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MOTIVATION 

• Speech Classification previously done through HMM and 
GMM[1] 

• "Deep Learning" approaches not being extensively used for 
speech processing 

• Task of Digit Classification done using DBN and MFCC 
features[2] 

• Using proposed CDBN methods[3] for Digit Classification 

• Relating extracted features and hidden units activation to 
neurons in brain 

 



DATASET 

• A version of TIDIGITS dataset will be used for implementation 
of digit classification 

• Each speaker pronounces each digit twice 

 

https://github.com/dmus/API-Project/tree/master/data


Methodology 

• Audio Feature Extraction 

Raw Features 

MFCC 

Deep Learnig 

 

• Classification by SVM 

 

 



Audio Feature Extraction 
  Raw Features 

• wav file      spectrogram by FFT 

• Spectrogram represents the power of different frequency 
bands over time 

• Accuracy- 86.68% (Baseline) 

 

 



Mel-frequency Cepstral 
Coefficients(MFCCs) 
• Take FFT of frame 

• Map the powers of the spectrum obtained onto the mel scale 

• Take DCT of the list of mel log powers 

• 42-dim feature vector containing information of amplitude, 
frequency, temporal variance (delta’s and delta-deltas) of 
spectrum 

• Accuracy- 92.79% 

 

 



Deep Learning  

• when sparse coding models are applied to natural sounds 
(auditory signals), the learned representations (basis vectors) 
showed a striking resemblance to the cochlear filters in the 
auditory cortex 

 



Deep Belief Networks 

• Complete bipartite undirected probabilistic graphical model 

 

• Network assigns a probability to every possible pair of a visible 
and a hidden vector via a energy function 

 

 

 

 

 

                                                                             Image source : wikipedia  



Convolutional Deep Belief 
Networks (CDBN) 

• Each neuron receives input from local limited frequency range 

• Hubel and Wiesel- cat’s visual cortex cells are sensitive to 
small local receptive field 

• Weight-sharing/Replicated Features- Neurons for same 
feature share weights  

• Probabilistic max-pooling- maxima over small neighborhoods 
of hidden units computed in a probabilistically sound way. 

 

• Invariance to small frequency shifts 

• Sparsity, prevent overfitting (less number of parameters) 

• Dimensionality reduction 

 



• First layer bases of random file 

 



FUTURE WORK 

• Relating features extracted in neural nets to features extracted in 
human brain 

• Broca‘s Area 

• Wernicke’s Area 

 

 

 

 

                                                                             image source : wikipedia         

• According to recent research[6] features are extracted based on 

Plosives : p,t,k,b 

 Fricatives : s,z,v 

Nasals : n,m 
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