
Building an Eye Tracker

SE367 Cognitive Science

Apurva Gupta

Abstract

Gaze tracker is a device which informs about the gaze location of subject in real time. It does so, by tracking the
subject's eye movement with respect to head and normalizing head location in space. They are used in
experiments on Psychology, Cognitive Science and visual capabilities. Also an emerging use is as an eye-mouse
where a standard hand mouse is replaced with head-eye movement controlled interface device. As most popular
medium of interaction are keyboard and mouse, modern software interfaces are designed to work with hands.
Thus, these interfaces are rendered unusable to people with hand disabilities. In this report we begin by
describing various capabilities required in a good tracker and technical problems faced while making one. Then
we describe different available designs and their pros and cons. Then we design our own tracker and present
results obtained from it.

Brief description of algorithm
A commonly used algorithm used by low cost intrusive eyetrackers is as follows :

1. A head gear with IR Leds and a camera is mounted by the subject
2. In IR light iris appear darker than rest of face as shown in figure below[2]
3. Using image processing iris is separated from rest of face
4. Head location relative to surface in front is determined during calibration procedure
5. Head locations and relative pupil positions are recorded in the calibration session and fed to a training

module which approximates a map from eye location to gaze location

The algorithm we have used in our tracker differs in steps 4 and 5. Instead of determining head location, we
mount another camera on head which captures the scene(S) as is been seen by the user. Then using location of
both Iris as obtained in step 3, we mark the gaze location on image S itself. To determine the Iris location to gaze
point map , we have used two methods. One relies on training a Neural Network while calibration procedure and
other is simple linear interpolation map from eyes space to gaze space.

Previous Work
1. ITU

Many open source eye trackers are available with different specialities. For example ITU gaze tracker is an offline
system which packs all processing equipment into a backpack allowing the user to carry system anywhere. This
system can be utilized to identify gaze patterns in scenarios such as driving, buying in market or painting. Hence
it can be used for researchers aiming to classify changes in patterns with learning.

This intrusive system consists of a head mounted webcam which looks towards the persons eyes(Figure 1) which
are illuminated with Infrared Light(Figure 2). A laser pointer projects laser towards screen in front (Figure 3).
Another camera captures the reflection of these lasers from front wall. As distortions in these projections are
proporitional to head angle with respect to surface in front, head location can be determined in space by
measuring width, height of each projection.

Possible Designs
1. One camera on screen in front looks at the subject and determines gaze location. In this method lot of

learning mechanisms are required to determine gaze accurately. [Implemented and tested before project]
2. Three cameras : Two for looking at eyes and one records scene visible to user. It has high precision

and required low learning but weighs a lot due to 3 cameras
3. Thus we go with two cameras, one for eyes and other for scene . This method tool will require less

learning and will have manageable weight, easy calibration.

Figure 2 Eyes illuminated with
IR light after Iris detection

using our own tracker

Figure 3Laser projection on front wall
to determine relative head position in

ITU's tracker
Figure 1 ITU Gaze Tracker

Final Design
Finally we have chosen to implement this design as it is lightweight and hence can be used on children. Also it
involves very less calibration and is robust in structure.

1. Requirements
1. 2 webcameras
2. Safety glasses or Spectacles (to mount eye camera)
3. Head Phone skeleton (to mount head camera)
4. Cycle Spoke or thick wire (for tying eye camera at a distance from safety glasses)
5. Adhesive tape
6. Strong glue

2. Construction Procedure

Making IR camera from a normal webcam
Sensors of normal cameras are capable of interpreting IR, but a filter prevents IR light from reaching
the sensor. So we need to remove the filter. Open the camera shell and disassemble the lens case. Look
out for red film like covering:

1. If film is on the lens , scratch it with abrasive sand paper
2. If film is separate from lens, then break the film

Step 1 : Mounting the head camera

Mount other camera on headphone after removing
all wires from the headphone. Keep the camera in a
position such that its range of vision is a subset of
subject's vision. This camera will look at the scene in
front and its image will be tagged with estimated
gaze from other camera's images.

