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Abstract

Much evidence exists supporting a richer interaction between cognition and action than commonly assumed. Such findings
demonstrate that short-timescale processes, such as motor execution, may relate in systematic ways to longer-timescale
cognitive processes, such as learning. We further substantiate one direction of this interaction: the flow of cognition into
action systems. Two experiments explored match-to-sample paired-associate learning, in which participants learned
randomized pairs of unfamiliar symbols. During the experiments, their hand movements were continuously tracked using
the Nintendo Wiimote. Across learning, participant arm movements are initiated and completed more quickly, exhibit lower
fluctuation, and exert more perturbation on the Wiimote during the button press. A second experiment demonstrated that
action dynamics index novel learning scenarios, and not simply acclimatization to the Wiimote interface. Results support a
graded and systematic covariation between cognition and action, and recommend ways in which this theoretical
perspective may contribute to applied learning contexts.
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Introduction

It seems natural to wonder how subtle movements of the body

relate to the processes of the mind. Whether in analysis of ‘‘body

language’’ in the mass media [1], or in carefully controlled

experiments on detecting emotion and deception [2], it is for both

practicality and curiosity that the dynamics of movement are

studied during the unfolding dynamics of thought. In the past

20 years, cognitive scientists have subjected this topic to intense

experimental scrutiny. Without exception it is found that the

dynamics of bodily movements relate richly to the underlying

processing that gives way to these movements. For example, the

continuous movements of the hand have been shown to co-vary

with underlying cognitive processes such as spoken-word recog-

nition and categorization [3,4], force and velocity of button presses

co-vary with stimulus frequency and reward in lexical decision and

simple reaction time tasks [5,6], and even the rapid trajectories of

the eyes’ saccades can display subtle curvature depending on

stimulus context during attention [7,8].

Several lines of research combine with these findings of graded

covariation to recommend that action and cognition be given more

focus as joint interactive processes. For example, some computa-

tional models of action planning and production have accounted for

wide ranges of data by assuming that these processes unfold

continuously together [9,10]. Extensive work by David Rosenbaum

and colleagues has shown that motor planning and control can be

partly understood through concepts drawn from perception and

cognition [11–14]. In addition, a number of studies have shown that

bodily contexts can feedback onto cognitive processes. For example,

induced eye movements can improve problem solving [15], and the

way the arm is used to generate responses can modulate how stimuli

are subsequently processed [16]. These and numerous other findings

suggest that cognitive and action systems may more richly interact

than commonly assumed (a modest canvassing of this evidence could

include Refs. 17–28).

Many researchers look to these data for novel insights into the

cognitive system. One intuitive interpretation is that the flow of

mental processing is continuous and dynamic [29,30]. Because the

cognitive system does not collapse a discrete decision onto brittle,

simplistic movements, it can be argued that the processes leading

into this decision are themselves continuous and graded, leading to

this dynamic covariation of executed actions. Despite this

approach, the idea that low-level details of actions may relate

richly to longer timescale processes has been explored in other

theoretical contexts, prominent among them the computational

framework of ACT-R [31]. Whatever one’s choice of theoretical

banner, this exploration of cognition and action addresses a

fundamental challenge facing the cognitive sciences: to bridge the

various levels of complexity relevant to human brain and behavior.

In this context, an outstanding puzzle is further elaborating the

systematic relation between low-level, short-timescale characteris-

tics of movement and high-level, longer-timescale processes, such

as learning.

In this paper, we contribute to building this bridge through

relating the dynamics of action and a relatively simple learning

task. Anderson [31] provides a strong basis for this approach, and

describes a research program that spans ‘‘seven orders of

magnitude.’’ This is accomplished by showing that characteristics

of cognitive processing (spanning tens of milliseconds) may be

directly related to meaningful learning experiences (extending over

hours)–thus spanning enough of Allen Newell’s famous timescales

[32] to achieve seven orders of magnitude. Anderson notes that this
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bridging, from cognitive processing into educationally relevant

learning, is an important current obstacle in cognitive science. In

related recent research, others have focused on action sequences in

learning tasks (e.g., eye movements), how they may relate to successes

in learning, and how an understanding of this relationship will

permit computer adaptation and improvement of educational design

[33–35]. In a review of this budding literature, Anderson observes

that subsymbolic aspects of processing–the internal cognitive

characteristics of individual decisions and actions–may relate directly

to outcomes in extended learning experiences, but that further

research is required to demonstrate this. The current work aims to

contribute to this demonstration, and shows that the acquisition of

paired associates can be indexed by the characteristics of unfolding

action–its temporal extent, complexity, and force.

There has been extensive work in the area of motor control on

the change evident in movements across training [36,37]. In most

of this research, the task is to some extent equated with the action

patterns themselves. For example, it has recently been shown that

eye and hand movements mirror each other in the learning of a

challenging motor task (i.e., the eyes simulate arm movement) [38].

