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Abstract. Space-economical estimation of tha frequency moments, defined
asF, = > " ,|fi|’, for p > 0, are of interest in estimating all-pairs dis-
tances in a large data matrix [14], machine learning, and in data stream com-
putation. Random sketches formed by the inner product of the frequency vector
f1, ..., fn with a suitably chosen random vector were pioneered by Alon, Ma-
tias and Szegedy [1], and have since played a central role in estinfgiagd

for data stream computations in general. The conceptatéble sketches formed

by the inner product of the frequency vector with a random vector whose com-
ponents are drawn frommstable distribution, was proposed by Indyk [11] for
estimatingFy, for 0 < p < 2, and has been further studied in Li [13].

In this paper, we consider the problem of estimatifygfor 0 < p < 2. A disad-
vantage of the stable sketches technique and its variants is that they (éqgjlje
inner-products of the frequency vector with dense vectors of stable (or nearly sta-
ble [14, 13]) random variables to be maintained. This means that each stream
update can be quite time-consuming. We present algorithms for estinfgting

for 0 < p < 2, that does not require the use of stable sketches or its approxima-
tions. Our technique is elementary in nature, in that, it uses simple randomization
in conjunction with well-known summary structures for data streams, such as the
COUNT-MIN sketch [7] and the GUNTSKETCH structure [5]. Our algorithms
require spac@(ﬁ) % to estimateF), to within 1 + € factors and requires ex-
pected timeO (log F; log %) to process each update. Thus, our technique trades
anO(<) factor in space for much more efficient processing of stream updates.

eP

We also present a stand-alone iterative estimatoFfor

1 Introduction

Recently, there has been an emergencaahitoring applicationsn diverse areas in-
cluding network traffic monitoring, network topology monitoring, sensor networks, fi-
nancial market monitoring, and web-log monitoring. In these applications, data is gen-
erated rapidly and continuously, and must be analyzed efficiently, in real-time and in
a single-pass over the data to identify large trends, anomalies, user-defined exception
conditions, and so on. In many of these applications, it is often required to continu-
ously track the “big picture”, or an aggregate view of the data, as opposed to a detailed
view of the data. In such scenarios, efficient approximate computation is often accept-
able. The data streaming model has gained popularity as a computational model for

% Following standard convention, we say thaf(n) is O(g(n)) if f(n) =
0 ((£)°™ (logm)°® (log n)°Wg(n)).



such applications—where incoming data (or updates) are processed very efficiently and
in an online fashion using space, much less than that needed to store the data in its
entirety.

A data streand is viewed as a sequence of arrivals of the fdit), wherei is the
identity of an item that is a member of the domaih= {1, ...,n} andv is theupdate
to the frequency of the itemr. > 0 indicates an insertion of multiplicity, while v < 0
indicates a corresponding deletion. The frequency of anitel®noted byf;, is the sum
of the updates tésince the inception of the stream, thatfis=>_; .., appears irs -

In this paper, we consider the problem of estimatingtiefrequency moment of
a data stream, defined & = > ,|f;|?, for 0 < p < 2. Equivalently, this can be
interpreted as thgth power of thel,, norm of a vector defined by the stream. The tech-
nigues used to design algorithms and lower bounds for the frequency moment problem
have been influential in the design of algorithmic and lower bound techniques for data
stream computation. We briefly review the current state of the art in estim@fingith
particular emphasis to the range< p < 2.

1.1 Review

Alon, Matias and Szegedy [1] present the seminal technigquevaf sketches for es-
timating F>. An (atomic) AMs sketch is a random integef = > | f:&, where
{&}i=1,2,... » Is @ family of four-wise independent random variables assuming the val-
ues 1 or—1 with equal probability. Amms sketch is easily maintained over a stream:
for each updatéi, v), the sketchX is updated as{ := X + v¢;. Moreover, since the
family {¢;} is only 4-wise random, for each¢; can be obtained from a randomly cho-
sen cubic polynomiat over a fieldF’ that contains the domain of iterfis], (§; = 1 if

the last bit ofa(i) is 1 and¢; = —1 otherwise). It then follows theff[ X 2] = F, and
Var [XQ] < 2F7 [1]. An estimate off;, that is accurate to withii 4 ¢ with confidence

g (I:an therefore be obtained as the average of the squa@@—]p)‘ independent sketch
values.

