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Abstract

Recent studies in the field of human vision science suggest that the human responses to the stimuli on a visual display

are non-deterministic. People may attend to different locations on the same visual input at the same time. Based on this

knowledge, we propose a new stochastic model of visual attention by introducing a dynamic Bayesian network to predict

the likelihood of where humans typically focus on a video scene. The proposed model is composed of a dynamic Bayesian

network with 4 layers. Our model provides a framework that simulates and combines the visual saliency response and

the cognitive state of a person to estimate the most probable attended regions. Sample-based inference with Markov

chain Monte-Carlo based particle filter and stream processing with multi-core processors enable us to estimate human

visual attention in near real time. Experimental results have demonstrated that our model performs significantly better in

predicting human visual attention compared to the previous deterministic models.
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Fig. 1. An example of a saliency map using Koch-Ullman model

1 INTRODUCTION

Developing a sophisticated object detection and recognition algorithms has been a long distance challenge

in computer and robot vision researches. Such algorithms are required in most applications of compu-

tational vision, including robotics [1], medical imaging [2], intelligent cars [3], surveillance [4], image

segmentation [5], [6] and content-based image retrieval [7]. One of the major challenges in designing

generic object detection and recognition systems is to construct methods that are fast and capable of

operating on standard computer platforms without any prior knowledge. To that end, pre-selection

mechanism would be essential to enable subsequent processing to focus only on relevant data. One

promising approach to achieve this mechanism is visual attention: it selects regions in a visual scene that

are most likely to contain objects of interest. The field of visual attention is currently the focus of much

research for both biological and artificial systems.

Attention is generally controlled by one or a combination of the two mechanisms: 1) a top-down

control that voluntarily chooses the focus of attention in a cognitive and task-dependent manner, and 2)

a bottom-up control that reflexively directs the visual focus based on the observed saliency attributes.

The first biologically-plausible model for explaining the human attention system was proposed by Koch

and Ullman [8], which follows the latter approach. The basic concept underlying this model is the feature

integration theory developed by Treisman and Gelade [9] which has been one of the most influential

theories of human visual attention. According to the feature integration theory, in a first step to visual

processing, several primary visual features are processed and represented with separate feature maps

that are later integrated in a saliency map that can be accessed in order to direct attention to the most

conspicuous areas. In an example shown in Fig. 1, a red car placed on the right in the frame should

be attentive, and therefore people directs one’s attention to this area. The Koch-Ullman model has been

attracting attention of many researchers, especially after the development of an implementation model
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Fig. 2. Visual search response based on the signal detection theory proposed by Eckstein et al. [19], [20].

by Itti, Koch and Niebur [10]. Later, so many attempts have been made to improve the Koch-Ullman

model [11], [12], [13], [14], [15] and to extend it to video signals [15], [16], [17], [18].

Although the feature integration theory well explains the early human visual system, a part of the

theory includes one crucial problem, namely, people may attend to different locations on the same visual

input at the same time. The example shown in Fig. 1 exactly indicates the phenomena: people may

pay attention to a blue traffic sign at the center, a white line at the bottom left or others. Previously,

this inconsistent visual attention has been considered to be caused by object-based attention, rather than

location-based attention [21], which implies that inconsistent visual attention are heavily controlled by

higher order processes such as top-down intention, knowledge and preferences. Another typical example

can be seen in Fig. 2. Let us consider a search task with a single 45◦ target among a lot of distractors. We

can easily understand that the left case is easy and the right case is difficult to find the target. However,

based on the feature integration theory, we can immediately identify the target for both easy and hard

searches since we always select the location where the response of the detector tuned to the target visual

property is greater than at any other locations.

On the other hand, another theory to understanding visual search and attention has been of interest,

called the signal detection theory [19], [20]. According to this theory, the elements in a visual display are

internally represented as independent random variables. Again let us consider the search task shown in
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Fig. 2. The response of a detector tuned to the target orientation is represented as a Gaussian density. The

response of the same detector to the distractor is also a Gaussian density with lower mean value. For a

45◦ target and vertical distractors, these densities barely overlap, which implies that we can immediately

detect the target. On the other hand, in the case of hard search, the target density is identical to the easy

search case, but the distractor density is shifted rightward, so that the two densities corresponding to the

target and distractor overlap. This implies that the probability we focus on the distractors becomes high

and therefore it takes much time to detect the target.