In this case, the learning is the patterns of motor movements

acquired by participants. In the task employed here, we embed

paired-associate learning in a computer interface that continually

extracts aspects of their arm movements during training. Thus the

task does not inherently involve the motor dynamics to accomplish

it–the participants are learning symbol pairs, not movements.

Unbeknownst to them, however, we continuously track the

movements of the hand that occur on each trial. The characteristics

of this dynamic behavioral signal relate directly to the learning that is

taking place over many minutes. Results contribute to the bridging of

levels that is hoped for [31], and further substantiates a fine-grained

flow from cognition into action.

In what follows, we present 2 experiments showing the

modulation of action dynamics across learning. Experiment 1

was conducted to demonstrate that latency, motion time, motion

fluctuation, acceleration, and button-induced perturbation of a

Nintendo Wiimote pointing device all change across learning of

random symbol pairs. They also to some extent index correct and

incorrect trials, showing that an individual’s knowledge may be

marked by the dynamics of their arm movement. A more direct

evaluation of novel learning was conducted in Experiment 2,

demonstrating that action dynamic measures reflect novel

scenarios in learning, robustly indexing lack of knowledge in

participants. We end with a discussion of the theoretical and

practical implications of these results.

Methods

Experiment 1
Participants. Participants included 21 (19 females, mean age

21.2) University of Memphis undergraduate student volunteers from

the psychology participant pool that self-reported having corrected

or no visual impairments. Each undergraduate received partial

credit toward meeting his or her Introduction to Psychology course

research participation requirement. Procedures for this study were

approved by the University of Memphis Committee on the Protec-

tion of Human Research Participants. Before the experiment,

participants provided written informed consent consistent with

guidelines specified by that committee.

Interface display and device. Participants stood behind a

small, 76 cm high table on which an Epson LCD projector was

placed. This projected an Apple Mac mini’s display along the long

part of an oblong laboratory room and onto the wall at the end of

the room (3.8 m61.8 m). The projection screen was approxi-

mately 1.4 m in width (29.1u visual angle), and participant position

was approximately 2.7 m away from it.

In this visual context, we sought an affordable technique to extract

rich action dynamics data. The Nintendo Wiimote (Figure 1, top

panel) can be used as a wireless, arm-extended pointing device by

having it communicate with a computer equipped with the

Bluetooth transfer protocol. A Macintosh framework called

DarwiinRemote (� 2006, Hiroaki Kimura) accomplishes this

interfacing. See Text S2 for detail on the source code modification

by this paper’s authors, and links to further development of the

software by other programmers. Because the Wiimote is equipped

with three accelerometers, one for each axis of three-dimensional

movement, we modified the source code of DarwiinRemote to store

these axial acceleration data (sampled at approximately 90Hz) in a

data file that could be synced with the experimental presentation

Figure 1. The experimental display and interface. Top panel: The
Wiimote is held in the dominant hand, with the thumb engaging the
remote’s A button to click in the experimental software. Middle panel: A
view of the overall context, with the light in the room on. The arm is
held above the projector, and the remote controls a cursor that selects
the correct match. In this image, the trial initiation target at the bottom
center is present. Bottom panel: Participants performed the learning
task with the lights dimmed.
doi:10.1371/journal.pone.0001728.g001
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software (sampling cursor data at approximately 80Hz). At the base

of the projection screen was a Nyko infrared emitter. Like the video

game console’s sensor, this is to provide the Wiimote a frame of

reference for computing position (see Text S1).

Participants stood behind the small table, with the Wiimote in the

dominant hand extended out (Figure 1, middle panel). The height of

the table permitted all participants to have their arm comfortably

located above the projector, approximately above the lens from

which the computer’s display was projected onto the wall. Using this

immersive context (lights were dimmed during the experiment;

Figure 1, bottom panel), both x,y-pixel coordinates, and x,y,z-axial

acceleration data were sampled throughout the experiment.

Materials and procedures. This experiment used a match-

to-sample design for training paired associates of unfamiliar

symbols. One shape was designated as the pair’s sample, the other

the pair’s match/comparison stimulus. Trials began by first

displaying the correct match and a random incorrect match at

either the top left or right position, determined randomly, with a

separation of approximately 58cm or 12.3u visual angle.

Participants then clicked a trial initiation circle at the bottom

center of the screen. At this location (after their Wiimote click) the

sample shape appeared. Participants then moved the Wiimote-

controlled cursor to the upper left or right to click on an answer.

Feedback was provided in the form of a green ‘‘correct’’ or red

‘‘incorrect’’ in text in the space between the sample and matches at

about the center of the projected screen. Participants saw 150

learning trials, and across training saw each pair at least 9 times

and at most 11 times, with most seen 10 times evenly distributed

across training. Notably, the task was designed to elicit guessing

among the first few trials. Therefore, participants were informed of

the possibility of guessing until they learned the matched pairs.