There has also been significant study of the gase0, also known as the distinct
elements problem. Alon, Matias and Szegedy [1] gave a constant factor approximation
in small space. Gibbons and Tirthapura [10] showed & () factor approximation
space@(}z); subsequent work has improved the (hidden) logarithmic factors [2].

p-stable sketchesThe use ofp-stable sketches was pioneered by Indyk [11] for esti-

mating F,,, with 0 < p < 2. A stable sketcl is defined a&” = "', f;s;, wheres;

is drawn at random from grstable distribution, denoteSi(p, 1) (the second parameter

of S(+,-) is the scale factor). By the defining propertyme$table distributionY” is dis-

tributed asS(p, (3", |£:|?)*/?). In other wordsY  is p-stable distributed, with scale

factoerl/”. Indyk gives a technique to estimakg by keepingO(E%) independenp-

stable sketches and returning the median of the these observations [11]. Woodruff [18]

presents am2(-) space lower bound for the problem of estimatifig for all p > 0,

implying that the stable sketches technique is space optimal up to logarithmic factors.
Li [13] further analyses of stable sketches and suggests the use of the geometric

mean estimator, that is,

ﬁp —c- |y1|1/k‘y2|1/k . \Yk\l/k



whereYi, Ys, ..., Y, arek independenp-stable sketches of the data stream Li shows

the above estimator is unbiased, thaii§F},] = F), andVar[F),] ~ Gk & It follows

(by Chebychev’'s inequality) that returning the geometric meaﬁ)@éf@) sketches
returns an estimate fdr, that is accurate to within factors ¢f + ¢) with probability

%. Li also shows that the geometric means estimator has lower variance than the median

estimator proposed originally by Indyk [11].

Very sparse sketcheS.he “very sparse sketch” method due todtial. aims to main-

tain the same space and accuracy bounds, but reduce the time cost to process each up-
date [14, 13]. Note that this technique applies only when the data satisfies some unifor-
mity properties, whereas the preceeding techniques need no such assumptions. A very
sparse (nearly)-stable sketch is a linear combination of the foth = "7 | fiw;,

where w; is P, with probability 5/2, —P, with probability 5/2, and 0 otherwise.

Here, P, is thep Pareto distribution with probabrlrty tail functioRr{P, > t} = L,

t > 1. Pareto distributions are proposed since they are much simpler to sample from
as compared to stable distributions. Further, Li showsifias asymptoticallyp-stable
provided f/cp — 0. Thus, very sparse sketches provide for a principled way of re-

ducing the data stream processing time provided the data satisfies certain uniformity
properties.

Drawbacks of stable-based methods.drawback of the original technique of stable
sketches is that, in general, for each stream update all w@) stable sketches

must be updated. Each sketch update requires a pseudo-random generation of a random
variable drawn from a-stable distribution, making it time-consuming to process each
stream update. The very sparse stable sketches somewhat alleviates this problem by
speeding up the processing time by a factor of approximdtéy although the data

must now satisfy certain uniformity conditions. In general, it is not possible to a-priori
guarantee or verify whether the data stream satisfies the desired properties. We therefore
advocate that in the absence of knowledge of the data distribution, the geometric means
estimator ovep-stable sketches is the most reliable of the known estimators—which is
quite expensive.

Contributions. In this paper, we present a technique for estimafipgfor 0 < p < 2.

Our technique requires spaéh(ez#+p log? Fy logn) to estimateF, to within relative
error (1 & €) with probability 7/8. Further, it require® (log n log Fy) expected time
(andO(log F; log? n) worst-case time) to process each stream update. Thus, our tech-
nique trades a factor (ﬁ)(}p) space for improved processing time per stream update.
From an algorithm design viewpoint, perhaps the most salient feature of the technique
is that it does not recourse to stable distributions. Our technique is elementary in nature
and uses simple randomization in conjunction with well-known summary structures for
data streams, such as the @NT-MIN sketch [7] and the GUNTSKETCHSstructure [5].

It is based on making some crucial and subtle modifications to g&téthnique [3].

Organization. The remainder of the paper is organized as follows. In Section 2, we
review the Hsstechnique for estimating a class of data stream metrics. Sections 3 and 4



respectively, present a family of algorithms for estimatigand a recursive estimator
for F}, respectively. Finally, we conclude in Section 5.

