatX assumes. Then,g(E

[
X
]
) ≤ E

[
g(X)

]
.

Proof.

g(E
[
X
]
) = g

(∑
x

Pr {X = x} ·x
)
≤
∑

x

Pr {X = x} ·g(x) = E
[
g(X)

]
. ut

This simple fact has interesting and relevant corollaries.

Corollary 4. If j ≤ k, then,Fj ≤ n1− j
k F

j
k

k .



Proof. Let S denote the set of items in the stream with non-zero frequency (i.e., items
that have occurred) and letn = |S|. Let X denote the random variable that picks a
random itemi among these items, and returns its frequency. LetY = Xj . By Lemma 3,
and lettingg(Y ) = Y

k
j (which is a convex function, fork ≥ j), we have the following.

g(E
[
Y
]
) ≤ E

[
g(Y )

]
⇔

(
Fj

n

) k
j

≤ Fk

n
⇔ Fj ≤ n1− j

k F
j
k

k . ut

Lemma 5 shows that if the classification of the items into sparse and dense categories
is threshold consistent (which holds with high probability), then, the variance of the
AMS estimator improves significantly, that is,F ′

1 · F ′
2k−1 ≤ n1− 2

k+1 · F 2
k , instead of,

F1F2k−1 ≤ n1− 1
k F 2

k , as proved in [1, 2].

Lemma 5. LetB ≥ n1− 2
k+1 and suppose that the classification of the items into sparse

and dense categories is threshold consistent, with the sparse thresholdTs = F2
B . Then,

F ′
1 · F ′

2k−1 ≤ n1− 2
k+1 · F 2

k

Proof.

F ′
2k−1 ≤ (maxi sparsefi)k−1F ′

k

≤ T
k−1
2

s Fk, by threshold consistency,fi ≤ Ts, for i sparse

=
(

F2

B

)(k−1)/2

F ′
k

≤
(

F2

B

) k−1
2

Fk, since,F ′
k ≤ Fk

≤

(
n1− 2

k F
2
k

k

B

) k−1
2

Fk, since,F2 ≤ n1− 2
k · F

2
k

k , by Corollary 4,

≤

(
n1− 2

k

n1− 2
k+1

) k−1
2

F
2
k ·

(k−1)
2 +1

k , since,B ≥ n1− 2
k+1

=
(
n

2
k·(k+1)

) k−1
2 F

2− 1
k

k

= n
k−1

k·(k+1) F
2− 1

k

k

Substituting in the expression forF ′
1F

′
2k−1, and noting thatF ′

1 ≤ F1, we have

F ′
1F

′
2k−1 ≤ F1 · n

k−1
k·(k+1) · F 2− 1

k

k

≤ n1− 1
k · n

k−1
k·(k+1) · F 2

k , since,F1 ≤ n1− 1
k · F

1
k

k , by Corollary 4

≤ n1− 2
k+1 · F 2

k . ut



Tightness of the bound.We now show that the above bound is attained, to within con-
stant factors, on the following input. Consider a distribution of frequencies overn items,
where, there aren1/(k+1) items with frequencyn1/(k+1), and the remaining items have
frequency 1.

For this instance,n < F2 < 2n. Therefore,Ts = F2
B > n

n1−2/(k+1) = n
2

k+1 . It
follows that there are no dense items. Therefore,

F ′
2k−1 = F2k−1 ∼ n

1
k+1 n

2k−1
k+1 = n2− 2

k+1 , andFk ∼ n

where,∼ denotes “within a factor of 2”. Thus,

F ′
1F

′
2k−1 = F1F2k−1 ∼ n · n2− 2

k+1 = n1− 2
k+1 n2 ∼ n1− 2

k+1 F 2
k ,

showing that the bound is attained to within constant factors.

