Brains and Expertise

Amitabha Mukerjee Intro to Cognitive Science

Brains and Evolution

Brain Evolution

Four Questions

- 1) Major changes in neural organization and function?
- 2) When did these changes occur?
- 3) By what mechanisms did these changes occur?
- 4) Why did these changes occur? [Northcutt 02]

Kimberella: oldest bilaterite fossil, 570mya White Sea, Russia

> Erwin / Davidson 2002

http://dev.bio logists.org/co ntent/129/13 /3021.full

Origins of multi-cellularity

 \sum

What came first: Neurons or Synapses?

Trichoplax :

Size: 1mm Discovered in aquarium 1880s, ignored as uninteresting animal.

1970s: New phylum Placozoa. (sole species)

Most primitive multi-cellular, or did it lose features from more advanced metazoa?

[Srivastava 08]

What came first: Neurons or Synapses?

Trichoplax: Genome suggests full-blown nervous system - synaptic proteins, neurotransmitters, muscle proteins.

Behaviour also seems to require a neuromuscular system.

Cell structure - foreign and unrecognizable - no axons, synapses, or muscles. One type of cell has organelle w a crystal that can polarize light. Are they eyes?

Most likely, synaptic proteins came before neurotransmitters.

[Jorgensen 14; Smithe etal 14]

Genomic evidence

^{© 1999} Addison Wesley Longman, Inc.

SOME OF OUR BRAINS ARE MISSING

The discovery that Urbilateria, the ancestor of all bilaterians, probably had a brain implies that some of its descendants must have lost theirs

- All species have lost their brains
- ---- Some species have lost their brains

Brain sizes

[Jerison 1985]

Animal Cognition

Jorg-Peter Ewert

Vision in the European toad *Bufo bufo*

MOVIE:

[pap] evert-74_neuroethclogy=>1 toads-part1_behavioral-responses-to-prey-features

response of toad *bufo bufo* to differently shaped stimuli

Simmons 99: Nerve Cells and Animal Behaviour

Toad (amphibian) brain

ganglion cells from eye synapse onto contralateral optic tectum

Simmons 99: Nerve Cells and Animal Behaviour

Human brain visual pipeline

contralateral LGN

(a)

x

y

b,c,d: response of thalamic neurons to increasing angular size of three shapes

> (b) TH3 neuron (c) T5(1) neuron (d) T5(2) neuron

(after Ewert, 1980.)

Stimulus edge length (degrees)

Motor plan \rightarrow Sensing

body is shifted so as to translate head laterally in scanning

Preying mantis (Sphodromantis lineola)

[land 1999] motion and vision : why animals move their eyes

Visuo-motor Control

Preying mantis (Sphodromantis lineola)

Simmons 99: Nerve Cells and Animal Behaviour

Cockroach escape behaviour

Cerci : covered with wind-sensitive hair → Giant interneuron → Startle response ~50ms : Turn (leg pose) and run.

Simmons 99: Nerve Cells and Animal Behaviour

The capacity to predict the outcome of future events—critical to successful movement— is, most likely, the

ultimate and most common of all global brain functions.

- Rodolfo Llinas

Motor knowledge \rightarrow Mindness

- predictive / intentional interactions
- require internal image of world
- require models for consequents of actions
- Organize its motricity: cephalization

sensory-motor areas in macaque and human cortex

Concepts of Self

nishida-matsuzaka-2010_chimpanzee-reflection-in-stream

nishida-2011_evolutionary-tree-great-apes

nishida-2011_chimpanzees--bonobo-humans-gorillas-aeroplane-pattern-w-children

Motor Primacy: Thinking = Internalized Movement

Movement and the "mind"

Rodolfo Llinas, *The I of the Vortex:*

- *Itch on the back* : generates a sensorimotor image
- The image *pulls* toward the action to be performed
- Brain has evolved as
 - goal-oriented device
 - inherited, pre-wired mechanism, implements predictive / intentional interactions w environment.
 - requires creating internal image of the world for comparing sensory data
- Mind is "co-dimensional" with the brain
- Generates "self-controlled" electrical storms Emergent

