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Abstract

Deep learning has being extensively used in various fields like computer vision,
natural language processing, etc. but it has not been explored potentially in the field
of auditory data classification. In this project, Convolutional Deep Belief Network
(CDBN) [1] has been applied on audio data for the task of digit classification.
Audio features are extracted from the dataset which are later used for classification.
We also present a comparison of our results with traditionally used approaches for
audio classification i.e., MFCC and raw spectrogram methods.

1 Introduction
Processing of audio data in human brain has been of great interest since a long time. In
the past there has been a lot of work done related to audio processing involving HMM
and GMM for computation. In this work, we are applying deep learning methods to get
more general model and to have an insight as to how the neurons in the brain processes
speech input. It is possible to design filters and feature extraction methods which re-
sembles processing done by human neurons. In sparse coding, the learnt representation
of auditory data gave filters which are known to be similar to the neurons involved in
audio processing in mammals’ brains. For example, learnt representations of auditory
data and cochlear filters in the auditory cortex were found strikingly similar [2].

2 Speech Processing in human brain
According to a research [3] in 2014, human brain breaks up a speech signal into
phonemes and extract features corresponding to these phonemes. Different neurons
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Figure 1: Human brain

in the brain are responsive to different type of sounds, like fricatives, plosives, vowels
and nasals.

2.1 Wernicke’s Area
Wernickes area is involved in the understanding of spoken and written language. It is
located in posterior section of the superior temporal gyrus (STG) in the left cerebral
hemisphere. Research using Transcranial magnetic stimulation suggests that the area
corresponding to the Wernickes area in the non-dominant cerebral hemisphere has a
role in processing and resolution of subordinate meanings of ambiguous words - such
as (“river”) when given the ambiguous word (“bank”). In contrast, dominant word
meanings (“teller” given “bank”) are processed by the Wernicke’s area present in the
dominant hemisphere. This area is also important in understanding jokes. [source :
wikipedia]

3 Dataset
Audio dataset is used for digit classification, which is a version of TIDIGITS dataset.
It contains speeches of 326 speakers (111 men, 114 women, 50 boys and 51 girls) each
pronouncing 10 digit sequences.

4 Methodology
For the digit classification task, first the features are extracted from the audio data which
are then used for classification using Support Vector Machines. Features are the com-
ponents of an audio signal that are good for identifying its linguistic content and do not
include irrelevant information and noise. They are obtained either using domain-expert
knowledge (e.g., spectrogram, MFCC, etc.) or are generated automatically using deep
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learning algorithms (DBN, CDBN, etc.) Following methods have been implemented
to get good feature representation of the input data.

4.1 Spectrogram (RAW)
In this approach [4], the waveforms are converted into spectrograms by taking Fast
Fourier Transformation (FFT). The spectrogram represents power of different frequency
bands over time. For a sampling frequency of 8000, it gives 129 frequency bins (FFT
coefficients) per frame. The log of magnitude of these complex coefficients represents
power in each frequency bins. Half-overlapping ‘Hann’ window is used to get the
frames.

4.2 Mel-frequency Cepstral Coefficients (MFCC)
MFCCs are widely used features in speech processing tasks and have been state-of-
the-art. In this method [8], the input audio signal is first framed into short frames such
that the signal is statistically stationary within a frame. The power spectrum of each
frame is then calculated to identify the frequencies present in it. This is motivated by
the human cochlea (an organ in the ear) which vibrates (and wobbles small hairs) at
different spots depending on the frequency of incoming sounds. Different nerves fire
depending on different locations of vibration which informs the brain what frequencies
are present in the signal.

But, the cochlea cannot differentiate between two closely spaced frequencies. For
this reason, the energy in each spot is calculated. The Mel filterbank is applied to
the power spectra which gives the amount of energy present in each filter (frequency
regions). The Mel scale tells about the width of filterbanks to be used and their spacing.