Experiment 1 included a total of thirty different symbols taken

from the Bodoni Ornament font set (for examples see Figure 1,

middle and bottom panels). This font was chosen because the

shapes were not easily namable, but had a variety of overlapping

features (symmetry, radiality; see Figure S1). Images occupied

approximately 23 cm or 4.9u visual angle on the projection screen.

At the beginning of the experiment, the experimental software

randomly combined these symbols to provide fifteen pairs. Thus,

each participant saw a completely different set of randomly

established symbol pairs. On any given trial, one of the fifteen

pairs was randomly presented to the participant.

Both the researcher and experimental presentation software

provided instruction to the participants to ensure that they

understood the task. Python (python.org) and the Pygame

(pygame.org) video game module were used to present training

trials and sample the Wiimote-controlled cursor movements as

streaming x-y coordinates. Participants largely reported enjoying

the task because it resembled a game. Participation on the task

required no more than 15 minutes.

Measures. A methodological contribution of this paper is

adapting the Nintendo Wiimote for behavioral experimentation.

Among many interesting characteristics of the Wiimote as a pointer

device, one particularly relevant for this experiment is that the arm is

held out and will exhibit natural sway during the task. In computer-

mouse contexts, the fixed two-dimensional surface of a table acts as a

stabilizer granting a clearer ‘‘latency’’ before executed movement.

The Wiimote does not have this stabilizing contribution from a table,

and we therefore defined an ‘‘escape region’’ of a certain pixel

distance from the point of origin, where a trial was initiated. When

the cursor departs this escape region, we can separate the first portion

of the Wiimote trajectory as the ‘‘latency,’’ and the remainder of the

trajectory as the in-motion component executing the decision. This

escape region changes over learning, with extensive sway early in the

experiment (generating a broader escape region) and more quickly

executed movements later (generating a more narrow region).

After inspecting a random set of participant data plots of

individual trials, it was found that most latency sway occurred

within a 25- to 100-pixel radius around the origin. Because the

focus of these experiments is exploring the information afforded by

the dynamics of action itself, all dependent measures were based

on a conservative escape region of 100 pixels around the trial

initiation click (15 cm, 3.2u visual angle). This separates a Wiimote

trajectory into two components, one for ‘‘latency’’ during which

the cursor remains within a 100-pixel radius, and another for the

motion time to final click, after the escape occurs (see Figure 2, left

Figure 2. Visualization of extractable Wiimote data. Left panel: An example Wiimote trajectory from the bottom center to the right match. The
trajectory demonstrates the sway present in the arm prior to committing to the movement, during latency. When the arm moves outside the 100-
pixel escape region (dotted line), this provides the in-motion segment of the trajectory. The small dotted square is the location at which a button
press is initiated. Right panel: The x- (green) and y-axis (blue) accelerometer data for that same trial. During latency, a resting voltage signal is present
(the at-rest voltage generated by the accelerometers). This voltage is modulated (up or down, depending on direction of movement) when the
Wiimote is displaced, shown between the two dotted boxes. This example trial has a brief in-motion segment. Acceleration range was computed by
subtracting the mean latency acceleration from the absolute maximum acceleration during motion. The rightmost dotted box is the region in which
perturbation of the remote is inspected for voltage range.
doi:10.1371/journal.pone.0001728.g002
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panel). We expect that latency and motion time both diminish as

participants acquire knowledge of the symbol pairs.

In addition to these two dependent measures of the relative time

of decision and movement, we explored a measure of complexity

of the movement component. Previous work has used sample

entropy [4,39], and though grounded on applications in the

natural sciences, we chose a measure that provides a more intuitive

interpretation. We calculated, along the axis of decision (x-axis),

how many reversals of direction were present in the movement

component of the trajectory. This gives a count of the ‘‘x-flips,’’ a

directly interpretable quantity representing the complexity of

movement in the decision axis. When the two possible matches are

not easily decided between, they may act to draw the hand

towards them early in learning [39]. If this is so, we should find

more x-flips during early parts of learning, and then a diminishing

across learning. We counted any change in direction as such a flip,

permitting us to capture any low-level fluctuation occurring in the

Wiimote movement.

The Wiimote’s three accelerometers generate a voltage signal

for the three axes of movement (see Text S2). The accelerometer

data are digitized voltage ‘‘points’’ around a baseline voltage

present when the Wiimote is at rest. We chose three accelerometer

measures to supplement the cursor analysis. All three were based

on the axes relevant to the task (x- and y-axes). For the first two, we

used the maximum acceleration generated during movement

along both the x- and y-axis of movement (see Figure 2, right

panel). To do this, we calculated the mean accelerometer signal

during the latency portion of a trial, and extracted the absolute

maximum difference in the voltage signal after this (during motion)

with respect to this mean latency voltage by subtraction. The final

100ms of motion were removed from the data of each trial due to

the potential influence of the button-click perturbation on the

accelerometers. When the remote is clicked, it generates a weak

perturbation in these voltage signals proportional to how hard the

participant presses the Wiimote button. As a final measure, we

tracked this by extracting the range of voltage generated 100 ms

prior to and 200 ms following the button click. This ‘‘perturba-

tion’’ of the Wiimote accelerometers was calculated as the mean

range of voltage signal of x- and y-axes during that final portion of

a trajectory (see Figure 2, right panel).

