Human Action Recognition Using Semi-Latent Topic Models

Yang Wang and Greg Mori, 2009

SE367 Paper Presentation
- Deepak Pathak
10222
Introduction

• Human Action Recognition (What?)

• Still Images (eg: Poselets) v/s Video Sequences

• Motivation:
 Bag of words representation of image – good results in Object Recognition

Bag of Words

[Wang, Mori, 2009]
Earlier Work
(Action Recognition)

- **Motion Based:** Learning features which based on visual cues (motion + shape), optical flows
- **Temporal Dynamic Models:** Generative (e.g. HMM) and Discriminative (e.g. CRF) to model and learn features
- **Interest Point Methods:** Capture local features e.g. train SVM over the features obtained by STIP
- **Topic Models:** “Bag of Words” Paradigm. (analogous to NLP)
Bag of Words
(Analogue: NLP to VISION)

- **Word**
- **Vocabulary**
- **Topic**
- **Document**

- **CodeWord** (Each frame)
- **CodeBook** (All codewords)
- **Action Label**
- **Video Sequence**
Construction of CodeBook

Track and Stabilize person

→ Compute Optical Flow – then descriptors

→ Similarity measure between different frames

Codewords: centroid of these cluster

→ K-medoid clustering into V clusters

Affinity Matrix (among all frames of all sequences)

* Here codeword capture large scale features (containing overall temporal information of all videos in training set)
* Each video is a sequence of frames where each frame is represented by any codeword obtained above, thus video is a bag of words, removing temporal information.
Topic Models

- LDA: Generative model to learn the distribution of topics (actions) given a document (video) and distribution of topics (action) over words (codewords).
 - Dirichlet Distribution
- CTM: Similar but Logistic Distribution to properly correlate of different topics in a document.

Proposed Modification

- Semilatent LDA: Introduces supervision in LDA by making use of action labels present in training dataset.
 - Thus, better estimate the parameters of probability distribution
- Semilatent CTM: Supervised CTM
 Note: Don’t have to choose topics as they are just equal to class labels (unlike unsupervised)
Classification

• Classify each frame in the sequence:
 For each frame, given frame calculate its distribution over action labels i.e. \(p(z_i \mid W) \).
 Here, we chose \(W \) instead of just the corresponding frame so as to ensure that action label not just depend on the frame itself but video sequence as a whole.

• **SLDA**: Models/approximates this probability distribution using other distribution by minimizing KL divergence between the two.

• **SCTM**: It approximates by using coordinate ascent techniques (Variational EM-expected maximization).

• Firstly, **we can classify each frame** using distribution over action labels (take maximum) and then if video contains single action then perform majority voting.
Results
(per video classification)

- KTH Dataset:
 SLDA - 91.2%
 SCTM - 90.33%

- Weizmann Dataset:
 SLDA - 100%
 SCTM - 100%

- Hockey Dataset:
 SLDA - 87.5%
 SCTM - 76.04%

- Soccer Dataset:
 SCTM - 78.64%
 SLDA - 77.81%

- Ballet Dataset:
 SCTM - 91.36%
 SLDA - 88.66%

CTM captures correlations better than LDA, thus performs better on multiple action video datasets (i.e. soccer & ballet).
Datasets

Sample frames from our datasets

[Wang, Mori, 2009]
Conclusion

• **Proposals:**

1. A novel “Bag of words” approach for representing video sequences where each frame corresponds to a word, thus capturing large scale features.

2. Two new models: SLDA & SCTM which are basically supervised form of LDA & CTM, thus training is easy with better performance.

• **Benefit:** This paper focuses mainly on per-frame classification, thus works significantly well on datasets of video containing multiple actions.
References

Thank You

Questions ?