Evolution of the mind

Light-aligning (Phototaxis) behaviour

unicellular eukaryote Chlamydomonas (green algae) sponge larva (no nervous system) Amphimedon queenslandica

[jekely 10]

Evolution of the mind

Motricity \rightarrow Nervous system

Tunicates (sea squirts) : stage in evolution of chordata

adult - immobile (sessile) larval form - briefly free swimming larva has 300 cell ganglion + notochord (digested after it finds and attaches to a site)

[llinas 02]
Interneurons

Interneurons

[jekely 10]

Predicting → Planning

panther chameleon tongue

Predicting → Planning

 \mathcal{D}

Archerfish Image: Kim Taylor (Daily Mail)

Predicting → Planning

tagarina kalaga : ram (tagaru) fight – karnataka

Predicting \rightarrow Expertise

Predicting \rightarrow Expertise

"... the world was a blur of black and white. I could only see silhouettes."

Neuron Spiking modes

Electro-encephalograph (EEG)

Electro-encephalograph (EEG)

Functional MRI (fMRI)

Functional MRI (fMRI)

fmri of normal brain

autistic (language deficit) brain

u. edinburgh / the telegraph

Calcium florescence imaging

Calcium florescence imaging

Kwan, 2010, from Fairhall slides

Individual Neuron readings

next few slides based on lecture by Adrienne Fairhall at http://courses.cs.washington.edu/courses/cse528/13sp/

Spikes from a neuronal population

M. Berry

Hubel-weisel 1977

http://understandingcontext.com/2014/01/visual-input-processing/

Nonlinearity: tuning curves - motor

Nonlinear function: r = g(s)

Cosine tuning curve of a motor cortical neuron

Nonlinearity: tuning curves - Visual

Nonlinear function: r = g(s)

Gaussian tuning curve of a cortical (V1) neuron

Nonlinearity: tuning curves

Sigmoidal tuning curve of a V1 cortical neuron

Neuron Tuning curves : Gaussian

Orientation sensitivity in V1 neuron

- approximated by Gaussian with mode at max response

Orientation sensitivity in higher neurons

 \bigcirc

keiji tanaka [2003]

Sigmoidal (classifier) tuning -

Sigmoidal tuning curve of a V1 cortical neuron

Higher neurons

Quian Quiroga, Reddy, Kreiman, Koch and Fried, Nature (2005)

What is *s*?

Higher Neurons

Population Code (vector models)

Population Codes

Sparse Coding

Manifolds

diCarlo-cox-2007trics,

diCarlo-cox-2007trics,

Responses to images

Quian Quiroga, Reddy, Kreiman, Koch and Fried, Nature (2005)

Jennifer Lopez and Brad Pitt

Pamela Anderson

Function of Cortex What is it computing?
Biological organization

Form follows function

heart, lung, kidney : differ in

- cells structure
- organization

ightarrow nearly identical for every individual

Abstraction in the cortex

[zeki 08]

Abstraction in the cortex

Similar abstraction for: Itouch / pressure
Itemperature
Imagnitude:

[zeki 08]

Visual cortex V1 (cat)

orientation columns – 10° apart ocular dominance hypercolumns, R(ight) / L(eft) eye

Receptive field changes between hypercolumns

[hubel / wiesel 62, 68]

Cortical columns

Cortical columns

Structure of cortical columns are extremely similar across variety of functions

Two primary kind of cells: Pyramidal (P): Layers I-III, V-VI Stellate (S) : Layer IV (granular layer)

Layer I – rich dendritic structure Layers II,III – project to other cortical areas Layer III – input from other columns Layer IV – stellate, input from thalamus Layers V,VI – project to sub-cortical

What is the cortex doing?

[horton / adams nature 2005]: The cortical column: a structure without a function

Can the different parts of the brain be doing the same computation?

Prediction

involves Minimal Description Length? = Dimensionality Reduction?

Role of Perception in Motor?

[Diedrichsen etal 07]

Perception in Motor prediction

[Diedrichsen etal 07]

Perception in Motor prediction

[Diedrichsen etal 07]

А

Perception in Motor Prediction

Kandel 1991 ch.40 motor Claude Ghez: voluntary movement

Readiness Potential : Motor actions

Kandel 1991 ch.40 motor Claude Ghez: voluntary

Does Consciousness drive motor intent?

