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Manifolds in the
Visual Brain



Visual Recognition Pathway (Ventral)
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Figure 3. The Ventral Visual Pathway
(A) Ventral stream cortical area locations in the macaque monkey brain, and flow of visual information from the retina.
(B) Each area is plotted so that its size is proportional to its cortical surface area (Felleman and Van Essen, 1991). Approximate total number of neurons (both hemispheres) is shown in the corner of each area (M = million). The approximate dimensionality of each representation (number of projection neurons) is shown above each area, based on neuronal densities (Collins et al., 2010), layer 2/3 neuronal fraction (O’Kusky and Colonnier, 1982), and portion (color) dedicated to
processing the central 10 deg of the visual field (Brewer et al., 2002). Approximate median response latency is listed on the right (Nowak and Bullier, 1997;
Schmolesky et al., 1998).
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Figure 19.3
Matrix of 144 filters obtained by training on natural images whitened by zero-phase components analysis. Each filter is a row
of the matrix W. The independent components analysis basis functions on ZCA-whitened data are visually the same as the
ICA filters. On nonwhitened data, the filters look like high-pass versions of the filters shown here, and the basis functions
look like low-pass versions of them.


Computational models (Poggio)

[Serre Oliva Poggio 2007]
[Serre Wolf Riesenhuber Poggio
2007 pami]

S4 = View-
tuned cells

C2b

52b

This computational model did as
well on object recognition tasks as
state-of-art CV (bag of words)
models.
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Selectivity for complex features

[kobatake-tanaka-94] pe
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Simplifying the response




Object-specific View-tuned cells
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A population of IT neurons was found that responded selectively to
views of previously unfamiliar objects. The cells discharged maximally to one
view of an object, and their response declined gradually as the object was
rotated away from this preferred view. No selective responses were ever
encountered for views that the animal systematically failed to
recognize. Most neurons also exhibited orientation-dependent responses during
view-plane rotations. 


Dimensionality Reduction and
Long-distance neural communication
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Dimensionality Reduction and
Long-distance neural communication

[u} I
0 100 200

ganguli-sompolinsky-12 _compressed-sensing-sparsity-domensionality



Artificial Neural Networks



Perceptron (Threshold unit)
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What parameters and objective function


X, X, t

8 31
4 110

Perceptron

N

Z=1wif ;=

g * (t-z)* X
output z =
1 if Z w;. X > bias
-1 if 2 w; . X; < bias



Training a Perceptron
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Training a Perceptron
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Linear Classifier

Heaviside function has threshold at x=0. Decision
boundary given by:

a=WwW*x+w,=Wy+Ww,;X; +W, X,=0

Thus: x, = - (W, + Wy X)/w, .
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Dimensionality

« What fraction of possible functions are Linearly
separable?

 Consider Boolean functions
— n= Number of variables

Total Functions 22"

>

Linearly Separable

0) 2 2

1 4 A

2 16 14

3 256 104

4 65536 1882 ;Z%Zﬂ& < A(n) <
5 4.3 x 10° 94572

0 1.8 x 10t 1.5 x 107

! 3.4 x 10% 8.4 x 10°

8 1.2 x 107 1.7 x 1013
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A Boolean function in n variables can be thought of as an assignment of 0 or
     1 to each vertex of a Boolean hypercube in n dimensions. 

The Boolean function is said to be linearly separable if the set of vertices
     labeled 0 are linearly separable from those labeled 1.

while the number of all Boolean functions is 2^2^n, for n ≥ 8 the number λ(n)
of linear threshold functions satisfies   
			2^(n/2+16) < λ(n) ≤ 2^n^2

The exact number λ(n) has been computed for up to n = 8.  
Encyclopedia of Integer Sequences # A000609: 
	 λ(1 ... 8) = 4, 14, 104, 1882, 94572, 15028134, 8378070864,
			17561539552946.



Examples of activation functions

The sigma node

Table 4.2 Examples of frequently used activation functions and their basic implementation in
MATLAB.