2 Review of Hsstechnique

In this section, we briefly review the $$ (for “Hierarchical Sampling from Sketches”)
procedure [3] for estimating},, p > 2 over data streams. Appendix A reviews the
CouNTskeETCHand the @UNT-MIN algorithms for finding frequent items in a data
stream and algorithms to estimate the residual first and second moments respectively of
a data stream [9].

The Hssmethod is a general technique for estimating a class of metrics over data
streams of the form:

w(S) =Y P(fi). (1)

i:fi>0

From the input strears, sub-streams,, . .. Sy, are created by successive sub-sampling,
thatis,So = S and forl <[ < L, §; is obtained fromS;_; by sub-sampling each dis-
tinct item appearing it5;—; independently with probabilit% (henceL = O(logn)).
Let k be a space parameter. At each leljele keep a frequent items data-structure,
denoted byD, (k), that takes as input the sub-stre&mand returns an approximation
to thetop(k) items of its input stream and their frequenci®s(k) is instantiated by
either the ®@UNT-MIN or COUNTSKETCHdata structures. At levé] suppose that the
frequent items structure at this level has an additive errak;¢k) (with high probabil-
ity), thatis, | f; — fi| < A;(k) with probability1 — 2~* wheret is a parameter. Define
F7es(k, 1) to be (the random variable denoting) the valug'pbf the sub-streany; af-

ter removing thek largest absolute frequencies; af§f® (k, 1) to be the corresponding
value of . The (non-random valud)y*(k, 0) (respectivelyF;°°(k, 0)) is written as
Fyes (k) (resp.Fe (k).

Lemma 1 (Lemma 1 from [3]).
1. Forl > 1andk > 48, F{**(k,1) < L %) with probability > 1 — 2725 +1,

2. Forl > 1andk > 48, F3** (k, 1) < ) with probability> 1 — 2~ 7 +1,

D)

res 1/2
By the above lemma, lefi, = L= or A, = (F2 k(k)

3 , depending on whether

the COUNT-MIN or the COUNTSKETCH structure is being used as the frequent items
structure at each level. Let = {5, Ty = % andT; = %,l =0,1,2...,logTy.
The items are grouped into group%, Gy, ...,Gp as follows:Gy = {i € S : f; >
TotandG, = {i e S: T, < f; < Ti—1}, 1 <1 < L. Itfollows that, with high

probability, for all items of(3; that are present in the random sub-stregmf; > %

and|f; — fi| < efi.

Corresponding to every stream update}, we use a hash-functidn: [n] — [n]
to map the item to a levelu = Isb(h(:)), where,lsb(z) is the position of the least
significant “1” in binary representation ef The stream update, () is then propagated
to the frequent items data structu@sfor 0 < I < u, so in effect; is included in the



sub-streams from level 0 to level The hash function is assumed to be chosen randomly
from a fully independent family; later we reduce the number of random bits required by
a standard data streaming argument.

At the time of inference, the algorithm collects samples as follows. From each level
1, the set of items whose estimated frequency crosses the thregﬂfowe identified,
using the frequent items structuf®. It is possible for the estimatﬁ,l of an items
obtained from the sub-strea® to exceed this threshold for multiple levdls We
therefore apply the “disambiguation-rule” of using the estimate obtained frotowhe
est levelat which it crosses the threshold for that level. The estimated frequency after
disambiguation is denoted #s Based on their disambiguated frequencies, the sampled
items are sorted into their respective grougs, G, . . . , G, as follows:

Go={i|lfi >ToyandG, = {i|T)_, < fi <Trandie §},1 <1< L .

We define the estimatdr and a second idealized estimafowhich is used for analysis
only.

L
=" "w(f) 2 =" (fi) -2 2

=0 3G, =0 ieG,

We now briefly review the salient points in the error analysis. Lemma 2 shows that the
expected value of is close tor.

Lemma 2 (Lemma 2 from [3]). Suppose thatfod < i < N —1and0 <[ < L,
|fiq — fil < ef; with probability> 1 — 27*. Then|E[] — ¥| < @ . 27! Floe L,

We now present a bound on the variance of the idealized estimator. The frequency
group@; is partitioned into three sub-groups, namélyargin(G;) = [T;, T;(1+€/2)],
rmargin(G;) = [T;-1(1 — €),T;—1] andmidregion(G;) = [T;(1 + €/2),T;_1(1 —

€)], that respectively denote tHenargin (left-margin), rmargin (right-margin) and
midregion of the groupG;. An item is said to belong to one of these regions if its
true frequency lies in that region. For any itémvith non-zero frequency, we denote by

I(i) the group indeX such thati € G;. For any subsel’ C [n], denote byy(T') the
expression ., ¥(f;). Let®? = ¥*(S) denoted ", ¥*(f;).