3.2 Analysis of Sparse Component Estimator

Overview of proof.The sparse component estimatorE returns 0, if the size of a reduced
sample is below a certain thresholdβ · u. Clearly, such a strategy would not work if
there is a significant probability that the reduced sample size becomes smaller than the
threshold, and the sparse component remains a significant fraction ofFk. Our first goal
is to eliminate this possibility. This is done in a few steps. First, we show that if the
sparse componentF ′

k is at leastε · Fk, then, this implies thatF ′
1 is at leastc′ · F1,

for some constantc′(ε). Next, observe that the size of each reduced sample group, on

expectation, isF
′
1

F1
u. Thus, by designing constants large enough, and using Chernoff’s

bounds, we can ensure that with high probability, ifF ′
k ≥ ε·Fk, then there is a threshold

β = β(ε), such that the size of each reduced sample is at leastβ · u.
This line of argument is pursued in Lemmas 6, 7 and 8, and establishes that if the

estimator encounters a small reduced sample (i.e.,u′ < β · u), then,F ′
k < ε · Fk, with

high probability, implying that the dense component is a good approximation of the
frequency moment. Since the dense component is always estimated closely, and with
high confidence, an accurate estimation ofFk is returned.

Next, we assume that all reduced samples are large enough (i.e.,u′(a) ≥ β · u,
for every 1 ≤ a ≤ v). Then, we use the bound on the variance of the AMS es-
timator, as proved in Lemma 5, together with Chebychev’s inequality, to show that
Pr {|E′(a)− F ′

k| ≤ ε · Fk} ≥ 4
5 , for every sample groupa. Finally, the constant con-

fidence is boosted by taking the median ofv = Θ(log 1
δ ) independent sample groups.

This is proved in Lemmas 9 and 10.
We begin with the following elementary fact.

Lemma 6. Suppose(a1, a2, . . . , ap) and(b1, b2, . . . , bq) are positive vectors such that
maxs as ≤ minr br. Suppose thatk ≥ 2, and, for someα > 0,

∑p
s=1 ak

s ≥ α
∑q

r=1 bk
r .

Then
∑p

s=1 as ≥ α
∑q

r=1 br.

Proof. Suppose
∑p

s=1 as < α
∑q

r=1 br andα > 0. Then,∑p
s=1 as∑p
s=1 as

>
α
∑q

r=1 bk
r

α
∑q

r=1 br
=
∑q

r=1 bk
r∑q

r=1 br



Thus,
∑p

s=1 as∑p
s=1 as

>
∑q

r=1 bk
r∑q

r=1 br
. Cross multiplying and transferring the RHS to the LHS, we

obtain,∑
s,r

ak
sbr − asb

k
r > 0, or equivalently,

∑
s,r

as · br(ak−1
s − bk−1

r ) > 0 .

This contradicts the assumption that maxp
s=1 as ≤ minq

r=1 br. ut

The following lemma quantifies the following idea, that if the sparse component is
larger thanε times the dense component (meaning, that it is large enough to be con-
sidered), that is,F ′

k > ε · F (d)
k , then, there is some functionc′(ε) such that, the sum

of the sparse frequencies is at leastc′ times the sum of the dense frequencies, that is,
F ′

1 > c′ · F (d)
1 . A proof of this intuitive property assures us that with the appropriate

choice of constants, the process of reduction retains a significant proportion of samples,
provided, the sparse component was large enough to begin with (i.e.,F ′

k > ε · F (d)
k ).

Lemma 7. Suppose that the classification of the items into dense and sparse categories
is threshold consistent, with sparse thresholdTs = F2

B . If F ′
k > εF

(d)
k , then,F ′

1 >
ε

λk−1 F
(d)
1 .

Proof. For a sparse elements, let as = f2
s , and for a dense elementr, let br = λ · fr.

By threshold consistency, it follows that

a2
s ≤ Ts =

F2

B
, and b2

r ≥ Td =
F2

λ2 ·B

We therefore have the following.

