1. Isomap
a. Residual Error as a function of Isomap Dimensions

Figure 1: Residual Error vs. Dimensionality Reduction
b. We find that between 1 and 2 dimensions, the error reduces sharply. On increasing the dimensionality beyond 2 , the error remains almost constant. This tells us that a two dimensional representation is the most compact representation without losing significant details, in case of isomaps.

Dimensionality	Error
$\mathbf{1}$	0.1157
$\mathbf{2}$	0.0076
$\mathbf{3}$	0.0063
$\mathbf{4}$	0.0065
$\mathbf{5}$	0.0066

c. (Graph On Next Page)

The boundary points of y 2 do seem to correlate with the boundary points of theta1, but there seems to be no correlation between y 1 and theta2.
d.

d.

As is observed in the previous case, the errors fall sharply as we increase the dimensionality to 2 , after which it stays fairly constant.

Dimensionality	Error
$\mathbf{1}$	0.0921
$\mathbf{2}$	0.0022
$\mathbf{3}$	0.0018
$\mathbf{4}$	0.0017
$\mathbf{5}$	0.0020

e.

Point	Theta1	Theta2	Y1	Y2
$\mathbf{1}$	21.70828	23.28976	-4446.37	-1164.78
$\mathbf{2}$	20.96372	26.44559	-4134.2	-323.693
$\mathbf{3}$	25.77304	19.94295	2052.108	-1777.25
$\mathbf{4}$	26.92194	10.45338	3621.8	1054.848
$\mathbf{5}$	28.73904	16.16286	2861.85	-28.5388
$\mathbf{6}$	24.46046	12.61411	6139.903	1035.406
$\mathbf{7}$	27.3252	7.879244	862.8481	-921.558
$\mathbf{8}$	23.94294	21.59286	3520.12	-270.021
$\mathbf{9}$	28.45035	13.06541	2700.069	-1856.02
$\mathbf{1 0}$	27.15539	4.504699	-5113.08	-907.918

	$\mathbf{1 1}$	24.55825	7.640685	-371.229	-1255.06	
	$\mathbf{1 2}$	25.45228	12.36145	3068.719	-159.259	
	$\mathbf{1 3}$	25.68585	23.49548	5542.463	-507.344	
There	$\mathbf{1 4}$	28.67719	4.586599	232.9345	1098.584	seems no obvious
correlation	$\mathbf{1 5}$	22.75509	12.45213	-3208.81	1439.484	in the mapping of
theta1 and	$\mathbf{1 6}$	29.24095	9.477505	-2046	-51.5238	theta2 to y1 and
y2 as is	$\mathbf{1 7}$	27.89461	4.657732	182.8565	288.9545	evident from the
table	$\mathbf{1 8}$	20.82206	27.99078	3190.657	-644.981	above.
	$\mathbf{1 9}$	20.25575	12.82847	-5638.95	-1320.33	
	$\mathbf{2 0}$	23.82182	9.27291	4927.76	1130.816	