In summary, we employed a range of dependent measures

drawn from the Wiimote’s movement and accelerometers. We

anticipate movements exhibiting more ‘‘confidence’’ as learning

becomes more robust: faster and simpler movements. The

accelerometers may reveal that movements come to carry a

higher acceleration along the direction of decision (x-axis). In

addition, as the participants become more confident in respond-

ing, the perturbation on the Wiimote seems likely to increase.

Overall, these measures serve as an array of potential dynamic

‘‘signatures.’’ These dynamic bodily characteristics of responding

were predicted to index the progress of the longer-timescale

cognitive task of paired-associate learning.

Experiment 2
The set up for Experiment 2 was almost identical to Experiment

1. The only difference is the order of presentation of the pairs. We

separated the 15 pairs into 3 blocks of 5 learning domains. These

were presented separately in blocks of 50 trials (for 150 blocks in

total). We can therefore be certain that at the onset of a new block,

participants are merely guessing. 50-trial blocks permitted 2

additional junctures in the experiment at which this should be

observed. Like Experiment 1, each pair was seen at least 9 times,

at most 11, and most seen 10 times within each block. We

extracted the same dependent measures here, and explored their

modulation at the onset of the novel pairs.

Participants. Participants included 25 (21 female, mean age

19.4) University of Memphis undergraduate student volunteers

from the psychology participant pool that self-reported having

corrected or no visual impairments. Each undergraduate received

partial credit toward meeting his or her Introduction to

Psychology course research participation requirement.

Interface display and device. The same display setup and

Wiimote device from Experiment 1 were used.

Materials and Procedures. The same 30 images from

Experiment 1 were used here. Again, within each participant,

these were combined randomly so that 15 pairs served as the

domain of learning.

In Experiment 2, rather than presenting all 15 pairs across

training, we divided the stimulus set into 3 blocks of 5 pairs. For

the first 50 trials of the experiment, only 5 pairs were shown. The

incorrect match used in these trials came from the other possible

matches in those 5 pairs. Participants were thus only exposed to a

smaller domain of 5 pairs, 10 shapes. At trial 51, the domain of

learning became the second block of 5 pairs. Participants will have

acclimated to the Wiimote device, and have robustly learned the 5

prior pairs, but will now be completely unfamiliar with the new 5

pairs to be presented for the second block. Participants were not

told of this. A third block of 5 was presented for the final 50 trials.

Measures. The measures described in Experiment 1 were

also extracted here.

Results

Experiment 1
Outliers and means. There were several extremely long

learning trials, with a few almost 20 seconds in length. Because the

following regression analyses used pooled data across trials,

extreme outliers could substantially influence our results. We

thus removed any trials that were more than 3 standard deviations

(approximately 7 seconds) from the overall mean trial length. This

amounted to less than 2% of the data. Interestingly, as would be

predicted, these 61 trials (of 3150) were distributed mostly in the

first half of the experiment (50 vs. 11, x(1) = 24.9, p,.001) as

learning is starting. This does provide a first piece of evidence

suggesting that more extensive movements occur with lack of

knowledge. This also ensures that the following analyses are

sufficiently conservative, and not due to these few extreme trials.

Overall means are presented in Table 1.

Table 1. Correlations in Experiment 1 between trial number
and mean measures (across participants)

Variable M (SD) rvariable, trial number

performance 71% (46) .75**

latency 716.9 ms (561.5) 2.80**

motion time 1290.8 ms (1010.6) 2.45**

x-flips 3.4 flips (4.2) 2.32**

x-accel. range 5.2 (3.4) .34**

y-accel. range 5.2 (3.1) .30**

perturbation 4.7 (2.5) .61**

**p,.01
doi:10.1371/journal.pone.0001728.t001
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Cursor analysis. In a first analysis, the general trend across

learning was judged by performing simple bivariate correlations

with mean measures pooled within each trial number (1-150)

across participants. All three variables exhibited a significant drop

across learning (see Table 1). Because item analyses are not

possible (pairs are fully randomized for each participant), we

conducted an additional analysis of how measures change each

time a particular pair is seen. This captures how measures change

for each exposure of a symbol pair. We thus pooled not across

trials of the experiment, but across the ordinality of presentation

for pairs: The number of times a pair is seen, from presentation 1,

to a possible 11. Like the trial-based correlations, all trends are

significant for each measure (p’s,.001), indicating that measures

significantly change across pair presentations. This pooling of data

provides a more orderly presentation of results, and we use

presentation order in Figure 3 to show data trends.