With the paradigm of the signal detection theory, we proposes a new stochastic model of visual

attention. With this model, we can automatically predict the likelihood of where humans typically focus

on a visual input. The proposed model is composed of a dynamic Bayesian network with four layers:

(1) a saliency map that shows the average saliency response at each position of a video frame, (2) a

stochastic saliency map that converts the saliency map into a natural human response through a Gaussian

state space model based on the finding of the signal detection theory, 3) an eye movement pattern that

controls the degree of “overt shifts of attentions” (shifts with saccadic eye movements) through a hidden

Markov model (HMM), and 4) an eye focusing density map that predicts positions that people probably

pay attention to based on the stochastic saliency map and eye movement patterns. When describing the

Bayesian network of visual attention, the principle of the signal detection theory is introduced, namely,

the position where values of the stochastic saliency map takes the maximum is the eye focusing positions.

The proposed model also provides a framework simulating top-down cognitive states of a person at the

layer of eye movement patterns. The introduction of eye movement patterns as hidden states of HMMs

enables us to describe the mechanism of eye focusing and eye movement naturally.

The paper is organized as follows: Section 2 discusses several related researches that focuses on

modeling of human visual attention by using probabilistic techniques or concepts. Section 3 describes

the proposed stochastic model of visual attention. Section 4 presents the methods for finding maximum

likelihood (ML) estimates of the model parameters based on the Expectation-Maximization (EM) frame-

work. Section 5 discusses some evaluation results. Finally Section 6 summarizes the report and discusses

future work.

2 RELATED WORK

Several previous researches focused on modeling of human visual attention by using some kind of

probabilistic techniques or concepts. Itti and Baldi [16] investigated a Bayesian approach to detecting

surprising events in video signals. Their approach models a surprise by Kullback-Leibler divergence

between the prior and posterior distributions of fundamental features. Avraham and Lindenbaum [22]

utilized a graphical model approximation to extend their static saliency model based on self similarities.

Boccignone [4] introduced a nonparametric Bayesian framework to achieve object-based visual attention.
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Fig. 3. Graphical representation of the proposed stochastic model of human visual attention, where arrows

indicate stochastic dependencies.

Gao, Mahadevan and Vasconcelos [15], [23] developed a decision-theoretic approach attention model for

object detection.

The main contribution of our stochastic model against the above previous researches is the introduction

of a unified stochastic model that integrates “covert shifts of attention” (shifts of attentions without

saccadic eye movements) driven by bottom-up saliency with “overt shifts of attention” (shifts of attention

with saccadic eye movements) driven by eye movement patterns by using a dynamic Bayesian network.

Our proposed model also provides a framework that simulates and combines the bottom-up visual

saliency response and the top-down cognitive state of a person to estimate probable attended regions, if

eye movement patterns can deal with more sophisticated top-down information. How to integrate such

kinds of top-down information is one of the most important future researches.

3 STOCHASTIC VISUAL ATTENTION MODEL

3.1 Overview

Figs. 3 and 4 illustrates the graphical representation of the proposed visual attention model. The proposed

model consists of four layers: (deterministic) saliency maps, stochastic saliency maps, eye focusing posi-

tions and eye movement patterns. Before describing the model of the proposed visual attention model,

let us introduce several notations and definitions.
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Fig. 4. Procedure of the proposed model

I = i(1 : T ) = {i(t)}Tt=1 denotes an input video, where i(t) is the t-th frame of the video I and T is the

duration (i.e. the total number of frames) of the video I . The symbol I also denotes a set of coordinates

in the frame. For example, a position y in a frame is represented as y ∈ I .