Lemma 3 (Lemma 3 from [3]). Suppose thatforall) <i < N —1and0 <1 < L,
|fii — fi] < ef; with probability> 1 — 2. Then,

Var[@] < g—t+L+2 g2 | Z 1/12(f2) Lol®d+1
1¢(Go—lmargin(Go))

Corollary 4. Ifthe functiony(-) is non-decreasing in the intervl . .. Ty + Ag], then,
choosingt = L + log % + 2, we get

L
Var[#] < W2+ " (Ti_1)9(G1)2" + 20(Th + Ao (Imargin(Go))  (3)
=1



The error incurred by the estimateis | — ¥|, and can be written as the sum of two
error components using the triangle inequality.

-0 < |0 0|+ |F T =& +&
Here,&; = |¥ — ¥| is the error due to sampling afy = | — ¥| is the error due
to the approximate estimation of the frequencies. By Chebychev's inequality;
| — | < |E[¥] — ¥| 4 3y/Var[¥] with probability 3. Using Lemma 2 and Corollary
4, and choosing = L + log }2 + 2, the expression faf; can be simplified as follows:

LY 979 L 141 . 1/2
&1 < 5 +3(ew + > BT ) (G2 + 2(Ty + Ag)¢b(Imargin(Go)))

=1
(4)

with probability%. We now present an upper bound &n

Lemma 5. Supposethatfor <i <nand0 <[l <L, |fi7lff¢\ < ef; with probability
>1—-2"t Then & < Ag ZlL:O Y ica, w with probability > % — 27t where
fori € Gy, &; lies betweery; andﬁ, and maximizes’().

The analysis assumes that the hash function mapping items to levels is completely inde-
pendent. We adopt a standard technique of reducing the required randomness by using
a pseudo-random generat®RQ of Nisan [15] along the lines of Indyk in [11] and
Indyk and Woodruff in [12]. More details are provided in Appendix B.

3 Estimating F),

In this section, we use the 3% technique with some subtle but vital modifications to
estimateF,, for 0 < p < 2. We use the OUNTSKETCH structure as the frequent items
structure at each leveél

We observe that a direct application of the$technique does not present@l)
space procedure, and so we need some novel analysis. To see this, suppoietteat
space parameter of thedDNTSKETCHprocedure at each level. Firstly, observe that

e WE) s A -
<A D R =Y S S p AT <23 SIS < 26 E, < e,

1=01ieGy 1=0ieG, 1=01ieGy

as required, sincg < 2 andAy2~! < ¢|f;| for i € G;. Now, by equation (4) and using
t =L+ 2log I + 2, we have

Tes

) ) LR (R) ¢ " Foe (k) * . ’
E1< Py +3|EFop+ Y ) Fo(GO2T 4201+ ) ( 2 ) Fy(lmargin(Go)) | -
=1

Further, if we writef,..,. (- to denote theth largest frequency (in absolute value)

9 o0 f?, 2/p—1 F} 2/p
Fges(k) = Z frank(r) S Z franpk(kJrl)ffank(r) < <k> 'FP <k-: (k?) ) forp >0

r>k r>k



and hence the expression yr simplifies to

L
&1 < €EFyy+3 <e2F2,, +F, Y 2R (G
=1

1/2
L2 +F, Fp(lmargin(Go))>

The main problem arises with the the middle term in the above expression, namely,
F, S 21-/2 B (G)), which can be quite large. Our approach relies on altering
the group definitions to make them depend on the (randomized) quahkttigs, [) so

that the resulting expression f6r becomes bounded ly(eF},). We also note that the
expression fo€, derived above remains boundedddy,.

