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Introduction
°

Manifold

What is Manifold?

Definition

@ Manifold is a mathematical space that on a small enough
scale resembles the Euclidean space of a specific dimension.

@ Hence a line and a circle are one-dimensional manifolds, a
plane and sphere (the surface of a ball) are two-dimensional
manifolds.
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Examples

Introduction contd.

"S"-shape " Swiss roll”

Both are two-dim. data embedded in 3D
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image as vector

Images as Vectors
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Importance

Why reduce Dimension?

@ Curse of Dimensionality.

@ Image data(each pixel), spectral coefficients, Text
categorization(frequencies of phrases in a document), genes,
many more.

@ Practical data lie in subspace which is low dimensional.
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Dimension Reduction Techniques

Dimension reduction techniques

Linear methods

@ Principal Component Analysis(PCA)
@ Multidimensional Scaling(MDS)

Non-linear Methods

@ Locally Linear Embedding (Roweis and Saul)
@ IsoMap (Tenenbaum, de Silva, and Langford)
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PCA

PCA-Principal Component Analysis

PCA

@ Transforms possibly correlated variables into a smaller
dimensional uncorrelated variables called principal
components.

@ Find linear subspace projection P which preserves the data
locations (under quadratic error)

v

Algorithm

@ Evaluate Covariance matrix C = (x — fux)(x — pix) "

@ Simple eigenvector( V) solution

@ Top q eigenvectors of XCCTXT V,=[w1,...v,] is a basis for
the g-dim subspace Locations given by VqTXC
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Example

PCA - Algorithm

n is number of data points, D is dimension of input, d is output
dimension.

Data = {Xl,XQ, ... ,Xn}, X;ERD, i=1,...n

goal is

y,-eRd ,i=1,...,n d<<D

minimize reconstruction error
minpcgmam > r_1 [|X; — PXi||>  where P = U UT  UeRP

maximize the variance
max Y ||y — y;l?

Then y; = urx;
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MDS

Multidimensional Scaling

Given “pre-distances” D

Find Euclidean g-dim space which “preserves’ these distances
Solution is given by the eigenstructure of Top q eigenvectors
This is exactly the same solution as PCA
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Deficiencies of Linear Methods

@ Data may not be best summarized by linear combination of
features

@ Example: PCA cannot discover 1D structure of a helix
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Perception

How brain store these?

Every pixel?
Or perceptually meaningful structure?
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Perception

How brain store these?

FYIEET
!’?’%‘ il
SITVYR

Every pixel?

Or perceptually meaningful structure? : Up-down pose Left-right
pose Lighting direction

So, our brain successfully reduced the high-dimensional inputs to
an intrinsically 3-dimensional manifold!



Non-Linear Techniques

LLE and Isomap

“Local” relationships: Two solutions which preserve local structure:

LLE

Locally Linear Embedding (LLE) :
@ Change to a local representation (at each point)

@ Base the local rep. on position of neighboring points

IsoMap:

o Estimate actual (geodesic) distances in p-dim. space

@ Find g-dim representation preserving those distances




Non-Linear Techniques

Both rely on the locally flat nature of the manifold
@ How do we find a locality in which this is true?
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Non-Linear Techniques

Both rely on the locally flat nature of the manifold
@ How do we find a locality in which this is true?

o k-nearest-neighbors
o epsilon-ball



Local Linear Embedding

@ Select a local neighborhood

@ Change each point into a coordinate system based on its
neighbors

e Find new (g-dim) coordinates which reproduce these local
relationships



LLE by image

Reconstruct with
linear weights

Map to embedded coordinates



Locally Linear Embedding

Find new (g-dim) coordinates which reproduce these local

coordinates.
This can be solved using the eigenstructure as well: We want the

min. variance



Locally Linear Embedding

minimize > 4 | Xi — Zﬁ:l W;X;|> W is n x n sparse matrix

minimize Y7 |yi — Zﬁ:l Wijyf|2

or 3.1, Zf:l My yi

M=(-W)T(-W)

M = n x n matrix



Distance Matrix

Build a graph with K-nearest neighbor or € nearest neighbor.

Geodesic Distance

Infer other interpoint distances by finding shortest paths on the
graph (Dijkstra’s algorithm)

Apply MDS to embed the nearest neighbors.




an Application

images from www.golfswingphotos.com




an Application
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Linear Interpolation



an Application
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Interpolation By Manifold
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other Applications

@ Pose estimation
@ image denoising

@ missing data interpolation
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Further Reading

@ MDS : Encyclopedia of Cognitive Science Multidimensional
Scaling Mark Steyvers

@ PCA: Jonathon Shlens, A Tutorial on Principal Component
Analysis or refer Wikipedia

o ISOMAP: A Global Geometric Framework for Nonlinear
Dimensionality Reduction Joshua B. Tenenbaum, Vin de Silva,
John C. Langford

@ LLE: Nonlinear Dimensionality Reduction by Locally Linear
Embedding Sam T. Roweis and Lawrence K. Saul
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Thank you!
http://home.iitk.ac.in/~ndubey/thesis



	Introduction
	Manifold
	Examples
	image as vector
	Importance
	Dimension Reduction Techniques

	Linear Methods
	PCA
	Example
	MDS
	Perception

	Non-Linear Techniques
	LLE
	Isomap
	References
	Further Reading