S = S(1 : T ) = {S(t)}Tt=1 denotes a saliency video which comprises a sequence of saliency maps S(t)

obtained from the input video I . Each saliency map is denoted as S(t) = {s(t,y)}y∈I , where s(t,y) is

called saliency which is the pixel value at the position y ∈ I . Each saliency represents the strength of

visual stimulus on the corresponding position of a frame with the real value between 0 and 1.

S = S(1 : T ) = {S(t)}Tt=1 denotes a stochastic saliency video which comprises a sequence of stochastic

saliency maps S(t) obtained from the input video I . Each stochastic saliency map is denoted as S(t) =

{s(t,y)}y∈I , where s(t,y) is called stochastic saliency which is the pixel value at the position y ∈ I .

Each stochastic saliency corresponds to saliency response perceived through a certain kind of random

processes.

U = u(1 : T ) = {u(t)}Tt=1 denotes a sequence of eye movement patterns each of which represents a

pattern of eye movements, A previous research [24] implies that there are two typical patterns 1 of eye

movements when one is simply watching a video: 1) Passive state u(t) = 0 in which one tends to stay

1. Peters and Itti [24] prepared the other pattern, interactive state, which can be seen when playing video games, driving a car

or browsing webs. We will omit the interactive state since our setting in this paper does not include any interactions
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around one particular position to continuously capture important visual information, and 2) active state

u(t) = 1 in which one actively moves around and searches various visual information on the scene. Eye

movement patterns may reflect purposes or intentions of human eye movements.

X = X(1 : T ) = {x(t)}Tt=1 denotes a sequence of eye focusing positions. The proposed model estimates

the eye focusing position by integrating the bottom-up information (stochastic saliency maps) and the

top-down information (eye movement patterns). A map that represents a density of eye focusing positions

is called an eye focusing density map.

Only the saliency maps are observed, and therefore eye focusing positions should be estimated under

the situation where other layers (stochastic saliency maps and eye movement patterns) are hidden.

In what follows, we denote a probability density function (PDF) of an x as p(x), a conditional PDF of

an x given y as p(x|y), and a PDF of x with a parameter θ as p(x; θ).

The rest of this section describes the detail of the proposed stochastic model and the method for

estimating eye focusing positions only from input videos.

3.2 Saliency maps

We used Itti-Koch saliency model [10] shown in Fig. 5 to extract (deterministic) saliency maps. Our

implementation includes twelve feature channels sensitive to color contrast (red/green and blue/yellow),

temporal luminance flicker, luminance contrast, four orientations (0◦, 45◦, 90◦ and 135◦), and two oriented

motion energies (horizontal and vertical). These features detect spatial outliers in image space using a

center-surround architecture. Center and surround scales are obtained from dyadic pyramids with 9

scales, from scale 0 (the original image) to scale 8 (the image reduced by a factor of 28 = 256 in both the

horizontal and vertical dimensions). Six center-surround difference maps are then computed as point-

wise differences across pyramid scales, for combinations of three center scales (c = {2, 3, 4}) and two

center-surround scale differences (s = {3, 4}). Each feature map is additionally endowed with internal

dynamics that provide a strong spatial within-feature and within-scale competition for activity, followed

by within-feature, across-scale competition. In this way, initially noisy feature maps can be reduced to

sparse representations of only outlier locations which stand out from their surroundings. All feature maps

finally contribute to a unique saliency map representing the conspicuity of each location in the visual

field. The saliency map is adjusted with a centrally-weighted ’retinal’ filter, putting a higher emphasizes

on the saliency values around the center of the video.

3.3 Stochastic saliency maps

When estimating a stochastic saliency map S(t) = {s(t,y)}y∈I , we introduce a pixel-wise state space model

characterized by the following two relationships:

p(s(t,y)|s(t,y)) = N (s(t,y), σs1),
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Fig. 5. Saliency map extraction using Itti et al.’s model

p(s(t,y)|s(t− 1,y)) = N (s(t− 1,y), σs2),

where N (s, σ) is the Gaussian PDF with mean s and variance σ2. The first equation in the above model

implies that a saliency map is observed through a Gaussian random process, and the second equation

exploits the temporal characteristics of the human visual system. For brevity, only in this section we will

omit the position y where explicit expression is unnecessary, e.g. s(t) instead of s(t,y).