Altered group definitions and estimatdiVe use the ©UNTSKETCH data structure as
the frequent items structure at each lelvet 0,1,..., L, with k = O(Ez%p) buckets
per hash function angl = O(log F}) hash functions per sketch. We first observe that
Lemma 1 can be slightly strengthened as follows:

Lemma 6 (A slightly stronger version of Lemma 1).For > 1 andk > 48

Fres 2171]{3 ) -
L. Feo (k1) < % with probability > 1 — 22 +1,
. F'res 2[—1 ] N
2. Foc (k1) < % with probability > 1 — 27 2i+!
Proof. The result follows from the proof given for Lemma 1 [3]. O

At each level, we use the OUNTSKETCHStructure to estimate;“* (£, /) to within an
accuracy of(1 + ) with probability 1 — -5, where,e = 5. Let F;**(k, 1) denote
5 . F5°*(k,1). We redefine the threshold$, 71, . . . , as follows:

Fres(k, )" A
Al:(M 5 711277 l:O71’27...,L.

€
The groupssy, G1, G, . . ., are set in the usual way, using the new thresholds:
Go={i| fi>ToyandG, = {i | T} < fi <Ti—1}

The estimator is defined by (1) as before.

Lemma 7. Supposé > —%. Then& < 8¢F, with probability at least:.

Proof. We use the property d¢f,°°(¢) derived above, that for any< ¢ < Fj,.

, forp > 0. (5)

F >2/p F2/p
t

res p _ p
Fy(t) <t ( = 31



We therefore have,

res /2 res -1 1/2
Fres(k, )\ 5FRes (k- 21— 1)
T =922 v/ <oz A\ 2 J L
l ( 2k -2l ) = ( 12k 2l » bylLemmat

1/2
5Fy/7
=2 (4(k QI=1)2/p=1e2f . 9l ’ by (5)

1[5 (2E\"7
:eﬁ <1<:2> ©

By equation (4), one component &f can be simplified as follows:

L
Z Tlpr(Gl) . 2l+1

=1

11

IN

p/2 L

2F, N

P (;) T;Fp(GlﬂlH substituting (6)
=1

L
- F, Y Fp(G)  sincep <2
=1

0
keP
10

= ﬁ'Fp(Fp_Fp(GO))

16
2 12 H
€ Fp sincek > o

<

oo| Ut

The other component & is

. _ F 10
E12 = 2T (1 + €)F,(Imargin(Gy)) < 2¢ p(5/2)p/22?p(1 +e)F, < @(1 +e)F) < EF7,

also usingk > =% ande < 1. Substituting in (4), we have,
& S €F, +3(EF2 + &1 + £12)Y? < 6¢F, . (7)
Adding, the total error is bounded by
E<&E+E <8F, O
We summarize this section in the following theorem.
Theorem 8. There exists an algorithm that returrf, satisfying|F, — F,| < €F,
with probability 3 using space()(ezip (log?n)(log F1)) and processes each stream

update in expected tim@(log n log F; ) and worst case timé@ (log® n log F}) standard
arithmetic operations on words of sik& F bits. ad




Remarks. 1. We note that fo0 < p < 1, an estimator fotF}, with similar proper-
ties may be designed in an exactly analogous fashion by usimgh@MIN instead of
CoOuUNTSKETCHas the frequent items structure at each level. Such an estimator would
require ane-accurate estimation afy; (which would imply estimation of7¢* using
standard techniques), which could either be done using Cauchy-sketches [11, 13] or us-
ing the stand-alone technique presented in Section 4. However, using Cauchy-sketches
means that, in gener&[)(e%) time is required to process each stream update. In or-
der to maintain poly-logarithmic processing time per stream update, the technique of
Section 4 may be used.

2. The space requirement of the stable sketches estimator gro@?ls;éﬁ) as a

function ofp [13], whereas, the Bis-based technique requires spéi(%). For small

values ofp, i.e.p = O ( the Hsstechnique can be asymptotically

more space-efficient.

1
loge—1(1+logloge—1) ) g

4 An iterative estimator for F}

In this section, we use thed$technique to present a stand-alone, iterative estimator
for /1 = Y7, |fi|. The previous section presents an estimatorHipthat uses, as a
sub-routine, an estimator f&i,°° (k) at each level of the structure. In this section, we
present a stand-alone estimator that uses odyiCr-mIN sketch to estimaté’. The
technique may be of independent interest.

The estimator uses two separate instantiations of the s$tructure. The first in-
stantiation uses GUNT-MIN sketch structure witty = % buckets per hash function,
ands = O(log G) hash functions, where7 = O(F3) andé = £. A collection of
s2 = O(log 5) independent copies of the structure are kept for the purpose of boosting
the confidence of an estimate by taking the median. The second instantiation agfshe H
structure uses’ = 128 buckets per hash function (46 = 16k) ands = O(log G) hash
functions. For estimating’ , we use a two-step procedure, namely, (1) first, we obtain
an estimate of that is correct to within a factor df6 using the first F$sinstantiation
and (2) then, we use the second instantiation to obtaiaaturate estimation df; .

