## FACIAL EXPRESSION CLASSIFICATION USING VISUAL CUES AND LANGUAGE Abhishek Kar

## MOTIVATION

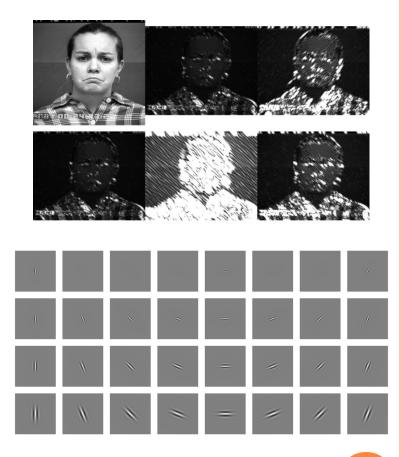
- Long standing problem
- Applications in HCI, indexing of videos, affective computing
- Availability of a large number of datasets
  - Extended Cohn-Kanade (CK+) Dataset
  - RU FACS Dataset
  - JAFFE
  - MMI Dataset
- Vast amount of literature available

## THE PROBLEM



#### METHODOLOGY

### Face detection (Viola Jones)


Feature Extraction using Gabor Filters

> Dimensionality Reduction/Feature Selection

> > Classification

## FEATURE EXTRACTION

- Face detection done on the CK+ dataset and face patches resized to 48x48
- Face patch converted into Gabor magnitude representation
- 72 Gabor filters used at 8 orientations and 9 frequencies
- Feature vector size for each image = 48x48x72 = 165888



## FEATURE SELECTION/DIMENSIONALITY REDUCTION

## • PCA

- Feature vector was reduced to various dimensions between 10 and 359
- Best dimensionality was found to be around 60.
- Interesting to note that the Facial Action Coding System used to code various emotions has 64 action units.
- PCA able to find rough mapping to the Action Unit intensities??

# FEATURE SELECTION/DIMENSIONALITY REDUCTION

### • Adaboost

- Iterative algorithm combining a cascade of weak classifiers to classify a pattern
- We select the best features (weak learners) obtained by Adaboost for every one versus rest classification task.
- Final set of features Union of all features obtained in the above step.
- Used these set of features for further classification

## CLASSIFICATION

### • SVM

- Used multiclass SVM (1 vs. 1) with linear kernel to classify data into 7 categories
- Used LibSVM library for Matlab
- Used multiclass SVM (1 vs. rest) approach with linear kernel
- Final decision based on margin of classification and not just voting
- MAP decision with parameter estimation using MLE – Baseline classifier

## DATASET

#### • Extended Cohn-Kanade CK+ Dataset

- 593 posed sequences from 123 subjects.
- Each sequence starts with a neutral expression and terminates with the peak expression.
- 327 of the 593 sequences are emotion labeled
- 7 expressions present in the database: Angry, Disgust, Fear, Happy, Sadness, Surprise, Neutral

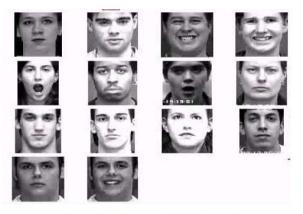
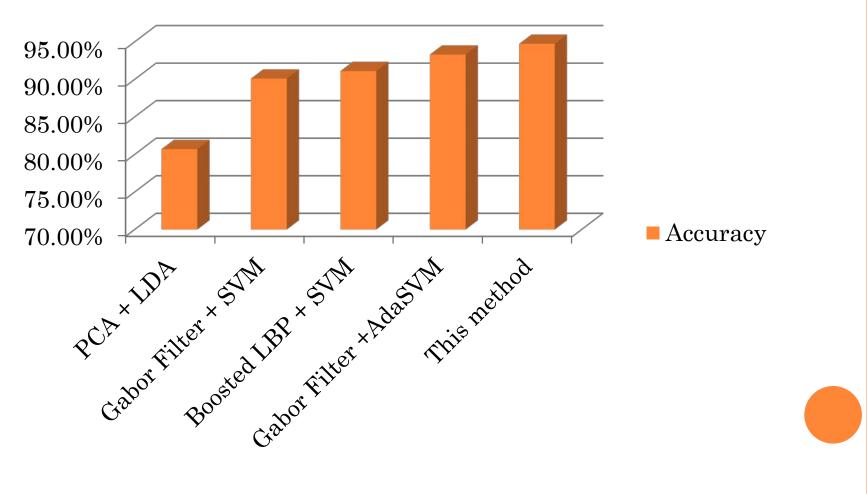



Figure 3: Images from the Cohn-Kanade Dataset

## RESULTS


| Method<br>(Feature Selection + Classifier) | Accuracy<br>(10 fold cross validation) |
|--------------------------------------------|----------------------------------------|
| PCA + SVM (1 vs. 1)                        | 71.08%                                 |
| PCA + SVM (1 vs. rest)                     | 72.19%                                 |
| PCA + Baseline                             | 80.45%                                 |
| None + SVM (1 vs. 1)                       | 75.39%                                 |
| None + SVM (1 vs. rest)                    | 88.87%                                 |
| Adaboost + SVM $(1 \text{ vs. } 1)$        | 80.43%                                 |
| Adaboost + Baseline                        | 86.64%                                 |
| Adaboost + SVM (1 vs. rest)                | 94.72%                                 |

## PER EMOTION ACCURACIES

| Emotion  | No feature<br>selection | Adaboost |
|----------|-------------------------|----------|
| Neutral  | 97.5%                   | 98.05%   |
| Angry    | 91.65%                  | 95.26%   |
| Disgust  | 98.04%                  | 99.72%   |
| Fear     | 96.1%                   | 98.04%   |
| Нарру    | 98.6%                   | 98.89%   |
| Sadness  | 94.16%                  | 94.99%   |
| Surprise | 97.78%                  | 99.17%   |

#### COMPARISION

#### Accuracy on CK+



## Responses on Videos

- Obtained English responses on 40 videos from 4 different emotion categories – Angry, Happy, Sad, Surprise
- Participants correctly identified the emotion almost all the time.
- 6 subjects 10 responses each
- Responses transcribed into English
- Keywords observed Distressed, Unhappy, Sad, Amazed, Extreme happiness, Frowned
- Problems
  - Posed expression dataset. Expressions don't seem natural.

## To do

- Try to automatically identify the keywords in the responses and figure out the correct expression
- Obtain a rough classification on the basis of responses only
- If sufficient descriptive adjectives are obtained, I will try to assign different intensities to various images and try to find a correlation between high intensity images (or low intensity) in the same expression.

#### REFERENCES

- Recognizing facial expression: Machine learning and application to spontaneous behavior – Bartlett et al. – CVPR 2005
- The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression Lucey et al. CVPRW 2010