We employ a Kalman filter to recursively compute the stochastic saliency map. Assume that the density

at each position on the stochastic saliency map s(t− 1) at time t− 1 given saliency maps s(1 : t− 1) up
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to time t− 1 is given as the following Gaussian PDF:

p(s(t− 1)|s(1 : t− 1))

= N (ŝ(t− 1|t− 1), σs(t− 1|t− 1)).

where the position y is omitted for simplicity. Then, the density p(s(t)|s(1 : t)) of the stochastic saliency

map at time t is updated by the following recurrence relations with the saliency maps s(1 : t) up to time

t:

[Estimation step]

p(s(t)|s(1 : t− 1)) = N (ŝ(t|t− 1), σs(t|t− 1)),

where

ŝ(t|t− 1) = ŝ(t− 1|t− 1),

σ2
s(t|t− 1) = σ2

s2 + σ2
s(t− 1|t− 1).

[Update step]

p(s(t)|s(1 : t)) = N (ŝ(t|t), σs(t|t)),

where

ŝ(t|t) = (1)

σ2
s1

σ2
s1 + σ2

s(t|t− 1)
ŝ(t|t− 1) +

σ2
s(t|t− 1)

σ2
s1 + σ2

s(t|t− 1)
s(t),

σ2
s(t|t) =

σ2
s1 · σ2

s(t|t− 1)

σ2
s1 + σ2

s(t|t− 1)
, (2)

Remark 1: The above model implies that model parameters (σs1, σs2) of every Gaussian random variable

is independent from the frame index t and the position y. We can easily extend the model to consider

adaptive model parameters depending on the frame index and the position. In this case, model parameters

can be updated via on-line learning with adaptive Kalman filters (e.g. [25], [26].) (Remark 1 ends.)

3.4 Estimating eye motions

3.4.1 Overview

By incorporating the stochastic saliency map S(t) = {s(t,y)}y∈I and the eye movement pattern u(t), we

introduce the following transition PDF to estimate the eye focusing position x(t) such that

p(x(t), u(t)|p(S(t)),x(t− 1), u(t− 1))

∝ p(x(t)|p(S(t)))

·p(u(t)|u(t− 1)) · p(x(t)|x(t− 1), u(t)), (3)
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where the PDF of the stochastic saliency map at time t is represented as p(S(t)) for simplicity, namely

p(S(t)) = {p(s(t,y))}y∈I ,

p(s(t,y)) = p(s(t,y)|s(1 : t,y)) ∀y ∈ I.

The stochastic saliency map S(t) controls “covert shifts of attention” through the PDF p(x(t)|p(S(t)))

2. On the other hand, the eye movement pattern u(t) controls the degree of “overt shifts of attention”.

In what follows, we call a pair z(t) = (x(t), u(t)), consisting of an eye focusing position and an eye

movement pattern, as the eye focusing state z(t) for brevity. The following PDF of eye focusing positions

x(t) given a PDF p(S(1 : t)) of stochastic saliency maps up to time t characterizes an eye focusing density

map at time t:

p(x(t)|p(S(1 : t))) =
∑

u(t)=0,1

p(z(t)|p(S(1 : t))), (4)

p(z(t)|p(S(1 : t))) =

∫
z(t−1)

p(z(t− 1)|p(S(1 : t− 1)))

·p(z(t)|p(S(t)), z(t− 1))dz(t− 1). (5)

Since the formula for computing Eq. (4) cannot be derived, we introduce a technique inspired by a

particle filter with Markov chain Monte-Carlo (MCMC) sampling instead. The PDF of eye focusing states

shown in Eq. (5) can be approximated by samples of eye focusing states {zn(t)}Nn=1 and the associated

weights {wn(t)}Nn=1 as

p(z(t)|p(S(1 : t))) ≈
N∑
n=1

wn(t) · δ(z(t), zn(t)), (6)

where N is the number of samples, and δ(·, ·) represents Kronecker delta.