Step 2 : Mounting the IR eye camera

Mount the IR capable camera on spectacles as shown
in the figure on the right. To keep the camera fixed
with respect to spectacles use a thick wire (in our
case, we used a cycle spoke as it fits into standard
screw threads of Logitech webcams)

Adaptive Thresholding to obtain Iris
After cropping both eyes, their images IE are processed to obtain
location of Iris in following steps : Calculate histogram of IE. Apply
threshold on IE such that 3% of pixels are below
threshold(approximate size of Iris in pixels). Binarize IE about this
threshold to get BIE. As Iris is darkest part it always comes below
threshold and remains black. In BIE, some other dark object might
come, such as boundary of spectacles. Assuming that such an object
will not be of round shape, Iris can be detected using a moving
window of size approximately equal to Iris. We use an O(kn) dynamic
algorithm for moving window. Construct a black moving window(W)
of size k placed at (x,y) on BIE where k is estimated diameter.
Calculate correlation of W with image pixels of BIE as W is zero
everywhere. Store correlation for (x,y)th pixel in another image. Move window from (x,y) to (x+1,y). The
correlation change can be calculated by looking at x th column of previous and x+k+1th column of recent
window. Determine position with highest correlation. This will be the location of Iris.

Step 6 : Marking Iris and calculating
gaze Finally when we obtain both the IRIS
locations and the image from head camera, next step
is to determine gaze location. To do this we can use
two different methods. One is to train a neural
network to determine the map between iris locations.
Other is to make a geometric model of gaze and
approximately calculate the gaze location based on it.
In our tracker we began by training a neural network
using Flood3 libraries. But it resulted in speeds less
than realtime due to time lag caused by calling of
flood classes many times. Hence we have switched to
a geometric head model(explained in section below).

Step 3 : Mounting on head Wear the spectacles and the headphones
together. Join both the cameras usb ports to computer. Since we are not
using IR lights, the IR camera will work only in daylight, candle light or bulb.
It will not work in Flouroscent lights such as CFL and Tubelights. Spectacles
can be adjusted such that nose doesnot come into the picture and both eyes
are clearly visible. All these adjustmente will be taken care while initial
configuration of headgear.

Step 5 : Adaptive Thresholding Crop the eye
images from the face image. Apply adaptive
thresholding on both eye images to obtain binary
image of Iris. Section below explains adaptive
thresholding dependent on object size

Step 4 : Getting Both camera images
Using OpenCV get both the images of camera
on screen. As we can see the eye image is tilted.
This tilt will be corrected at the time of
calibration. As location of eyes is fixed with
respect to IR camera, we can crop both the eyes
from this image and locate IRIS on it without
processing the complete image.

Geometric model for gaze

Let E1 be the location of Iris 1 and E2 be the location of Iris 2. These
two should remain parallel to ground when eyes are lookinig forward.
While calibrating, we calculate the angle of tilt (w) caused by spectacles
and correct all further frames to obtain correct location. Angle of tilt
can be obtained as:

ω=tan−1 (E1.y−E2.y)
(E1.x−E2.x)

After correcting tilt and obtaining correct Iris locations we interpolate
the gaze location. As shown in the following figure as eyeballs rotate in
their sockets {(-h,-v),(h,v)}they cover a full horizontal and vertical
sweep of image captured from head camera IH.

Let the horizontal and vertical range covered by eyes be (h,h') and (v,v') respectively
in the image and (-t,t) and (-p,p) in rotation angles. And the points of gaze
corresponding to these location of eyes cover (g,g') horizontally and (r,r') vertically.
Thus, map from eye-angle to eye-pixel space will be related by :

H=
(h−h')

2
,
(H−x)
H

=
tan(t−e)

tan (t)
Similar formula is for vertical angle too. And point of gaze would be :

G=
(g−g ')

2
,
(G−Gazex+g)

G
=

tan(t−e)
tan(t)

Thus, we can determine both the gaze points and mark it on IH.

Codes for these algorithms can be found attached alongwith appendix. Iris detection code without IR light can
be found at http://home.iitk.ac.in/~apurva/se367/project/codes/eyeball5.c. This uses one camera and
can be used without IR light but has low precision.

Different considerations
The tracker will work under following conditions:

1. Offline and Online tracking : Tracker is capable of working both online(with active cameras) and
offline(with recorded videos). Thus, after recording the video, calibration can be improved to obtain
better results.