F ′
k > εF

(d)
k ⇔

∑
s

ak
s >

ε

λk

∑
r

bk
r ⇔

∑
s

ak
s >

ε

λk

∑
r

bk
r

The right most relation allows us to use Lemma 6, to yield,
∑

s as > ε
λk

∑
r br. By

definitions ofas andbr, we have,∑
s

as >
ε

λk

∑
r

br ⇔
∑

s

fs >
ε

λk
λ(
∑

r

fr) ⇔ F ′
1 >

ε

λk−1
F

(d)
1 .ut

Lemma 8 observes that, a sample contains a sparse item with probabilityF ′
1/F1. There-

fore, using appropriate constants, Chernoff’s bounds and Lemma 7, Lemma 8 argues
that if the sparse component is large enough, then, there are enough reduced samples
(with high probability).

Lemma 8. Let0 < ε < 1
2 and0 < δ < 1. There exists a constantβ = β(ε), such that,

if F ′
k > ε · F (d)

k andu > 8
β log 1

δ , then,u′ > βu, with probability at least1− δ.

Proof. Consider a single AMS estimatorX[a][c]. The probability that this estimator
refers to a sparse element isp = F ′

1/F1, since a given sample is equally likely to
refer to each arrival over the stream. Since,F ′

k > εF
(d)
k , it follows from Lemma 7



that F ′
1 > ε

λk−1 F
(d)
1 . Let γ denote the constant ε

λk−1 . Thus,p > γ
1+γ , for brevity,

let β = γ
2(1+γ) . In a group ofu independent estimators,u′ denotes the number of

estimators that refer to sparse elements. Thus,E
[
u′
]

= p · u > 2βu ≥ 16 · log 1
δ . By

Chernoff’s bounds,

Pr {u′ > βu} ≥ Pr
{

u′ >
1
2
E
[
u′
]}

≥ 1− e−
E

[
u′
]

8 ≥ 1− e− log 1
δ > 1− δ ut

Lemma 9 applies Lemmas 6 through Lemma 8, and presents a sufficient condition
for the accurate estimation ofF ′

k. Note that, by accurate estimation ofF ′
k, we mean an

estimateE such thatE is within F ′
k − ε · Fk ≤ E ≤ F ′

k + ε · Fk (and not the usual
E ∈ (1± ε)F ′

k).

Lemma 9. Let 0 < ε < 1
2 and 0 < δ < 1 and suppose that the classification of

the items into sparse and dense categories is threshold consistent. Then, there exists a
constantβ = β(ε), such that, if the following premise holds,

F ′
k > εF

(d)
k andu >

8
β

log
1
δ
, u >

8k · F ′
1 · F ′

2k−1

β · ε2F 2
k

, v > 5 log
1
δ

andv · δ ≤ 3
40

then, the following statement is true.

Pr {|E − F ′
k| > εFk andu′(a) > βu, 1 ≤ a ≤ v} < (v + 1)δ.

Proof. Suppose thatF ′
k > ε′F

(d)
k . By Lemma 8, and using the value ofβ provided

there, with probability at least1−δ, the size of the reduced sample in an AMS estimator
group is at leastu′ > βu. Using union bounds, it follows that this property holds for
each of the thev estimator groups with a probability of at least1− v · δ.

Fix a value of the group indexa. Using Chebychev’s inequality,

Pr {|E′(a)− F ′
k| > εFk} <

Var
[
E′(a)

]
ε2F 2

k

(2)

It follows from [1, 2] that

Var
[
E′(a)

]
=

kF ′
1F

′
2k−1

u′(a)

Substituting in (2), we have,

Pr {|E′(a)− F ′
k| > εFk} ≤

k

ε2
·

F ′
1F

′
2k−1

u′(a) · F 2
k

≤ k

β · ε2
·
F ′

1F
′
2k−1

uF 2
k

<
1
8

+ vδ <
1
5

assuming thatvδ ≤ 1
40 . Sincev > 5 log 1

δ , by taking the medianE of the family
{E′(a)}1≤a≤v, Pr {|E(a)− F ′

k| > εFk} < δ. By union bound, the total error proba-
bility is at most(v + 1)δ. ut

Lemma 10 summarizes the main property of the sparse estimator.