Fig. 6 shows the procedure for estimating eye focusing density maps, which can be separated into

three steps: 1) generating samples from the PDFs p(u(t)|u(t− 1)) and p(x(t)|x(t− 1), u(t)) derived from

an eye movement pattern, 2) weighting samples with the PDF p(x(t)|p(S(t))) derived from a stochastic

saliency map, and 3) re-sampling if necessary. We now describe each step in detail.

3.4.2 Propagation with eye movement patterns

The second and third terms of Equation (3) suggests that the current eye focusing position depends on

the previous eye focusing position, and the degree of eye movements is driven by one’s eye movement

pattern u(t).

2. The notation p(x(t)|p(S(t))) seems to be unusual, however, the PDF of eye focusing positions x(t) estimated from the stochastic

saliency map S(t) can be determined by the PDF of the stochastic saliency map, not the stochastic saliency map itself, as shown

in Section 3.4.3.
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Fig. 6. Strategy for calculating eye focusing density maps

The second term p(u(t)|u(t − 1)) of Equation (3) is characterized by the the transitional probability

Φ = {φ(i,j)} of eye movement patterns defined by a 2× 2 matrix given in advance.

p(u(t)|u(t− 1)) = φ(u(t),u(t−1)) (7)

The third term p(x(t)|x(t − 1), u(t)) of Equation (3) represents the transition PDF of eye focusing

positions governed by the eye movement patterns at the current time (See Figure 7), defined as

p(x(t)|x(t− 1), u(t)) = L(x(t− 1), γx,u(t), σx,u(t)), (8)

where γxi and σxi (i = 1, 2) are model parameters that represents the average and standard deviation

of distances of eye movements, and L(x, γ, σ) is a shifted 2D Gaussian PDF with mean x, indent γ and

variance σ2 such that

L(x, γ, σ) ∝ exp

{
− (‖x− x‖ − γ)2

2σ2

}
.

Samples {zn(t)}Nn=1 of eye focusing states are generated with a technique of MCMC sampling. Suppose

that samples {zn(t−1)}Nn=1 of eye focusing states at time t−1 have already been obtained. Then, samples

{zn(t)}Nn=1 at time t are drawn by using the second and third terms of Equation (3) with the Metropolis

algorithm [27] such as

zn(t) = {xn(t),un(t)},
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Fig. 7. Transition PDF of eye focusing positions governed by the eye movement patterns

un(t) ∼ p(u(t)|un(t− 1)),

xn(t) ∼ p(x(t)|xn(t− 1), un(t)),

where x ∼ p(x) indicates that a sample x is drawn from a PDF p(x). This top-down part corresponds to

the propagation step of a particle filter.

3.4.3 Updating with stochastic saliency maps

As the second step, sample weights {wn(t)}Nn=1 are updated based on the first term p(x(t)|p(S(t))) of

Equation (3). Formally, the weight wn(t) of the n-th sample zn(t) at time t can be calculated as

wn(t) ∝ wn(t− 1) · p(x(t) = xn(t)|p(S(t))).

As shown in Equation (6), samples {zn(t)}Nn=1 of eye focusing states and the associated weights {wn(t)}Nn=1

comprise an eye focusing density map at time t. This step corresponds to the update step of a particle
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filter.

The first term of Equation (3) represents the fact that the eye focusing position is selected based on

the signal detection theory, where the position at which the stochastic saliency takes the maximum is

determined as the eye focusing position. In other words, this term computes the probability at each

position that the stochastic saliency takes the maximum, which can be calculated as

p(x(t)|p(S(t)))

=

∫ ∞
−∞

p(s(t,x(t)) = s)
∏
x̃∈I,

x̃ 6=x(t)

P (s(t, x̃) ≤ s)ds, (9)

where P (s(t, ỹ) ≤ s) is the cumulative density function (CDF) that corresponds to the PDF p(s(t, ỹ))

of the stochastic saliency s(t, ỹ). The first part of Equation (9) stands for the probability such that a

stochastic saliency value at position x(t) equals s, and the second part represents the probability such

that stochastic saliency values at any other positions are smaller than s.