2. Varying skin tones : Celtic, European (Light , Dark),Mediterranean,Brown,Black
3. Different IRIS color : Amber,Blue,Brown ,Hazel,Gray,Green
4. Different Light conditions: Daylight, Dark (with IR only) Ambient light conditions have been tested.

As long as a strong IR source is present, ambient light has no effect.
5. Movement invariance

1. No head movement
2. Vertical head movement
3. Horizontal head movement
4. Free head movement

http://home.iitk.ac.in/~apurva/se367/project/codes/eyeball5.c

Results
Attached below is a result of tracking while moving a hand done in daylight conditions
conducted indoor , with head and eye movement both present on a person with brown eyes.

Result for gaze detection with a moving hand
In the above figure subject looks at the hand while it was moving, and his gaze is marked in the

subsequent frames using above described construction and algorithms.
Codes

http://home.iitk.ac.in/~apurva/se367/project/codes/iris_detect.c
 http://home.iitk.ac.in/~apurva/se367/project/codes/eyeball5.c
Results

http://home.iitk.ac.in/~apurva/se367/project/videos/head_marked.avi
http://home.iitk.ac.in/~apurva/se367/project/videos/eye1.avi
http://home.iitk.ac.in/~apurva/se367/project/videos/eye2.avi
http://home.iitk.ac.in/~apurva/se367/project/videos/head.avi

http://home.iitk.ac.in/~apurva/se367/project/videos/head.avi
http://home.iitk.ac.in/~apurva/se367/project/videos/eye2.avi
http://home.iitk.ac.in/~apurva/se367/project/videos/eye1.avi
http://home.iitk.ac.in/~apurva/se367/project/videos/head_marked.avi
http://home.iitk.ac.in/~apurva/se367/project/codes/eyeball5.c
http://home.iitk.ac.in/~apurva/se367/project/codes/iris_detect.c

References

[1] Babcock, J. S., And Pelz, J. B. 2004. Building a lightweight eyetracking headgear. In Proceedings of the 2004
symposium on Eye tracking research & applications, ACM, San Antonio, Texas, 109-114.

[2] Javier San Agustin, Henrik Skovsgaard , Maria Barret, Martin Tall, Dan Witzner, Evaluation of a Low-Cost
Open-Source Gaze Tracker ,Proceedings of the 2010 symposium on Eye tracking research & applications,
ACM , Austin TX

[3] Craig Hennessey, Andrew T. Duchowskiy, Expanding the Adoption of Eye-gaze in Everyday Applications,
Proceedings of the 2010 symposium on Eye tracking research & applications, ACM , Austin TX

[4] Cohen, A. S. (1983). Informationsaufnahme beim Befahren von Kurven, Psychologie fÃƒÂ¼r die Praxis
2/83, Bulletin der Schweizerischen Stiftung fÃƒÂ¼r Angewandte Psychologie

[5] Marc Eaddy, Gábor Blaskó, Jason Babcock, Steven Feiner, My Own Private Kiosk: Privacy-Preserving Public
Displays. 3rd International Semantic Web Conference (ISWC2004)

[6] Arne John Galenstrup, “How is eye-gaze interface control different",
http://www.diku.dk/hjemmesider/ansatte/panic/

[7] David B ack , “Neural Network Gaze Tracking using Web Camera” , LiTH-IMT/MI20-EX--05/414—SE,̈
Linköpings universitet

[8] Paul Viola, Michael Jones, Robust Real-time Object Detection, In 2nd international workshop on Statistical
and Computational Theories of Vision (2004)

[9] G.R. Bradski, Computer video face tracking for use in a perceptual user interface, Intel Technology Journal,
Q2 1998

Image on the title page is courtesy of
http://fastcache.gawkerassets.com/assets/images/4/2009/08/eyewriterv1cartoon.jpg