Typeof | Graph Mathematical formula Matlab implementation
function

Linear / g i A

Step g5 (x) :{1 if x > 0 £loor (0.5% (1+sign (x)))

0 elsewhere
ﬂ"ﬂi‘;ﬁ‘d / gl (xy = y @(x) | x.*floor(0.5* (1+sign(x)))
: 1 i

Sigmoid f g%8(x) = I+exp(-x) Sl LSRp R
Radil: /\ 85 () = exp(-1?) exp (~x.2)

basis '




Multi-layer perceptron




Deep Learning

Coding layer

Raw input (high dimensionality)



Traditional Learning

@ The traditional model of pattern recognition (since the late 50's)

» Fixed/engineered features (or fixed kernel) + trainable
classifier

hand-crafted “Simple” Trainable
Feature Extractor Classifier

Trainable Trainable

Feature Extractor Classifier




Traditional Learning

SIFT K-means = Pooling = Classifi
oolin assifier =
HoG Sparse Coding J

fixed unsupervised supervised
Low-level Mid-level
Features Features

Hand-engineered features




Feature Discovery in Deep Learning

# A hierarchy of trainable feature transforms

» Each module transforms its input representation into a higher-level
one.

» High-level features are more global and more invariant

» Low-level features are shared among categories

Trainable Trainable Trainable
Feature Feature |—| Classifier/ |—

Transform Transform Predictor

Learned Internal Representations

# How can we make all the modules trainable and get them to learn
appropriate representations?




Deep Learning

Low-Level Mid-Level| |High-Level Trainable

— | — | — =
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]



Ventral Visual Pathway

# The ventral (recognition) pathway in the visual cortex has multiple stages
# Retina - LGN - V1 - V2 - V4 - PIT - AIT ....
# Lots of intermediate representations
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Face Recognition and
Manifolds






Eigenfaces: Linear Dimensionality
Reduction

PCA: project data onto subspace of maximum variance

[A] = top eigenvectors of covariance matrix [XX']
Y = [A] X

A
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Percentage of Variance Explained

e k=11to 25




Percentage of Variance Explained

k=1,9,17, 25, 33... 89




Percentage of Variance Explained




Non-Linear Dimensionality
Reduction (NLDR)

algorithm: ISOMAP



Data may lie on non-linear “manifolds”

Geodesic = shortest path along manifold



Isomap Algorithm

A Global Geometric Framework
for Nonlinear Dimensionality

Reduction
Joshua B. Tenenbaum,® Vin de Silva,? John C. Langford®

Scientists working with large volumes of high-dimensional data, such as global
climate patterns, stellar spectra, or human gene distributions, regularty con-
front the problem of dimensionality reduction: finding meaningful low-dimen-
sional structures hidden in their high-dimensional observations. The human
brain confronts the same problem in everyday perception, extracting from its
high-dimensional sensory inputs—30,000 auditory nerve fibers or 10% optic
nerve fibers—a manageably small number of perceptually relevant features.
Here we describe an approach to solving dimensionality reduction problems
that uses easily measured local metric information to learn the underlying
global geometry of a data set. Unlike classical techniques such as principal
component analysis (PCA) and multidimensional scaling (MDS), our approach
is capable of discovering the nonlinear degrees of freedom that underlie com-
plex natural observations, such as human handwriting or images of a face under
different viewing conditions. In contrast to previeus algorithms for nonlinear
dimensionality reduction, ours efficiently computes a globally optimal solution,
and, for an important class of data manifolds, is guaranteed to converge

asymptotically to the true structure.

A canonical problem in dimensionality re-
duction from the domain of visual perception
15 lllustrated in Fig. 1A. The input consists of
many images of a person’s face observed
under different pose and lighting conditions,
in no particular order. These images can be
thought of as points in a high-dimensional
vector space, with each input dimension cor-
responding to the brightness of one pixel in
the image or the firing rate of one retinal
ganglion cell. Although the input dimension-

"Department of Psychology and “Department of
Mathematics, Stanford University, Stanford, CA
94305, USA. Department of Computer Science, Car-
negie Mellon University, Pittsburgh, PA 15217, USA.

*To whom correspondence should be addressed. E-
mail: jbt@psy ch stanford.edu

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000

ality may be quite high (e.g., 4096 for these
64 pixel by 64 pixel images), the perceptually
meanmgful structure of these images has
many fewer independent degrees of freedom.
Within the 4096-dimensional input space, all
of the images lie on an intrinsically three-
dimensional manifold, or constraint surface,
that can be parameterized by two pose van-
ables plus an azimuthal lighting angle. Our
zoal is to discover, given only the unordered
high-dimensional  inputs, low-dimensional
representations such as Fig. 1A with coordi-
nates that capture the intrinsic degrees of
freedom of a data set. This problem is of
central importance not only in studies of vi-
sion {/-3), but also in speech (&, 7), motor
control (&, 9), and a range of other physical
and biological sciences (10-12).