Direct computation of Equation (9) is intractable. Instead, we introduce an alternative expression of

Equation (9) that is applicable to stream processing with multi-core processors.

p(x(t)|p(S(t)))

=

∫ ∞
−∞

p(s(t,x(t)) = s)

P (s(t,x(t)) ≤ s)
∏
x̃∈I

P (s(t, x̃) ≤ s)ds. (10)

The latter part of Eq. (10) does not depend on the position x(t), which implies that it can be calculated in

advance for every s. This calculation can be executed in O(log |I|) time through a tree-based multiplication

and parallelization at each level (cf. Fig. 8). Also, the former part of Eq. (10) can be calculated indepen-

dently for each position x(t). Therefore, once the calculation of the latter part has finished, Eq. (10) can

be calculated in O(log |S|) time with a combination of tree-based addition and pixel-wise parallelization,

where |S| stands for the resolution of the integral in Eq. (10).

3.4.4 Re-sampling

Finally, re-sampling is performed to eliminate samples with low importance weights and multiply samples

with high importance weights. This step enables us to avoid “degeneracy” problem, namely, to avoid the

situation where all but one of the importance weights are close to zero. Although the effective number

of samples [28] is frequently used as a criterion for re-sampling, we execute re-sampling at regular time

intervals.

Remark 2: We have to note that the whole procedure which includes the propagation, updating and

re-sampling steps for estimating eye focusing density maps is equivalent to a particle filter with MCMC

sampling since the the PDFs used in the propagation and update steps are mutually independent with

each other. (Remark 2 ends.)
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Fig. 8. Tree-based multiplication for computing the product A1A2 · · ·A2n

4 MODEL PARAMETER ESTIMATION

This section focuses on the problem of estimating maximum likelihood (ML) model parameters. Fig. 9

shows the block diagram of our model parameter estimation. We can automatically estimate almost all

the model parameters in advance by utilizing saliency maps calculated from the input video and eye

focusing positions obtained by some eye tracking devices as observations. Simultaneous estimation of

all ML parameters can be optimal but impractical due to the substantial calculation cost. Therefore, we

separate our parameter estimation into two independent stages. The first stage derives parameters for

computing stochastic saliency maps, and the second stage for estimating eye focusing points.
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Fig. 9. Block diagram of our model parameter estimation

4.1 Parameters for stochastic saliency maps

The first stage derives parameters for computing stochastic saliency maps. Here, we introduce the EM

algorithm. In this case, the observations are the saliency maps S = S(1 : T ) and the hidden variables

are the stochastic saliency maps S = S(1 : T ). Remember that T is the duration of the video. The EM

algorithm for estimating θs = (σs1, σs2) is as follows:

(k + 1)-th E step

The E step updates the PDF p(S|S; θs,k) of the stochastic saliency maps S given the saliency maps

S with the previously estimated parameter θs,k = (σs1, σs2) by using Kalman smoother. In detail, the

objective is to recursively compute the mean ŝ(t|T ) and standard deviation σs(t|T ) of the stochastic

saliency s(t) at time t = 1, 2, · · · , T , where all the saliency maps S are used as observations. Note that

the position y is omitted for simplicity.

Suppose that the PDF of the stochastic saliency at time t+ 1 is given by the following Gaussian PDF:

p(s(t+ 1)|S; θs,k) = N (ŝk(t+ 1|T ), σs,k(t+ 1|T )).
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Then, the PDF of the stochastic saliency at time t is obtained by the following recurrence relation:

p(s(t)|S; θs,k) = N (ŝk(t|T ), σs,k(t|T )),

where

ŝk(t|T ) =
σ2
sq,k(t|t)
σ2
s,k(t|t)

ŝk(t|t) +
σ2
sq,k(t|t)
σ2
s2,k

ŝk(t+ 1|T ),

σ2
s,k(t|T ) = σ2

sq,k(t|t) +

(
σ2
sq,k(t|t)
σ2
s2,k

)2

σ2
s,k(t+ 1|T ),

σ2
sq,k(t|t) =

σ2
s2,kσ

2
s,k(t|t)

σ2
s2,k + σ2

s,k(t|t)
,

and ŝk(t|t) and σ2
s,k(t|t) can be obtained by Eqs. (1)(2) with the parameter θs,k.