To assess whether incorrect trials were marked by different action

dynamics, we conducted an additional analysis using a sequential

regression model for each dependent measure. We separated correct

and incorrect trials across participants, and for each of 150 trial

numbers computed mean measures. In the first step of the models,

we included two predictors: the trial number (1-150) and a variable

coding whether a trial was correct (1) or incorrect (0). In a second

step, we added an interaction term composed of the product of the

predictors (as described in Ref. 40). If the dynamics mark knowledge,

one would predict that the diminishing of action dynamics over

correct trials should be more substantial compared to incorrect trials,

for which there was likely more uncertainty. This should produce a

significant interaction, judged by the reliability of the change in R2

when the interaction term is added into the model.

The first step in the models for all three measures was

significant, accounting for 38%, 8%, and 4% of latency, motion

time, and x-flips, respectively (p’s,.005). The interaction term was

only reliable for motion time, with added variance of 2%

explained (p,.05). Less than 1% of latency was marginally

accounted for by the interaction (p = .052). In the final model with

all predictors, only motion time and x-flips were significantly

predicted by the correct/incorrect status of the trials (see Table 2).

This indicates that there could be diminishing of the dynamics

over time, with parallel changes across trials but at a different level

depending on the performance on a trial (indicated by the negative

standardized coefficient–in a correct trial, the dependent measures

are predicted to decrease by at least 13% of a standard deviation).

Figure 3. Results of Experiment 1, with means computed over presentation order for each symbol pair. All cursor measures diminish
across symbol presentation order, while acceleration measures rise.
doi:10.1371/journal.pone.0001728.g003

Table 2. Sequential regression results with added product
term in Experiment 1 predicting mean measures (across
participants)

Variable bcorrect/incorrect btrial number btrial6correct/incorrect DR2

latency .02 2.53*** 2.13{ .01{

motion time 2.22*** 2.04 2.19* .02*

x-flips 2.13* 2.08 2.11 .01

x-accel. range 2.04 .22** 2.03 .00

y-accel. range .02 .08 .08 .00

perturbation .10{ .27** .10 .01

*p,.05 **p,.01 ***p,.001, {,.10
doi:10.1371/journal.pone.0001728.t002
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So, while the interaction terms were very weak, the still-significant

correct/incorrect predictor indicates that the action dynamics

significantly relate to performance.

In the same follow-up analysis based on the pair presentation

order, all first steps of the model were again significant (p’s,.05). No

measure was significantly predicted by the interaction term, while

again both motion time and x-flips were significantly explained by

the trial performance in the final step of the model (p’s,.05). As in

the trial-based regressions, only the post-latency measures related to

actual performance. Figure 4 presents these measures across

presentations for correct and incorrect trials separately.

Accelerometer analysis. Due to irregularities in some

Wiimote tracks, 3 participants had their Wiimote data excluded

from this analysis. It was discovered later that this was due to low

battery power in the Wiimote and the infrared emitter. Data from

the remaining 18 participants served as the basis for this analysis.

Outlier trials from the previous analysis were also excluded from this

analysis. These same trials consisted of less than 2% of the data from

the remaining trials. In addition, due to complexities in pairing

cursor-tracking data with Wiimote accelerometer data, an additional

set of trials had to be discarded (see Text S2). In all, less than 4% of

the trials across the 18 remaining participants were lost.

In the simple bivariate results, all three measures exhibited

significant rise over time, indicating that participants on average are

generating larger ranges of acceleration and Wiimote perturbation

during learning (see Table 1). The same regression analysis as in the

previous analysis was used here, with correct/incorrect trials coded

separately along with the predictor of trial number. The first step of

this analysis was significant for perturbation and x-acceleration range

(12% and 4%, respectively, p’s,.005), while y-acceleration range

was only marginally explained at 2% (p = .06). In the second step

(with the interaction term added), it was found that not one of the

accelerometer-based measures was significantly predicted by it (see

Table 2). However, perturbation was still accounted for by trial

number and marginally so by correct/incorrect status of a trial. In

the follow-up presentation order analyses all three dependent

measures had significant first steps (p’s,.01). None was accounted

for by performance or the interaction term, however.

Summary. Action dynamics require less time to initiate, are

faster to complete and exhibit less x-axis flipping, as learning

unfolds. This appears not to be simply because participants are

familiarizing themselves with the experimental interface. The

significant correct/incorrect prediction of motion time and x-flips

suggests that characteristics of arm movements mark whether a

participant has knowledge of a pair. In addition, the accelerometer

results show that arm movements achieve higher acceleration as

learning unfolds, and seem to depress the Wiimote button

generating higher perturbation in the accelerometers. Overall,

the measures derived from movement component for the trials co-

varied more systematically with learning performance. This is not

to say that both latency and end-response measures are

uninformative–only, at the very least, that action dynamics may

importantly supplement these measures.

In general, the interaction term in these analyses was not a

reliable predictor across measures. It is important to note that in

early trials correct responses may have involved substantial

guessing, making the use of just incorrect trials to test this

interaction particularly conservative. In fact, in this first experi-

ment, this is the only convenient means by which we might

separate low vs. high level of familiarity with certain pairs across

training. In Experiment 2, we created a scenario in which we can

tell when participants would be guessing. This permits a more

direct test of knowledge level and whether the dynamics of the arm

can serve as indices of this.