Then, the logarithm of filterbank energies is taken. This is also motivated by human
hearing as in order to double the perceived volume of sound to our ear, eight times
energy is required. Since the filterbanks are overlapping, to decorrelate the filterbank
energies, Discrete Cosine Transform (DCT) of log energies is calculated. 12(2-13) of
DCT coefficients are kept discarding the rest as the higher coefficients represent fast
energy changes and degrade the performance. The delta and delta-delta features are
then appended to keep some temporal information. Also, the frame energy is included.
This gives the 42-dimensional feature vector for each input.

4.3 Restricted Boltzmann Machine (RBM)
RBM [4] is a stochastic neural network and a complete bipartite undirected probabilis-
tic graphical model. It contains hidden and visible units whose joint configuration has
an energy given by:

E(v,h) =
∑

iεvisible

vi−ai2
2σ2

i
−

∑
jεhidden

bihj −
∑
i,j

vi
σi
hjwij

where hj , vi are the states of hidden unit j and visible unit i, ai, bj are their biases,
wij is the weight between them and σi is the standard deviation of the Gaussian noise
for visible unit i. The network assigns a probability to every pair of a visible and a
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hidden vector via this energy function:

p(v, h) = 1
Z e

−E(v,h)

The RBM is trained by Contrastive Divergence in which the weights are updated
such that p(v) is high. In this task, sliding window approach is used so that each context
window is the training input for the RBM. The RBM used in our experiment has 6 x
129 visible units which train 300 hidden units (bases). The activation of hidden units
is used as a feature vector for the context window.

4.4 Convolutional Deep Belief Network (CDBN)
CDBN [1] is composed of many layers of Convolutional RBMs (CRBM), where CRBM
is an extension of RBM to a convolutional setting. In the convolutional network [5],
all the neurons of same feature map share the same weights but receive different in-
puts shifted in frequency. Each neuron is connected to small number of neurons in the
previous layer representing features of limited frequency range. This is inspired from
Hubel and Weisels experiment on cats that the cells of a visual cortex in cats respond
to only local receptive field.

For input layer consisting of nv dimensional array of binary units and K nw dimen-
sional filter weights Wk (bases), the hidden layer consists of nh-dimensional arrays
(nh = nv − nw + 1) with units in group k sharing the weights Wk and bias bk and c.
Their energy function is defined as:

E(v,h) = −
K∑
k=1

nH∑
j=1

nw∑
r=1

hkjW
k
r vj+r−1 −

K∑
k=1

bk
nH∑
j=1

jkj − c
nv∑
i=1

vi

After the convolutional layer, a max-pooling layer is added which computes the
maxima over small neighborhoods of hidden units probabilistically. The weight sharing
and pooling gives invariance to small frequency shifts and reduces overfitting.

For training CDBN, contrastive divergence is used and sparsity penalty term is
added to prevent overfitting. In this task, firstly PCA whitening is done to reduce
dimensionality to 80 components. The kernel size (filter length) of 6 and max-pooling
ratio of 3 is used to train 300 first layer bases. [Figure 2] These bases (activations)
serves as the feature representation of input audio.

5 Results
The results are shown in the Table 1. MFCC features have given the best accuracy
among all other feature representations outperforming all the methods.

6 Conclusions and Future Work
According to our experiments, MFCC outperforms all other methods and gave good
representation of audio data. But, these hand-tuned features are time-consuming, re-
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Figure 2: CDBN architecture

Method Accuracy(%)
RAW 86.68%

MFCC 92.76%
RBM 36.99%

CDBN 53.42%

Table 1: Results

quire domain-expert knowledge and do not generalize well to other domains and tasks.
On the other hand, deep learning methods do automatic feature extraction and gave
more general features. They have been shown to perform quite well in the past.

Thus, it is not straightforward to obtain good feature representation from deep
learning methods. More experiments are needed to tune parameters, number of lay-
ers in the network and number of training epochs. Since the training time taken by
deep networks is enormous, GPUs will be used to improve speed. We will also ex-
plore large datasets and more challenging tasks. Other deep learning methods like Self
Taught Learning, etc. will also be explored. Also we would like to relate the activation
of neurons in the Wernicke’s area to the hidden layer activations in deep belief network.
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