(k + 1)-th M step

The M step updates the parameter θs to maximize the expected log likelihood of the PDF p(S, S; θs).

We can derive a new parameter θs,k+1 from the result of the E step by taking the derivatives of the log

likelihood in terms of θs and setting to 0.

σ2
s1,k+1 =

1

T

T∑
t=1

{
(s(t)− ŝk(t|T ))2 + σ2

s,k(t|T )
}

σ2
s2,k+1 =

1

T − 1

T∑
t=2

[
(ŝk(t|T )− ŝk(t− 1|T ))2

+σ2
s,k(t− 1|T ) +

σ2
s2,k − σ2

s,k(t− 1|t− 1)

σ2
s2,k + σ2

s,k(t− 1|t− 1)
σ2
s,k(t|T )

]

4.2 Parameters for eye focusing positions

The second stage derives parameters θx = (γx0, σx0, γx1, σx1, Φ) for computing eye focusing positions. The

observations are the sequence of eye focusing positions X = x(1 : T ) obtained from some eye tracking

devices, and the hidden states are the eye movement patterns U = u(1 : T ). In this section, we introduce

an alternative notation of eye movement patterns as u(t) = (u(t)0, u(t)1)T , which is a 2-dimensional

binary vector such that (1, 0)T denotes the passive state, and (0, 1)T represents the active state.

We take a Viterbi learning approach for its quick convergence. It recursively updates the eye movement

patterns U = u(1 : T ) and the ML parameter set θx to maximize the posterior p(U |X; θx).

Initializing eye movement patterns

We have to start with determining an initial sequence U0 = u0(1 : T ) of eye movement patterns. We

introduce the following decision rule:

u0(t) =

 0 if ‖x(t)− x(t− 1)‖ ≤ κx
1 if ‖x(t)− x(t− 1)‖ > κx

,

where κx is a given threshold.
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The (k + 1)-th step for updating hidden variables

This step updates the sequence U of eye movement patterns to maximize the posterior density p(U |X; θx,k)

given the parameter set θx,k obtained in the previous step.

Uk+1 ← arg max
U

p(U |X; θx,k).

Viterbi algorithm (e.g. [29], [30]) can derive the ML sequence Uk+1 of eye movement patterns.

The (k + 1)-th step for updating the parameter set

This step updates the parameter set θx to maximize the posterior density p(Uk+1|X; θx).

θx,k+1 = arg max
θx

p(Uk+1|X; θx).

Taking the derivative of the log likelihood in terms of θx, we obtain

γxi,k+1

=

∑T
t=2 ‖x(t)− x(t− 1)‖uk+1(t)i∑T

t=2 uk+1(t)i
,

σ2
xi,k+1

=

∑T
t=2(‖x(t)− x(t− 1)‖ − γxi,k)2uk+1(t)i

2
∑T
t=2 uk+1(t)i

,

φ(i,j),k+1

=

∑T
t=2 uk+1(t)iuk+1(t− 1)j∑T

t=2 uk+1(t− 1)j
.

5 EVALUATION

5.1 Evaluation conditions

For the accuracy evaluation, we used CRCNS eye-1 database created by University of South California.

This database includes 100 video clips (MPEG-1, 640 × 480 pixels, 30fps) and eye traces when showing

these video clips to 8 human subjects (4-6 available eye traces for each video clip, 240fps). Other details

for the database can be found in https://crcns.org/files/data/eye-1/crcns-eye1-summary.pdf . In this evaluation,

we used 50 video clips (about 25 minutes in total) called “original experiment” and associated eye traces.

Model parameters were derived in advance with the learning algorithm presented in Section 4. In this

time, we used 5-fold cross validation so that 40 video clips and associated eye traces were used as the

training data for evaluating the remaining data (10 videos and associated eye traces).