The first step of the estimation is done using the first instantiation of #esHuc-
ture as follows. We set the threshdly to a parametet, T; = % and the threshold
frequency for finding in grouybto be Tl . The group definitions are as defined earlier:
Go = [t, F1], G| = [2[, ST i), 1 <1 < L. The disambiguation rule for the estimated

frequency is as follows: lﬂl > T, then,fi is set to the estimate obtained from the
lowest of these levels. The sampled groghsare defined as follows.

Go={i| fi > Tv}, Gzz{i|2l_f1< andzeSz},léiSL.

The estimatord’; andF; are defined as before—these are now functionts of

L L
t):ZZIﬁI? Fl(t):ZZ\fﬂ?l :

1=0 i@, =04eq,



Estimator. Let ¢ iterate over values, 2,22, ..., G and for each value af let F{“ed(t)
denote the median of the estimat@sreturned from thes; = O(log +) copies of the
Hss structure, each using independent random bits and the same valueebt .,
denote the largest value bEatisfying

The final estimate returned fﬁ“ed(tmax) using the second sinstantiation.

Analysis. We first note that Lemmas 2 and 3 hold for all choices.dfemma 5 gets
modified as follows.

Lemma 9. Suppose that fot < i < nand0 <[ < L, |f,;7l — fil < % with

probability > 1 — 2, where,A, = FlT(k) Then & < 16- A ZZL:O dica, ngf)‘

with probability > 19—0 — 2=t where for ani € G, &; lies betweenf; and ﬁ and
maximizes)’(). O

Lemma 10. Leté = &, k = & ande < £. Then, with probabilityl — & each,

£
8’

4F 8F;
1L Porgst=g
16t

[me
>
and F740) 2 1.02¢2

| t) — Fy| <

1.01eF,
2

2. Foranyt > 945 frmedy) < 16t with probability1 — 4.

Proof. We consider the two summation terms in error tefmgiven by equation (4)
separately.

L
t .
51’1 = ?Fl(Gl)QHl < 2t(F1 — Fo), andSl’Q = 2tF1(lmarg1n(G0)).
=1
Adding, &1 < (2(t + Ag)Fy)Y/? .

We ignore the term~*+X+2F, in £, since, by choosing = O(L), this term can be

made arbitrarily small in comparison with the other two terms. SifEg,< Flfl ,our
bound ong, becomes

L
) (G| _ 16FF
— 2 kt

Therefore, the expression for total erro€ig) = &£, + &;

(8)

t1\Y? 16F?
F ok '

< R T
E(t) < 2F1< + o



Suppose: = 128 and 4t < ¢ < 81 Usinge < 1 andé = £, we have

£
]

t 1\Y? 16F?  1.01eF
)+61<061' ©)

) <2F) [ — + —
€)= 1<F1+k Mo 2
We therefore have,

1.016F17 for 4& <t< 8& with probability1 — 6.
2 ek ek

[Ft) — Fr| < €(¢) <

Therefore, forlf: <t < 871, with probability1 — &, we have from (9) that

16t
1.02¢2°

1.01eF, (LO1)*EFy _ 1.01¢2 fmed
2 16

> 24/tF; and sot < < 16

(14 0.505¢) so FMeq(t) >
(10)

Lett = % for somej > 0, and suppose that (10) is satisfied. Then by (8)
E(t) <20 1/272¢(1.01)Fy + 2777 2eF, < 27/%¢F,  with probability1 — 4.

With probability1 — 8, | F™9(¢) — Fy| < £ and so, using > %,

. . . 1
21273 > 29/2¢F) > E(t) > |FM™Y(t) — Fy| > T(;t? —F, by (10)
. €
23 .
> ! _F  usinge = < andk = §
1.02 8 e
which is a contradiction foj > 4, proving claim 2. O

The correctness of the algorithm follows from the above Lemma. The space requirement
of the algorithm isO(e%(log?’ n)(log? F)) bits and the expected time taken to process

each stream update (log F} log %) standard arithmetic operations on words of size
O(logn).