Experiment 2
Outliers and means. We used the same criterion for outliers in

this analysis as in Experiment 1 (3 standard deviations, trials

approximately 7 seconds or greater). The resulting data discarded

amounted to less than 2% of all trials (65 of 3750). Means are

presented in Table 3, and are similar to those of Experiment 1. This

time, we inspected how these trials were distributed in the 3 blocks, as

we did for first half/second half test in Experiment 1. Most discarded

trials did occur in the first block, indicating that participants may

have been partly acclimating to the task and interface (32 vs. 15 vs.

18, x(2) = 7.6, p,.05). However, the effect is considerably smaller,

with more occurring in the two later blocks of just 50 trials, compared

to the 11 in the 75-trial second half of Experiment 1. The following

analyses test whether the introduction of novel pairs does indeed

modulate the action dynamics of the learner.

Cursor analysis. As in Experiment 1, a first analysis of the

general trends across learning used bivariate correlations,

Figure 4. Presentation of the interaction between correct (green line) and incorrect (red points) trials and presentation order.
Latency does not seem to index correct/incorrect trials across presentation order for each pair. However, in-motion time and x-flips drop relatively
more for correct trials compared to incorrect trials, indicated by the significant interaction term (see text for details).
doi:10.1371/journal.pone.0001728.g004
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presented in Table 3. All variables except x-flips exhibited a

significant drop across learning.

One would expect weaker results on these simple correlations

given the interruption by new material at two points during

training. In fact, it seems surprising that these values do exhibit a

significant relationship with trial number. It is possible that

participants are not modulating in the context of novel items, but

simply find the task harder and take more time to acclimate to the

device. To test this, we ran a simultaneous regression model for

each measure, entering both trial number (1-150) and corre-

sponding block trial number (0-49). For example, for the first trial

of the second block would have an overall trial number of 51, but a

block trial number of 0. If participants are merely taking longer to

adjust to the difficulty, then controlling for overall trial number,

the block trial should explain no variance in the measures.

Table 3 shows the standardized coefficients in these models.

Latency and motion time both have significant models, accounting

for 60% and 16%, respectively (p’s,.001). The measure of x-flips

only attained marginal significance, with 4% of its variance

explained by trial and block trial (p = .055). The individual

coefficients for trial number and block trial number are significant

in models of both latency (b = 2.55 and 2.40, respectively,

t’s.7.0, p’s,.001) and motion time (2.25 and 2.25, respectively,

t’s.3.1, p’s,.005). It seems that overall training progress does

predict a general diminishing of these measures, but at the point of

a novel block, there is a significant modulation of them as well. In

a follow-up presentation-order analysis as in Experiment 1, results

are overall consistent. Overall presentation order and within-block

order are significant for latency and motion time (p’s,.05). The x-

flip measure was not significantly accounted for by presentation

order. Means of this analysis are presented in Figure 5.

We were surprised that the measure of complexity, x-flips, did

not show reliable modulation in this second experiment. In follow-

up analyses, we explored whether x-flips in the latency portion of

the Wiimote trajectory showed modulation over time. As

described above, the Wiimote lacks the stabilizing surface of a

table, and so will reveal natural sway in the arm during trials. We

thus extracted these first (latency) trajectory portions in Experi-

ment 2, and conducted similar regression analyses. The x-flips in

the pre-escape region during ‘‘latency’’ exhibited a strong trend

over trials, but also within trial block number (b’s = 2.52 and

2.33, respectively p’s,.001). In the presentation order follow-up

analysis, these coefficients are also significant (p’s,.001).

The measure of x-flips affords an intuitive measure of complexity,

but only when the complexity consists in non-monotonic fluctuation

in the x-axis movement. In other words, if subjects produced

fluctuations that are monotonic along the x-axis (not changing

direction) this x-flip measure will come up empty. Entropy-based

measures are available that may serve to quantify this, and we used

sample entropy [41] that measures the relative ‘‘disorder’’ of a time

series. As in previous work [4,39], we interpolated all trajectories to

101 time steps, and computed x-axis change (Dx = xt+1-xt). The time

series is therefore representative of the shape of x-axis fluctuation, and

is a consistent length for each trajectory. Sample entropy is then

computed on these interpolated x-axis fluctuations by counting the

number of x-axis fluctuation (Dx) sequences of length 3 (M3) that stay

Table 3. Correlations and sequential regression results in Experiment 2 predicting mean measures (across participants)