All the algorithms were implemented with a standard C++ platform and NVIDIA CUDA, and the

evaluation were carried out on a standard PC with a graphics processor unit (GPU). The detailed

information for the platform used in this evaluation is listed in Table 1.
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TABLE 1

Platform used in the evaluation

OS Windows Vista Ultimate

Development Microsoft Visual C++ 2008

platform OpenCV 1.1pre & NVIDIA CUDA 2.2

Optimization disabled

CPU Intel Core2 Quad Q6600 (2.40GHz)

RAM 4.0GB

GPU NVIDIA GeForce GTX275 ×2 SLI

5.2 Evaluation metric

As a metric to quantify how well a model predicts the actual human eye focusing positions, we used the

normalized scan-path saliency (NSS) used in the previous work [24]. Let Rj(t) be a set of all pixels in a

circular region centered on the eye focusing position of test subject j with a radius of 30 pixels. Then,

the NSS value at time t is defined as

NSS(t) =
1

Ns

Ns∑
j=1

1

σ(p(x))

{
max

x(t)∈Rj(t)
p(x(t))− p(x)

}
,

where Ns is the total number of subjects, p(x) and σ(p(x)) are the mean and the variance of the pixel

values of the model’s output, respectively. NSS(t) = 1 indicates that the subjects’ eye positions fall in

a region whose predicted density is one standard deviation above average. Meanwhile, NSS(t) ≤ 0

indicates that the model performs no better than picking a random position on the map.

5.3 Results

We compared our proposed method with 3 existing computational models: 1) a simple control measuring

local pixel variance (denoted “variance”) [16], 2) a saliency map (denoted “CIOFM”) [10], and 3) Bayesian

surprise (denoted “surprise”) [16]. All the outputs emitted from the above existing models are included

in CRCNS eye-1 database, and therefore we directly utilized them for the evaluation.

Fig. 10 shows the model accuracy measured by the average NSS score with standard errors for all the

video clips, and Fig. 11 details the average NSS score for each video clip. The order of video clips is

sorted beforehand to keep the visibility. The result shown in Fig. 10 indicates that the our new method

achieved significantly better scores than all 3 existing methods, which implies that our proposed method

can estimate human visual attention with high accuracy. Also, the result shown in Fig. 11 indicates that

our proposed method marked almost the same as or much better than all the existing methods for most

of the video clips.

Fig. 12 shows snapshots of outputs from Itti model (the second and fifth rows) and our proposed

method (the third and sixth rows). It illustrates that outputs from Itti model included several large
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Fig. 10. Average NSS score for all the video clips

salient regions. On the other hand, outputs from our proposed method included only a few small eye

focusing areas. This implies that our new method picked up probable eye focusing areas accurately.

Fig. 13 shows the total execution time of 1) calculating Itti’s saliency map without CUDA, 2) the

proposed method without CUDA, and 3) the proposed method with CUDA. The result indicates that

the proposed method has achieved near real-time estimation (40-50 msec/frame), and almost the same

processing time as the one for Itti’s model.

6 CONCLUSION

We have presented the first stochastic model of human visual attention based on a dynamic Bayesian

framework. Unlike many existing methods, we predict the likelihood of human-attended regions on a

video based on two criteria: 1) The probability of having the maximum saliency response at a given region

evaluated based on the signal detection theory, and 2) the probability of matching the eye movement

projection based on the predicted state. Experiments have revealed that our model offers a better eye-

gazing prediction against previous deterministic models. To enhance our current model, future work may

include determination of initial parameters close to the global optima when estimating model parameters,

unified approach to estimate all the model parameters, a better density model of eye movements, a
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Fig. 11. Average NSS score for each video clip, where the vertical axis uses a log scale and video clips on

the horizontal axis are sorted in the ascending order of NSS scores.

better integration of the bottom-up and the top-down information, a better saliency model for extracting

(deterministic) saliency maps, and integration of the proposed method into some applications such as

driving assistance, active vision and video retrieval.
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Fig. 12. Snapshots of model outputs
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