5 Conclusions

We present a family of algorithms for the randomized estimatiof,ofor 0 < p < 2

and another family of algorithms for estimatid¢ for 0 < p < 1. The first algorithm
family estimatest, by using the ©@UNTSKETCH structure and*, estimation as sub-
routines. The second algorithm family estimatgsby using the ©UNT-MIN sketch
structure andr; estimation as a sub-routines. The space required by these algorithms
are O( 4 (log” n)(log® Fy ) (log 3) and the expected time required to process each
stream update i®(log n log F log %). Finally, we also present a stand-alone iterative
estimator forF; that only uses the QUNT-MIN sketch structure as a sub-routine.

Prior approaches to the problem of estimatiig[11, 13] used sketches of the fre-
quency vector with random variables drawn from a symmetstable distribution. An
interesting feature of the above algorithms is that they do not require the use of stable
distributions. The proposed algorithms trade an extra facté}(ef ) factor of space
for improved procesing time (with no polynomial dependency)gper stream update.
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A COUNT-MIN and COUNTSKETCHSummaries

Given a data stream defining a set of item frequencas(r) returns an item with the

r*" largest absolute value of the frequency (ties are broken arbitrarily). We say that an
item: has rank- if rank(r) = i. For a given value of, 1 < k < n, the setop(k) is the

set of items with rankl k. The residual second moment [5] of a data stream, denoted
by F55(k), is defined as the second moment of the stream after thg fmmuencies

have been removed. ThefyS(k) = - énk(r). The residual first moment [7] of a



data stream, denoted 8%, is analogously defined as tfi& norm of the data stream
after the topk frequencies have been removed, thatis* = > . | frank(r)|-

A sketch[1] is a random integeX = ). f; - z;, where,x; € {—1,+1},fori € D
and the family of variable$z; };cp with certain independence properties. The family
of random variablegz;},cp is referred to as theketch basisFor anyd > 2, ad-
wise independent sketch basis can be constructed in a pseudo-random manner from a
truly random seed of siz&(dlogn) bits as follows. LetF' be field of characteristic
2 and of size at least + 1. Choose a degreé — 1 polynomialg : F — F with
coefficients that are randomly chosen frénj17]. Definex; to be 1 if the first bit (i.e.,
the least significant position) @f¢) is 1, and define; to be—1 otherwise. Thel-wise
independence of the;’s follows from an application of Wegman and Carter’s universal
hash functions [17].

Pair-wise independent sketches are used in [5] to design theN€SKETCH al-
gorithm for finding the top: frequent items in an insert-only stream. The data struc-
ture consists of a collection of = O(log %) independent hash tablég, Us, ..., U,
each consisting o8k buckets. A pair-wise independent hash function: [n] —
{1,2,...,8k} is associated with each hash table that maps items randomly to one
of the 8% buckets, wherek is a space parameter. Additionally, for each table index
Jj=1,2,...,s, we keep a pair-wise independent family of random variaples} ;..
where, eaclr;; € {—1,+1} with equal probability. Each bucket keeps a sketch of the
sub-stream that maps to it, that&;[r] = 3_, . -, fizij 1 < j < 5,1 <7 < 8k.

An estimatef; is returned as followsf; = mediarj_; Uj[h;(i)]z;;. The accuracy of
estimation is stated as a functiahof the residual second moment given parameters
andb is defined as [5]

s (FE20)"

The space versus accuracy guarantees of theN3 SKETCHalgorithm is presented in
Theorem 11.

Theorem 11 ([5]). Let A = A(k, 8k). Then, for any given < [n], Pr{|f; — fi| <
A} > 1-4. The space used &(k - log § - (log F})) bits, and the time taken to process
a stream update i€ (log 1).

The GOUNTSKETCH algorithm can be adapted to return approximate frequent items
and their frequencies. The original algorithm [5] uses a heap for maintaining the cur-
rent top4 items in terms of their estimated frequencies. After processing each arriv-
ing stream record of the forrti, v), where,v is assumed to be non-negative, an es-
timate for f; is calculated using the scheme outline above. iff already in the cur-

rent estimated top- heap then its frequency is correspondingly increasedidfnot

in the heap butf; is larger than the current smallest frequency in the heap, then it
replaces that element in the heap. This scheme is applicable to insert-only streams.
A generalization of this method for strict update streams is presented in [6] and re-
turns, with probabilityl — §, (a) all items with frequency at Ieasw)l/2 and,

