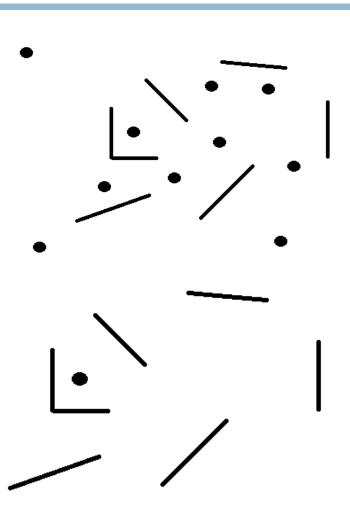
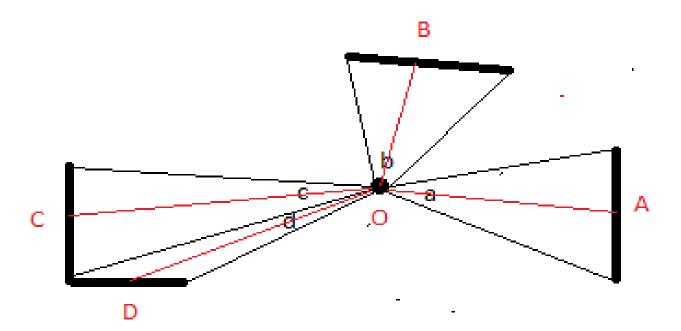

VISIBILITY-FEATURE BASED MATCHING OF HUMAN PERCEPTION

- We have conducted two visibility based psychological Experiments on children from age group 8-15.
- Experiments involved identifying objects position with respect to the container.
- The aim of the experiment was to get some idea of human perception of containment.


- The experiment involved a trajector and container.
- One of the containers was regular while the other was abstract container having some random lines.
- In the first part of the experiment there were many trajectors which were present in the picture.
- The task was to group the trajectors together.

Test cases for the first part

An example of Test case in 2nd part



The second part of the experiments involved the human subjects to grade the trajectors on the basis of their degree of Inness(0-5) and degree of their Outness(0-5).

RESULT: The data obtained in the first and second part were very similar. That is the grouping of trajectors in the 1st experiment were done on the basis of containment. Another point which was noted is that the data was very consistent with most of the subjects in the case of the regular container but the data was distributed(variation in the grading was more) the case of the abstract container. Hence this data would be helpful while matching with our computational model.

Computational Model - Terminologies

- Closed Angle
- Open Angle
- Closing Factor
- Scaling factor to normalize f(distance)

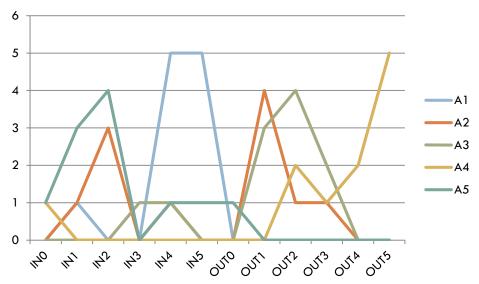
Containment

Containment Ratio = Open Angle / Closing Factor

- \square Closed angle = $\Sigma \alpha_i$
- \square Open angle = 360° $\Sigma\alpha_i$
- \square Closing Factor = $\Sigma f(d_i)^*\alpha_i / S.F.$
- \square S.F. = $\Sigma f(d_i) / N$

Model

- Image analysis identification of linear boundaries of container w.r.t. trajector
- Calculation of Closing Factor
- Training of the model using human perception data to find f(distance)
 - f(distance) is plotted vs Open angle/Containment Ratio
 - Best fit curve method is used to find f(distance)


DATA - Exp 1


Subjects	Set A	Set B
	1 00110	000111100
	200110	OOIIOIIIIO
	300110	0001111100
	400110	0001111100
	5 OOIIO	0011110100
	600110	001111100
	700110	0011011110
	8 00010	000111100
	900010	000111100
	1000110	OOIIIIIIO
	1100110	001111100
	12 OIIIO	0001101000
	1300110	OOIIIIIIO
	14 OIIIO	OOIIOIIIOI
	15 OIIIO	OOIIIIIIO
	1600000	000111100
	1700110	0001011110
	1800110	0001111100
	1900110	0001101100
	20 00110	000 0

DATA – Exp 2

lmages	INO	IN1	IN	12 IN	3 11	N4	IN5	OUT0	OUT1	OUT2	OUT3	OUT4	OUT5
A1			1			5	5						
A2			1	3		1			4	1	1	1	
A3					1	1			3	3	4	2	
A4		1									2	1	2 5
A5		1	3	4		1	1	1					
B1			2	1	1	2	2	3			1		1
B2			2	1	1		1		(5	2		
В3							1	2	1	:	2	1 :	2 4
B4			1	1	5	6							
B5		4		1	4	2	2						
B6			2	1	6	3	1						
B7				1	5	3		1		:	3		
В8				2	5	4		1					l
В9				1			1	1			4	1	5
B10												1 .	4 8

Representation of data

References

- Mukerjee A. et. al.; Grounded perceptual schemas: developmental acquisition of spatial concepts, ProceedingSC'06 Proceedings of the 2006 international conference on Spatial Cognition V: reasoning, action, interaction
- Kenny R. Coventry. 1999. Function, geometry and spatial prepositions: Three experiments. Spatial Cognition and Computation, 1:145–154.
- Wikipedia.org

THANK YOU