The classical techniques for dimensional-
ity reduction, PCA and MDS, are simple to
implement, efficiently computable, and guar-
anteed to discover the true structure of data
lying on or near a linear subspace of the
high-dimensional input space (13). PCA
finds a low-dimensional embedding of the
data points that best preserves their variance
as measured in the high-dimensional input
space. Classical MDS finds an embedding
that preserves the interpoint distances, equiv-
alent to PCA when those distances are Eu-
clidean. However, many data sets contain
essential nonlinear structures that are invisi-
ble to PCA and MDS (4, 3, 11, I4). For
example, both methods fail to detect the true
degrees of freedom of the face data set (Fig.
L A). or even its intrinsic three-dimensionality
{Fig. 2A).

Here we describe an approach that com-
bines the major algorithmic features of PCA
and MDS—computational efficiency, global
optimality, and asymptotic convergence gpuar-
antess—with the flexibility to leam a broad
class of nonlinear manifolds. Figure 34 illus-
trates the challenge of nonlinearity with data
lying on a two-dimensional “Swiss roll™; points
far apart on the underlying manifold, as mea-
sured by their peodesic, or shortest path, dis-
tances, may appear deceptively close in the
high-dimensional input space, as measured by
their straight-line Euclidean distance. Only the
geodesic distances reflect the tue low-dimen-
sional geometry of the manifold, but PCA and
MDS effectively see just the Euclidean struc-
ture; thus, they fail to detect the intrinsic two-
dimensionality (Fig. 2B).

Our approach builds on classical MDS but
seeks to preserve the intrinsic peometry of the
data, as captured in the geodesic mamfold
distances between all pairs of data points. The
crux is estimating the peodesic distance be-
tween faraway points, given only input-space
distances. For neighboring points, input-
space distance provides a good approxima-

2319



Isomap Algorithm

e |dentify neighbors.
— points within epsilon-ball (e-ball)

— k nearest neighbors (k-NN)
e Construct neighborhood graph.

-- x connected to y if neighbor(x,y).

-- edge length = distance(x,y)

e Compute shortest path between nodes
— Djkastra / Floyd-Warshall algorithm

e Construct a lower dimensional embedding.
— Multi-Dimensional Scaling (MDS)
[Tenenbaum, de Silva and Langford 2001]



Isomap Algorithm

Geodesic = shortest path along manifold



Residual Variance and Dimensionality

0.25

0.2

PCA (linear)
015 |

Residual
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+ Manifold dimensio

residual variance =1 — r2(Dg, Dy); r = linear correlation coefficient
D, = geodesic distance matrix; D, = manifold distance


Presenter
Presentation Notes
residual variance = 1  -  R^2 (DM, DY). DY is the matrix of Euclidean distances in the low-dimensional embedding recovered by each algorithm. DM is each algorithm’s best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG ; for PCA and MDS, it is
the Euclidean input-space distance matrix DX
(except with the handwritten ‘2’s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of DM and DY


Manifold discovery

Locally Linear Embedding (Saul and Roweis 01)



Manifold clustering

Showing 15 and 7s (with images)(L2 distances)
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Clustering on Isomap embedding

http://www.cse.iitk.ac.in/users/cs365/2012/submissions/smukul/cs365/hw2/



r-ball density = intrinsic dimensionality

Scale behavior of a 1D manifold in 2-space

samples
NOISE SCAlE wenm
locally linear scale
curvature scale

radius (log scala)

Point-count growth process on a 20 manifold in 3-space

[ | — radial growth process
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L[ — 20 hypothesis
[ ------ 3D hypothesis
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#points (log scale)

10°



Effect of scale on dimensionality
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Short Circuits & Neighbourhood
selection

neighbourhood size

too big: short-circuit errors
too small: isolated patches

§ Ty i i L i i i i ‘i i
B0 S0 40 -3 -0 -0 0 10 20 1 #H D

[saxena, gupta mukerjee 04]



Head Rotation Motion




Head Rotation Motion-1
Results

Two-dimensional

Left-right head motion

Two-dimensional
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Feszidual variance

Head Rotation Motion-1
Results
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Binary classifier: Precision vs Recall

Learned Classifier

Precision: B
. - False
TP / Retrieved Positives
Positives ¢
True A
Negatives True
Positives
Recall:
TP / Actual D
o False
Positives Negatives

True Classes

-+



Information Theory

Building Expectations

48



Twenty Questions

Knower: thinks of object (point in a probability space)
Guesser: asks knower to evaluate random variables

Stupid approach:

Guesser: Is it my left big toe?
Knower: No.