Appendix 1

Iris detection code in presence of IR light

#ifdef _CH_
#pragma package <opencv>
#endif

#include <stdio.h>
#include <stdlib.h>
#include "cv.h"
#include "cvaux.h"
#include "cxcore.h"
#include "highgui.h"
#include "cxmisc.h"
#include "ml.h"
#include <math.h>

int main(int argc, char ** argv)
{

int threshold_1 = 46.0;
int threshold_2 = 46.0;
int end; end = 0; int key;
CvCapture * eye_camera = NULL;
CvCapture * head_camera = NULL;
IplImage * eye_frame = NULL;
IplImage * eye_frame_clone = NULL;
IplImage * eye_frame_clone2 = NULL;
IplImage * head_frame = NULL;
IplImage * eye_image1 = NULL;
IplImage * eye_image2 = NULL;
IplImage * eye_thresh_1= NULL;
IplImage * eye_thresh_2= NULL;
CvRect eye_rect_1;
CvRect eye_rect_2;
eye_camera = cvCreateFileCapture("/home/apurva/Output.mpeg");
head_camera = cvCreateFileCapture("/home/apurva/Output2.mpeg");

http://fastcache.gawkerassets.com/assets/images/4/2009/08/eyewriterv1cartoon.jpg
http://www.diku.dk/hjemmesider/ansatte/panic/

int frame = 0;
int eye_min_1x = 19;
int eye_min_1y = 39;
int eye_min_2x = 3;
int eye_min_2y = 6;
int eye_max_1x = 154;
int eye_max_1y = 117;
int eye_max_2x = 136;
int eye_max_2y = 110;
CvVideoWriter *writer_h = 0;
CvVideoWriter *writer_e1 = 0;
CvVideoWriter *writer_e2 = 0;
CvVideoWriter *writer_hm = 0;

writer_h=cvCreateVideoWriter("vid_head.avi",CV_FOURCC_DEFAULT,20,cvSize(640,480),1);
writer_e1=cvCreateVideoWriter("vid_e1.avi",CV_FOURCC_DEFAULT,20,cvSize(220,120),1);
writer_e2=cvCreateVideoWriter("vid_e2.avi",CV_FOURCC_DEFAULT,20,cvSize(220,120),1);
writer_hm=cvCreateVideoWriter("vid_head_marked.avi",CV_FOURCC_DEFAULT,20,cvSize(640,480),1);

while(!end)
 {
 //Capture images from camera or from video

cvGrabFrame (head_camera);
head_frame = cvRetrieveFrame (head_camera);
cvGrabFrame (eye_camera);
eye_frame_clone2 = cvRetrieveFrame (eye_camera);
eye_frame = cvCloneImage(eye_frame_clone2);
eye_frame_clone = cvCloneImage(eye_frame_clone2);

//Create crop rectangles for both eyes
eye_rect_1 = cvRect(420, 140, 220, 120);
eye_rect_2 = cvRect(60, 260, 220, 120);

if(eye_frame)
{

printf("%d\n",frame);
frame = frame+1;
//Crop eye 1 from eye_camera image
eye_image1 = cvCreateImage(cvSize(eye_rect_1.width,eye_rect_1.height), eye_frame->depth,eye_frame-

>nChannels);
cvSetImageROI(eye_frame,eye_rect_1);
cvCopyImage(eye_frame,eye_image1);

//Crop eye 2 from eye_camera image
eye_image2 = cvCreateImage(cvSize(eye_rect_2.width,eye_rect_2.height), eye_frame_clone-

>depth,eye_frame_clone->nChannels);
cvSetImageROI(eye_frame_clone,eye_rect_2);
cvCopyImage(eye_frame_clone,eye_image2);

//Apply threshold on both eye images
eye_thresh_1 = cvCreateImage(cvSize(eye_image1->width,eye_image1->height),eye_image1->depth,eye_image1-

>nChannels);
eye_thresh_2 = cvCreateImage(cvSize(eye_image2->width,eye_image2->height),eye_image2->depth,eye_image2-

>nChannels);
//cvThreshold(eye_image1,eye_thresh_1,threshold_1,255,CV_THRESH_BINARY);
//cvThreshold(eye_image2,eye_thresh_2,threshold_2,255,CV_THRESH_BINARY);

// Processing first eye to get iris location
double eye_1x = 0 ;
double eye_1y = 0 ;
int num_thresh = 0;

for(int i=0;i<eye_image1->height;i++)
{

 for(int j=0;j<eye_image1->width;j++)
 {

 uchar* ptr1 = &CV_IMAGE_ELEM(eye_image1,uchar,i,j*3);
ptr1[0]=ptr1[2];ptr1[1]=ptr1[2];

if(ptr1[0]<threshold_1){

eye_1x = eye_1x+j;
eye_1y = eye_1y+i;
num_thresh = num_thresh + 1;