Lemma 10. Let ε < 1/2 andδ < 1
128 . There exists a constantβ = β(ε), such that, if

u ≥ 8 · k · n1− 2
k+1 /(β · ε2) andv ≥ 5 log 1

δ , then the following statements hold.

1. If there exists a sample group such thatu′ < βu, then,E = 0 and

Pr
{

F ′
k ≤ ε · F (d)

k

}
≥ 1−(v+1)·δ. Thus,Pr {|E − F ′

k| < ε · Fk} ≥ 1−(v+1)·δ.

2. Otherwise, for any sample group,Pr {|E − F ′
k| < ε · Fk} ≥ 1− (v + 1) · δ.

Proof. Follows directly from Lemmas 9 and 5. ut

3.3 Analysis of Hybrid Estimator

Recall that thehybrid estimatorH returns the sum of the dense component estimator
and the sparse component estimator, that is, it returnsH = D + E. Lemma 11 presents
theaccuracy and confidence guarantees of the hybrid estimator.

Lemma 11. Let ε < 1/2 andδ < 1
128 . There exists constantsβ = β(ε) andλ = λ(ε),

such that, if,u ≥ 8 · k ·n1− 2
k+1 /(β · ε2), v ≥ 5 log m

δ andB = O(k
ε ·n

1− 2
k+1 · log m

δ ),
then,Pr {|H − Fk| ≤ εFk} > 1− δ. ut

Proof. We invoke Lemmas 2 and 10, using accuracy parameterε′ = ε
2 and confidence

parameter,δ′ = δ
v+2 , each. There are two cases, namely, (a) there exists a reduced

sample group, whose sizeu′ < β · u, or, (b) all reduced groups have size at leastβ · u.
Case 1.There is at least one value ofa, for whichu′(a) < βu. The estimatorE is set

to 0 in this case, and thereforeH = D. Suppose thatF ′
k > ε′F

(d)
k , then by Lemma 10,

the probability of this observation is at most(v + 1)δ′. Therefore,F ′
k ≤ ε′F

(d)
k holds

with probability at least1− (v + 1) · δ′. Since,

|H − Fk| = |D − Fk| = |D − (F (d)
k + F ′

k)| ≤ |D − F
(d)
k |+ F ′

k

it follows that,

Pr {|H − Fk| ≤ εFk} ≥ Pr
{
|D − F

(d)
k | ≤ ε′Fk andF ′

k ≤ ε′Fk

}
Pr
{
|D − F

(d)
k | ≤ ε′F

(d)
k andF ′

k ≤ ε′Fk

}
≥ 1− δ′ − (v + 1)δ′ ≥ 1− δ,

by Lemmas 2, 10 and the union bound.
Case 2. For every valuea, 1 ≤ a ≤ v, u′(a) ≥ βu. Then,

Pr {|H − Fk| ≤ εFk} = Pr {|D + E − Fk| ≤ εFk}

≥ Pr
{
|D − F

(d)
k | ≤ ε′Fk and|E − F ′

k| ≤ ε′Fk

}
≥ 1− δ′ − (v + 1)δ′ ≥ 1− δ,

by Lemmas 2, 10 and the union bound. ut

We can now prove the main theorem in the paper.



Proof (of Theorem 1.).By the argument in the proof of Lemma 7, it follows thatβ =
ε
2

(
1−ε
1+ε

)2(k−1)

. The space complexity of the procedure is(̃u·v+ B
ε ). Using Lemma 11,

together with the above value ofβ, andB = n1− 2
k+1 , we obtain the statement of the

theorem. ut

4 Conclusions

The paper presents a hybrid method for estimating thekth frequency moment, for
k > 2, for data streams using spacẽO(n1− 2

k+1 ) bits. It is based on a non-trivial com-
bination of the classical algorithm for estimating moments [1, 2], and the COUNTS-
KETCH technique for estimating frequent items over a stream. The space complexity of
the hybrid algorithm is better than the known space complexity ofÕ(n1− 1

k−1 ) for this
problem [7, 10]. Somewhat surprisingly, the hybrid technique does not use any ideas
from [7, 10].
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