Guesser: Is it Valmiki?
Knower: No.

Guesser: Is it Aunt Lakshmi?



Expectations & Surprisal

Turn the key: expectation: lock will open

Exam paper showing: could be 100, could be zero.
random variable: function from set of marks
to real interval [0,1]

Interestingness & unpredictability

surprisal (r.v. = x) = - log, p(x)

=0whenp(x)=1
=1 when p(x) =%
= oo when p(x) =0



Expectations in data

A: 00010001000100010001. .. 0001000100010001000100010001
B:01110100110100100110...1010111010111011000101100010

C: 00011000001010100000. . .0010001000010000001000110000

Structure in data = easy to remember



Entropy

Used in
e coding theory
e statistical physics
* machine learning
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Entropy

In how many ways can N identical objects be allocated M

bins?
N!

1 n; %
o 3 () () - S

2

14

.. 1
Entropy maximized when Vi@ p; = 7



Entropy in Coding theory

X discrete with 8 possible states; how many bits to transmit
the state of X?

All states equally likely

1 1
Hlz] = —8 x 3 log, e 3 bits.



Coding theory

x| a b C d ¢ f g h
1 1 1 1 1 1 1 1
p(x) | 53 7 3 16 61 61 64 64
code | 0 10 110 1110 111100 111101 111110 111111
1 1 1 1 1 1 1 1 4 1
H — _Zlog, = — =log, = — =log, = — — log., — — — log., —
7] 9 08275 T B2 T g 0820 T g 082 T T gy 1082
— 2 bits
de 1 th 1><1+1><2—|—1><3—|—1><4—|—4><1><6
I ' n — — — — _ .
average code leng 5 1 3 T 6l

2 bits



Entropy in Twenty Questions

Intuitively : try to ask g whose answer is 50-50
Is the first letter between A and M?

question entropy = p(Y)logp(Y) + p(N)logP(N)

For both answers equiprobable:
entropy =- 7% * log, (%) - 72 * log,(%2) =1.0

For P(Y)=1/1028
entropy =-1/1028 * -10 - eps = 0.01



Information Theory
for Language

Shannon entropy

58



Shannon Entropy

e Predict the next word/letter, given (n-1)
previous letters or words : Fn = entropy =
SUM,; (p; log p))

e probabilities p. (of n-grams) from corpus:
— F, (only alphabet) = log,27 = 4.76 bits per letter

— F, (1-gram frequencies p)) = 4.03 bits

— F, (bigram frequencies) = 3.32 bits
— F, (trigrams) = 3.1 bits

— F = 2.62 bits

word

(avg word entropy = 11.8 bits per 4.5 letter word)



Shannon Entropy : Human

 Ask human to guess the next letter:

THE ROOM WAS NOT VERY LIGHT A SMALL OBLONG
S - Tq o M— NOT-V-——-- [E——— SM----OBL---

READING LAMP ON THE DESK SHED GLOW ON
REA-————————- o [E— D----SHED-OLD--0-

POLISHED WOOD BUT LESS ON THE SHABBY RED CARPET
P-L-S——---0---BU--L-S—0-—--——-SH-—--- RE—C-————-

69% guessed on 15t attempt [“-” = 15t attempt]

Claude E. Shannon. “Prediction and Entropy of
Printed English”, Bell System Technical Journal 30:50-
64. 1951.



Human

Shannon Entropy

Count number of attempts:

A

IS NO REVERSE ON A MOTORCYCLE
1115112112111611711121321227111141111131

THERE

0UT

g61311111111111621111112111111

FRIEND OF MINE FOUND THIS

DAY

OTHER
41111111151111111111161111111111111

RATHER D RAMATICALLY THE

Claude E. Shannon. “Prediction and Entropy of

Printed English’
64. 1951.

Bell System Technical Journal 30:50-

)
’
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