Manifold Learning and it's application

Non-Linear Techniques

Nandan Dubey

SE367

Outline

Introduction

- Introduction
 - Manifold
 - Examples
 - image as vector
 - Importance
 - Dimension Reduction Techniques
- 2 Linear Methods
 - PCA
 - Example
 - MDS
 - Perception
- Non-Linear Techniques
- LLE
- Isomap
- 6 References
 - Further Reading

What is Manifold?

Definition

- Manifold is a mathematical space that on a small enough scale resembles the <u>Euclidean space</u> of a specific dimension.
- Hence a line and a circle are one-dimensional manifolds, a plane and sphere (the surface of a ball) are two-dimensional manifolds.

Introduction contd.

Introduction contd.

Both are two-dim. data embedded in 3D

Images as Vectors

n = m n*m Importance

- Curse of Dimensionality.
- Image data(each pixel), spectral coefficients, Text categorization(frequencies of phrases in a document), genes, many more.
- Practical data lie in subspace which is low dimensional.

Dimension reduction techniques

Linear methods

- Principal Component Analysis(PCA)
- Multidimensional Scaling(MDS)

Non-linear Methods

- Locally Linear Embedding (Roweis and Saul)
- IsoMap (Tenenbaum, de Silva, and Langford)

PCA-Principal Component Analysis

PCA

- Transforms possibly correlated variables into a smaller dimensional uncorrelated variables called principal components.
- Find linear subspace projection P which preserves the data locations (under quadratic error)

Algorithm

- Evaluate Covariance matrix $C = (x \mu_x)(x \mu_x)^T$
- Simple eigenvector(V_a) solution
- Top q eigenvectors of XCC^TX^T $V_q = [v_1, \dots v_q]$ is a basis for the q-dim subspace Locations given by V_q^TXC

Introduction

Example

n is number of data points, D is dimension of input, d is output

dimension. Data = $\{X_1, X_2, \dots, X_n\}$, $X_i \in \mathbb{R}^D$, $i = 1, \dots, n$

goal is
$$v_i \in \mathbb{R}^d$$
, $i = 1, ..., n$ $d << D$

minimize reconstruction error

$$min_{P \in R^{m \times m}} \sum_{i=1}^{n} ||X_i - PX_i||^2$$
 where $P = U U^T U \in R^{D \times d}$

maximize the variance $\max \sum ||y_i - y_i||^2$

Then
$$y_i = U^T X_i$$

MDS

Multidimensional Scaling

Given "pre-distances" D Find Euclidean q-dim space which "preserves" these distances Solution is given by the eigenstructure of Top q eigenvectors This is exactly the same solution as PCA

Deficiencies of Linear Methods

 Data may not be best summarized by linear combination of features

Non-Linear Techniques

• Example: PCA cannot discover 1D structure of a helix

Perception How brain store these?

Every pixel? Or perceptually meaningful structure? Introduction Perception

How brain store these?

Every pixel?

Or perceptually meaningful structure? : Up-down pose Left-right pose Lighting direction

So, our brain successfully reduced the high-dimensional inputs to an intrinsically 3-dimensional manifold!

"Local" relationships: Two solutions which preserve local structure:

LLE

Locally Linear Embedding (LLE):

- Change to a local representation (at each point)
- Base the local rep. on position of neighboring points

Isomap

IsoMap:

- Estimate actual (geodesic) distances in p-dim. space
- Find q-dim representation preserving those distances

Both rely on the locally flat nature of the manifold

• How do we find a locality in which this is true?

Non-Linear Techniques

Both rely on the locally flat nature of the manifold

• How do we find a locality in which this is true?

Non-Linear Techniques

k-nearest-neighbors

Both rely on the locally flat nature of the manifold

- How do we find a locality in which this is true?
 - k-nearest-neighbors
 - epsilon-ball

Local Linear Embedding

- Select a local neighborhood
- Change each point into a coordinate system based on its neighbors
- Find new (q-dim) coordinates which reproduce these local relationships

LLE by image

Locally Linear Embedding

Find new (q-dim) coordinates which reproduce these local coordinates.

This can be solved using the eigenstructure as well: We want the min. variance

Locally Linear Embedding

Introduction

minimize
$$\sum_{i=1}^{n} |X_i - \sum_{j=1}^{k} W_{ij} X_j|^2$$
 W is n x n sparse matrix minimize $\sum_{i=1}^{n} |y_i - \sum_{j=1}^{k} W_{ij} y_j|^2$ or $\sum_{i=1}^{n} \sum_{j=1}^{n} M_{ij} y_j^T y_j$ M = n x n matrix

$$M = (I - W)^T (I - W)$$

Isomap

Distance Matrix

Build a graph with K-nearest neighbor or ϵ nearest neighbor.

Geodesic Distance

Infer other interpoint distances by finding shortest paths on the graph (Dijkstra's algorithm)

MDS

Apply MDS to embed the nearest neighbors.

an Application

images from www.golfswingphotos.com

an Application

Linear Interpolation

an Application

Interpolation By Manifold

another Application(Isomap)

other Applications

Example

- Pose estimation
- image denoising
- missing data interpolation

Image References

- Learning-based Methods in Vision Alexei Efros, CMU, Spring 2007
- Nonlinear Dimensionality Reduction by Locally Linear Embedding Sam T. Roweis and Lawrence K. Saul

Further Reading

Introduction

Further Reading

- MDS: Encyclopedia of Cognitive Science Multidimensional Scaling Mark Steyvers
- PCA: Jonathon Shlens, A Tutorial on Principal Component Analysis or refer Wikipedia
- ISOMAP: A Global Geometric Framework for Nonlinear Dimensionality Reduction Joshua B. Tenenbaum, Vin de Silva, John C. Langford
- LLE: Nonlinear Dimensionality Reduction by Locally Linear Embedding Sam T. Roweis and Lawrence K. Saul

Further Reading

Further Reading

 $\label{thm:condition} Thank you! $$ $$ $$ http://home.iitk.ac.in/$\sim ndubey/thesis $$$