Libet's Free will experiment (1973)

Reporting the decision time

Reporting the decision time

Perception and Motor functions

Perception and Motor Control

Perception and Motor Control

Perception and Motor Control

Wider Penfield in brain surgery, Montreal

Restored sight : Visual Perception

S.B., blind for more than fifty years - able to see

Did not see depth, no bistable illusion

[wallis buelthoff: learning to recognize objects] in [fahle poggio 02]

Role of Motor Knowledge in Perception?

Mirror Neurons

<u>1</u>	
NN	
1 1911.001	
500 ms	

11 100100.001
IRA LAIRA

[Rizzolatti G and Fabbri-Destro M 08]

Mirror Neurons and Imitation

newborn macaque

[Ferrari etal 06]

Motion Perception

 \bigcirc

Motor Learning and Perception

Newborns (10-24 day old) in dark room work hard to position hand so it is visbile in a narrow beam of light. ...

Q. Can perception help in learning a representation?

[A. van der Meer, 1997: Keeping the arm in the limelight]

Learning to represent

Images as Manifolds

images: 100 x 100 pixels

Images as manifolds

Manifolds

Linear dimensionality reduction

project data onto subspace of maximum variance

PCA: principal components analysis

[A] = top eigenvectors of covariance matrix $[XX^T]$ Y = [A] X

PCA in a neuron: Oja's Rule

J. Math. Biology (1982) 15: 267-273

Journal of Mathematical Biology © Springer-Verlag 1982

A Simplified Neuron Model as a Principal Component Analyzer

Erkki Oja

University of Kuopio, Institute of Mathematics, 70100 Kuopio 10, Finland

Abstract. A simple linear neuron model with constrained Hebbian-type synaptic modification is analyzed and a new class of unconstrained learning rules is derived. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence.

Key words: Neuron models - Synaptic plasticity - Stochastic approximation

PCA in Neurons: Hebbian learning and Oja's Rule

trappenberg-2002_ojas-rule-B

Non-Linear Dimensionality Reduction: Manifolds

A manifold is a topological space which is locally Euclidean.

```
nbrhood N in \mathbb{R}^n \leftrightarrow ball B in \mathbb{R}^d
(homeomorphic)
```

Homeomorphic: Every x in N has a map to a y in B
Dimensionality of manifold = d
Embedding dimension = n

Manifolds

A manifold is a topological space which is locally Euclidean.

nbrhood in $\mathbb{R}^n \leftrightarrow$ ball in \mathbb{R}^d (homeomorphic Dimensionality of manifold = d Embedding dimension = n

Real life data (e.g. images) : $D = 10^5$ motions = smooth variation of just a few parameters

DOFs = pose of faces \rightarrow d = 1

Ideally, d = number of varying parameters

Manifolds in video

Dimensionality of Actions

Weizmann activity dataset: videos of 10 actions by 12 actors [Gorelick / Blank / Irani : 2005 / 07]

Reduced dimensionality

Gestures in low dimensions

Recognizing gestures

Non-Linear Dimensionality Reduction (NLDR) algorithms: ISOMAP

Euclidean or Geodesic distance?

Geodesic = shortest path along manifold

Isomap Algorithm

- Identify neighbors.
 - points within epsilon-ball (ε -ball)
 - k nearest neighbors (k-NN)
- Construct neighborhood graph.
 - -- x connected to y if *neighbor(x,y)*.
 - -- edge length = distance(x,y)
- Compute shortest path between nodes
 - Djkastra / Floyd-Warshall algorithm
- Construct a lower dimensional embedding.
 - Multi-Dimensional Scaling (MDS)

[Tenenbaum, de Silva and Langford 2001]

Residual Variance and Dimensionality

residual variance = $1 - r^2(D_g, D_y)$; r = linear correlation coefficient D_g = geodesic distance matrix; D_y = manifold distance

Short Circuits & Neighbourhood selection

neighbourhood size

too big: short-circuit errors too small: isolated patches

[saxena, gupta mukerjee 04]

Head Rotation Motion

Head Rotation Motion-1 Results

Left-right head motion

Up-down head motion

Head Rotation Motion-1 Results