Variable M (SD) rvariable, trial number R btrial number btrial in block

performance 80% (40) .30** .67*** .1 .6***

latency 693.0 ms (597.0) 2.68** .78*** 2.55*** 2.40***

motion time 1291.2 ms (998.4) 2.33** .40*** 2.25** 2.25**

x-flips 3.4 flips (4.1) 2.12 .20{ 2.07 2.16{

x-accel. range 5.3 (3.6) .34** .35*** .30*** .10

y-accel. range 4.6 (3.3) .09 .09 .09 2.01

perturbation 4.4 (1.8) .63** .67*** .55*** .23**

**p,.01
***p,.001,
{,.10
doi:10.1371/journal.pone.0001728.t003

Figure 5. Results of Experiment 2 presented by presentation order for each pair. Each block is presented as a separated line, labeled using
block number and shaded from dark (first block) to lighter (third block) lines.
doi:10.1371/journal.pone.0001728.g005
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within a given tolerance (here, SD of Dx), then counting how many

sequences are retained when the window size is extended to 4; thus

sample entropy = -ln (M4/M3) [41].

In a similar multiple regression model with trial and block trial

as predictors, entropy is significantly predicted by both (p’s,.001).

Standardized coefficients for trial and block trial, .47 and .23,

respectively, suggest that complexity is increasing as learning

unfolds. However, when mapping sample entropy on presentation

order as in previous measures (shown in Figure 6) there is a distinct

nonlinearity visible. Entropy rises, but then drops at the tail end of

the blocks. A squared term for within-block order and trial is

significant in both analyses (p’s,.05). In fact, in the follow-up

presentation order analysis, only overall presentation and squared

within-block order terms were significant, suggesting that within a

block the nonlinearity best characterizes the complexity of the x-

axis fluctuations. This indicates that, while the reversals of

direction (x-flips) may generally decrease to some extent, the

underlying complexity of the signal measured through sample

entropy displays a within-block nonlinearity. As we discuss below,

some recent work on problem solving predicts this [42,43].

As a final check of our overall simultaneous multiple regression

strategy, we included block trial number in a simultaneous model

for the data from Experiment 1. Table 4 shows these results, and

as expected, there is no significant change given a corresponding

block trial number in those data.

Accelerometer analysis. Again, due to irregularities in the

Wiimote tracking, 5 of 25 participants had to be removed from the

accelerometer analysis. 3 of these were due to the low-battery

issue, and 2 due to large difficulties pairing the trials. Outlier trials

consisted again of less than 2% of the remaining data, and lost

trials due to Wiimote pairing less than 4%.

In bivariate analyses, x-acceleration range and perturbation

both increased over training (see Table 3). The y-acceleration

measure was not significantly predicted by any of our variables in

any analysis. Using the same regression analysis as in the cursor

analysis, including trial number and block trial number,

perturbation and x-acceleration range were significantly account-

ed for by these predictors, with 45% and 12% explained,

respectively (p’s,.001). For x-acceleration range, only the overall

trial number significantly contributed to the model (b= .30,

t(2) = 3.7, p,.001), though both overall trial number and block

trial number contributed to the explanation of variance in

perturbation (b = .55 and .23, respectively, t’s.3.6, p’s,.001).

Presentation-order analyses were exactly consistent with these

patterns of significance. Using presentation order, mean pertur-

bation and x-acceleration range measures are shown in Figure 5.

Summary. Except x-flips, all cursor-based measures showed

changes at the onset of a novel learning. Of the accelerometer

measures, only the perturbation measure showed a significant

change at these junctures in the experiment. The x-acceleration

range changed significantly across all 150 trials, but was not

predicted significantly by the block number variable. This

indicates that the participants are generating higher acceleration

along the axis of decision as the experiment proceeds, but do not

modulate this acceleration in the face of novel stimuli. They do,

however, modulate the force of the Wiimote press.

The analysis using sample entropy also suggests an interesting

nonlinearity occurring within blocks of this experiment. This result is

in fact predicted by very recent work by Stephen, Dixon, and

Isenhower [42], in which entropy-based measures index the progress

of solving a gear problem (see also Ref. 43 for related discussion).

These authors argue that the entropy signal reveals organizational

change within a complex nonlinear dynamical system. As the system

undergoes substantial reorganization, entropy should increase then

undergo a subsequent drop as the system stabilizes into a new

configuration. Sample entropy here may also be indicative of system

change as described by these authors.

Discussion

The goal of these experiments was a simple and intuitive one.

We aimed to show that the dynamic characteristics of action

reflect ongoing learning in a cognitive task. Both experiments

revealed this. Experiment 1 showed that features of action

dynamics grow more ‘‘confident’’ over a learning task, and can

mark the performance of the participant, indicating whether or

not they had acquired particular knowledge. Experiment 2

revealed that these characteristics generally index learning, not

just motor familiarity with the device. When novel items are

presented to participants in the flow of the experiment, there is a

reliable modulation in these dynamics: How long it takes for the

arm to move, how long the arm is in motion, and how much

perturbation is placed on the pointing device.