}

}
 }

 if(num_thresh > 0){

 eye_1x = eye_1x/num_thresh;
 eye_1y = eye_1y/num_thresh;
 printf("%d,%d\n",(int)eye_1x,(int)eye_1y);
 cvCircle(eye_image1,cvPoint((int)eye_1x,(int)eye_1y) ,5, CV_RGB(255,0,0), 3, 8, 0);
 cvCircle(eye_frame_clone2,cvPoint((int)eye_1x+eye_rect_1.x,(int)eye_1y+eye_rect_1.y) ,5,

CV_RGB(255,0,0), 3, 8, 0);
 //eye_min_1x = (eye_min_1x>(eye_1x))?eye_min_1x:eye_1x;
 //eye_min_1y = (eye_min_1y>(eye_1y))?eye_min_1y:eye_1y;

 }

 //Processing second eyeball to get iris location

 double eye_2x = 0 ;

double eye_2y = 0 ;
int num_thresh2 = 0;

for(int i=0;i<eye_image2->height;i++)
{

 for(int j=0;j<eye_image2->width;j++)
 {

 uchar* ptr2 = &CV_IMAGE_ELEM(eye_image2,uchar,i,j*3);
ptr2[0]=ptr2[2];ptr2[1]=ptr2[2];

if(ptr2[0]<threshold_2){
eye_2x = eye_2x+j;
eye_2y = eye_2y+i;
num_thresh2 = num_thresh2 + 1;

}

}
 }

 if(num_thresh2 > 0){

 eye_2x = eye_2x/num_thresh2;
 eye_2y = eye_2y/num_thresh2;
 printf("%d,%d\n",(int)eye_2x,(int)eye_2y);
 cvCircle(eye_image2,cvPoint((int)eye_2x,(int)eye_2y) ,5, CV_RGB(0,0,255), 3, 8, 0);
 cvCircle(eye_frame_clone2,cvPoint((int)eye_2x+eye_rect_2.x,(int)eye_2y+eye_rect_2.y) ,5,

CV_RGB(0,0,255), 3, 8, 0);
 //eye_min_2x = (eye_min_2x>(eye_2x))?eye_min_2x:eye_2x;
 //eye_min_2y = (eye_min_2y>(eye_2y))?eye_min_2y:eye_2y;

 }

 int gaze_x1 = eye_1x*(640/(eye_max_1x-eye_min_1x));
int gaze_y1 = eye_1y*(480/(eye_max_1y-eye_min_1y));

int gaze_x2 = eye_2x*(640/(eye_max_2x-eye_min_2x));
int gaze_y2 = eye_2y*(480/(eye_max_2y-eye_min_2y));

int gaze_x = 640-(gaze_x1+gaze_x2)/2;
int gaze_y = (gaze_y1+gaze_y2)/2;

cvCircle(head_frame,cvPoint(gaze_x,gaze_y) ,20, CV_RGB(0,255,0),5, 8, 0);

 }
//printf("For eye 1 : %d,%d\n",eye_min_1x,eye_min_1y);
//printf("For eye 2 : %d,%d\n",eye_min_2x,eye_min_2y);

cvNamedWindow("eye1",CV_WINDOW_AUTOSIZE);
cvShowImage("eye1",eye_image1);

cvNamedWindow("eye2",CV_WINDOW_AUTOSIZE);
cvShowImage("eye2",eye_image2);

cvNamedWindow("head",CV_WINDOW_AUTOSIZE);
cvShowImage("head",head_frame);

cvNamedWindow("headmark",CV_WINDOW_AUTOSIZE);
cvShowImage("headmark",eye_frame_clone2);
 cvWriteFrame(writer_e1, eye_image1);
 cvWriteFrame(writer_e2, eye_image2);
 cvWriteFrame(writer_h, head_frame);
 cvWriteFrame(writer_hm, eye_frame_clone2);
key = cvWaitKey (5);
if(key != -1)
end = 1;

//deallocation block
}
cvReleaseVideoWriter(&writer_h);
cvReleaseVideoWriter(&writer_e1);
cvReleaseVideoWriter(&writer_e2);
cvReleaseVideoWriter(&writer_hm);
return 0;
 } //closing main()