(b) does not return any item with frequency less tiar- e)(%)l/2 using space

O (ke=2log nlog(ke ' log(ke~t))log F) bits. For general update streams, a varia-



tion of this technique can be used for retrieving items satisfying properties (a) and (b)
above using spaa@ (e~ 2k log(d~1n) log F}) bits.
The CouNT-MIN algorithm [7] for finding approximate frequent items keeps a

collection of s = O(log %) independent hash tablgs, 75, ..., T, where each hash
table T; is of sizeb = 2k buckets and uses a pair-wise independent hash function
hj : [n] — {1,...,2k}, forj = 1,2,...,s. The bucketT}[r] is an integer counter

that maintains the following surfi;[r] = >_,, ), fi- The estimated frequencf

is obtained ag; = mediari_, 7} [h;(¢)]. The space versus accuracy guarantees for the
COUNT-MIN algorithm is given in terms of the quantify** (k) = >, ;. | frank(r) |-

Theorem 12 (7). Pr{|f; — fi| < EE™} > 1 — 5 with probability using space
O(klog § log F1) bits and timeO (log 5) to process each stream update.

EstimatingF;¢*and F,*°. [9] presents an algorithm to estima&§*®(k) to within an
accuracy of 1 + €) with confidencel — § using spac@ (% log(Fy) log(%)) bits. The
data structure used is identical to th@ NTSKETCH structure. The algorithm basi-
cally removes the top-estimated frequencies from theoONTSKETCH structure and

then estimateds. Let f,,..., fr. denote the tog: estimated frequencies from the
COUNTSKETCHSstructure. Next, the contributions of these estimates are removed from
the structure, that id/;[r]:=U;[r] = >_,.p,. (-,)= fr )z, - Subsequently, thEast-AMS

algorithm [16], a vanant of the ongmal' sketch algorithm [1], is used to estimate the
second moment &8, = mediarj_, Zr:l U;[r])?. Formally, we can state:

Lemma 13 ([9]). For a given integes > 1 and0 < e < 1, there exists an algorithm
for update streams that returns an estimﬂ?s( ) satisfying|F2T€S(k) — Fjes(k)| <
eF3e* (k) with probability 1 — & using spac& (% (log £ )(log F})) bits.

A similar argument can be applied to estimdtg**(s), where, instead of using the
COUNTSKETCH algorithm, we use the QUNT-MIN algorithm for retrieving the top-
k estimated absolute frequencies. In parallel, a set ef O(%) sketches based on
a 1-stable distribution [11] (i.eY; = ). fizj, Wherezj; is drawn from a 1-stable
distribution). After retrieving the to@-frequenciesf,,, ..., f,, with respect to their
absolute values, we reduce the sketcliesY; — Zle fr, 7z, and estimaté* (k)
asmedianj_, |Y;|. We summarize this in Lemma 14.

Lemma 14. For a given integerk > 1 and(0 < e < 1, there exists an algorithm
for update streams that returns an estimaig® (k) satisfying|F7¢* (k) — F7e*(k)| <
eF7e* (k) with probability 1 — & usingO(2 (k + 2)(log %) (log F})) bits.

B Reducing random bits by using a PRG

We use a standard technique of reducing the randomness by using a pseudo-random
generatoriPRG of Nisan [15] along the lines of Indyk in [11] and Indyk and Woodruff
in[12].



Notation. Let M be a finite state machine that usg&dits and has running tim&.

Assume thafl/ uses the random bits insegments, each segment consistingidbits.

Let U” be a uniform distribution ovef0,1}" and for a discrete random variahle,

let 7| X denote the probability distribution of, treated as a vector. L& (z) denote
the state of\/ after using the random bits in The generato€' : {0,1}* — {0, 1}**

expands a “small” number af bits that are truly random to a sequence:bhits that
“appear” random td/. G is said to be a pseudo-random generator for a daddinite

state machines with parameteiprovided, for every\/ € C

| FIMycvm ()] = FlMoevn (G(@)]], < ¢

where,|y|; denotes thé; norm of the vectoy. Nisan [15] shows the following prop-
erty (this version is from [11]).

Theorem 15 ([15]). There exists #RG G for SpacéS) and TiméR) with parameter
e = 27909 that requiresO(S) bits such thati expandsO(Slog R) bits into O(R)
bits.

This is sufficient due to the fact that we can compute the frequency moments by con-
sidering each (aggregate) frequerfgyn turn and use only segments©flog F;) bits
to store and process it.