There are a number of limitations of this study that future work

should seek to improve. First, the paired-associate learning is

extremely simple and requires little time to accomplish. More

complex learning processes should be explored (e.g., learning

content from text), perhaps better integrating the approach taken

here with real-world learning tasks (see also below). Despite this,

Figure 6. Sample entropy for each presentation order col-
lapsed across blocks. Values initially rise then drop near final
presentation orders.
doi:10.1371/journal.pone.0001728.g006

Table 4. Regression results using Experiment 1 data
predicting mean measures (across participants)

Variable btrial number btrial in block

performance .76*** 2.03

latency 2.79*** 2.03

motion time 2.43*** 2.06

x-flips 2.30*** 2.05

x-accel. range .29** .14{

y-accel. range .27** .10

perturbation .60*** .05

**p,.01
***p,.001,
{,.10
doi:10.1371/journal.pone.0001728.t004

Action Dynamics

PLoS ONE | www.plosone.org 8 March 2008 | Volume 3 | Issue 3 | e1728



the fact that the learning task was extremely simple may have

provided a more conservative context for establishing the

covariation of action dynamics with cognitive processing. Despite

the simplicity, the movements of the Wiimote modulate across the

task, marking both performance and novel learning contexts. It

seems equally plausible that more extended, challenging learning

tasks could invoke even stronger action dynamics indices.

A second limitation is the kind of learning task explored.

Multiple-choice learning contexts are by no means rare [44], but

are not regarded as effective means of conveying novel

information. Future work should adapt other learning tasks (e.g.,

hypertext learning environments, see Ref. 45) and embed action

dynamics in these tasks to explore possible indices of learning and

comprehension.

Finally, there is a need for theories that invoke cognition-action

interaction to articulate in more detail when and when not

particular action measures will co-vary with cognitive processing

[46]. While we show that a self-organized dynamical systems

approach predicts our finding of entropy change in Experiment 2

[42], there is still a need to pursue more detailed predictions of this

sort across the kind of measures used here. One approach that will

surely contribute to this question is further articulating the

underlying neurophysiological systems that plan and produce

action, and how relevant pathways from ‘‘decision’’ processes feed

into them [19,22,24]. Another means of obtaining detailed

prediction is to devise computational models that instantiate the

proposed interaction [9,10,47,48]. For example, Schutte and

Spencer [10] have used a computational model based on dynamic

field theory [9] to account for the modulation of action dynamics

when moving across different spatial extents.

Despite these limitations, we draw methodological, theoretical,

and applied implications from the current studies. The primary

methodological contribution is adapting for the first time the

Nintendo Wiimote pointer for use in basic behavioral experiments.

Some details are supplied in supporting materials, and more work is

needed to better integrate this device in experimental work. In fact,

given the 3-dimensional accelerometer data, and the immersive

context in which this pointer device can be used, a variety of novel

contexts for behavioral experiments may be devised. One particular

benefit of the Wiimote is the instability present in the arm during

pre-decision processes. This may permit detailed analysis of the

subtle movements during that unfolding decisions process as a

potential additional index of learning and comprehension. The

additional x-flips analysis offered above attests to this.

As described in the Introduction, we draw theoretical implications

from these data. They contribute to two broad goals in cognitive

science. One is to show that cognition and action relate in systematic

and rich ways. These data support this question, and provide further

support to the deep repository of empirical evidence that the

‘‘effectors’’ do not exhibit simple linear productions from the

‘‘privileged’’ central processes [49]. Instead, the dynamics of action

co-vary in systematic ways as cognitive processing is unfolding.

Whether one’s interpretation of these data rests on dynamical

formalisms [29] or some other framework [31], it is clear that the

flow of information from cognition into action is taking place in a

way that requires a richer perspective on their interaction. Related to

this, the second broad goal is to demonstrate how low timescale

processes can relate to longer timescale processes during real-time

cognitive processing. In these experiments, we have shown

covariation between action patterns unfolding in 100’s of millisec-

onds and learning that is taking place across many minutes.

Finally, the rich layering of timescales, and their potential

interaction, suggest novel educational adaptations of these

findings. The theoretical approach described above recommends

finding ways to continuously track learners in a variety of more or

less complex cognitive tasks. Whether learning to read or reason,

the systematic flow of information from cognition into action

shows that dynamic action variables may mark learning in ways

that discrete performance measures may not have access to (e.g.,

see Ref. 50). These dynamic indices could supplement traditional

performance measures to aid in educational technologies. In

general, by paying attention to action, new avenues of discovery in

both theoretical and applied contexts are possible [51,52]. The

results reported here substantiate this sentiment.

Supporting Information

Figure S1 These are the 30 Bodoni symbols used in Experi-

ments 1 and 2. For each participant, these symbols were randomly

paired to form the paired-associates that the participants learned

across 150 trials of training.

Found at: doi:10.1371/journal.pone.0001728.s001 (4.25 MB

DOC)

Text S1

Found at: doi:10.1371/journal.pone.0001728.s002 (0.03 MB

DOC)

Text S2

Found at: doi:10.1371/journal.pone.0001728.s003 (0.03 MB

DOC)
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