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Abstract

We tried to analyse the process through which we put objects into dif-
ferent categories.For example when we think of an apple, the characteries
of apple like it's shape, color, and taste comes into our mind . Likewise
spci�c objects de�ned by speci�c properties.

Properties of the object goes and store into our mind in the form
of Features Vectors. Basis on these speci�c properties mind can precisely
di�erentiate the object in a image .Clearly the overall process is not known
yet, but partially a lot of work [1],[2] has been done on the process of visual
categarization in human mind.
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1 Introduction

Here we tried to follow the computational model of object categorization given
by Jim Mutch and David G. Lowe [1], in which they try to re�ne the biologically-
inspired model of visual object classi�cation by adding the sparisity and local-
ized features concept in the model of Serre, Wolf, and Poggio [2].

In this model �rst Gabor �lters are applied at all positions and scales of an
image; feature complexity and position/scale invariance are then built up by al-
ternating template matching and max pooling operations. Sparsity is increased
by constraining the number of feature inputs, lateral inhibition, and feature
selection. This re�ned approach was applied on the database of Caltech 101
object categories[3].

On the basis of MRI data, di�erent kind of computational models has been
derived which follows the properties and response of di�erent units in visual
cortex(Brain area in which the visual processing happens).We �rst compute
the visual information (features extraction) of a particular object in the image.
After that we investigate the response (response matrix given by the model) of
these features vectors on images of the same type of object , a di�erent object
and a totally di�erent object.

2 Various areas in visual Cortex and their func-
tion during the vision

2.1 Primary visual cortex (V1)

The primary visual cortex is the well known visual area in the brain. It is
the simplest, earliest cortical visual area. V1 is very sensitive to the pattern
recognition by spatial information in vision. During the immediate recognition
(40 ms and further) individual V1 neurons have strong tuning to a small set of
stimuli(small changes in visual orientations, spatial frequencies and colors).

Function of V1 can be thought of as similar to many spatially local, com-
plex Fourier transforms, or more accurately, Gabor transforms. These �lters
together can carry out neuronal processing of spatial frequency, orientation,
motion, direction, speed (thus temporal frequency), and many other spatiotem-
poral features. Experiments of neurons substantiate these theories.

2.2 Visual area V2

Visual area V2, receives strong feedforward connections from V1 and sends
strong connections to V3, V4, and V5. Functionally, the responses of many
V2 neurons are de�ned by more complex properties, such as the orientation of
contours (Qiu and von der Heydt, 2005).

4



2.3 V3 , V4 & IT

The term third visual complex (V3) refers to the region of cortex located im-
mediately in front of V2. V3 is the third cortical area in the ventral stream,
receiving strong feedforward input from V2 and sending strong connections to
the PIT(posterior infertemporal area). It also receives direct inputs from V1,
especially for central space. V4 is the �rst area in the ventral stream to show
strong attentional modulation.

3 Model

This model based on properties of the ventral visual pathway in an �immediate
recognition�(�rst 200 ms) mode. Within this immediate recognition framework,
recognition of object classes from di�erent 3D viewpoints is thought to be based
on the learning of multiple 2D representations, rather than a single 3D repre-
sentation .So, we applied the model on images.

Images are reduced to feature vectors. The dictionary of features is shared
across all categories � all images �live� in the same feature space. Our aim is see
how the computed features vectors give response change to the same categaries
object and to the di�erent categories object.

Features are computed hierarchically in �ve layers: an initial image layer
and four subsequent layers.

3.1 Image layer

The model �rst convert the image to grayscale and scale the shorter edge to
140 pixels while maintaining the aspect ratio.Then we create 10 scales(factor
of between two scales 20.25) of the same image using bicubic interpolation and
arranged them into pyramid shape.Figure1

3.2 Bicubic interpolation

Suppose the function values f and the derivatives fx, fy and fxy are known at the
four corners (0,0), (1,0), (0,1), and (1,1) of the unit square. The interpolated
surface can then be written .P(x, y) =

∑∑
aix

iyj for x E {0,3)},y E {0,3}
It preserves �ne detail better.
�

Figure1: Image Layer[1]
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3.3 Gabor �lter (S1) layer

The S1 layer is computed from the image layer by centering 2D Gabor �lters
with 4 orientations at each possible position and scale. Computed S1 layer is a
4D (position(2D x,y),scale,orientation). Each unit represents the activation of
a particular Gabor �lter centered at that position/ scale. Figure 2 This layer
corresponds to V1 simple cells.

�

Figure2: Gabor �lter S1 layer[1]
�
The Gabor �lters are 11x11 in size, and are described by:
G(x, y) = exp

[
−
(
X2 + γ2Y 2

)
/2σ2

]
cos(2πX/λ)

where X = x cosθ= y sinθ and Y = x sinθ + y cosθ. X and Y vary between
-5 and 5, and θ varies between 0 and π. The parameters γ(aspect ratio=0.3),
σ(e�ective width=4.5), and λ(wavelength=5.6) are all taken from [7]. We use
the same size �lters for all scales.

The response of a patch of pixels X to a particular S1 �lter G is given by:

R(X,G) =
∥∥∥∑XiGi/

√∑
X2

i

∥∥∥
3.4 Local invariance (C1) layer

For each orientation, the S1 pyramid is convolved with a 3D max �lter, 10x10
units across in position(x,y) and 2 units deep in scale. A C1 unit's value is
simply the value of the maximum S1 unit (of that orientation) that falls within
the max �lter. The resulting C1 layer is smaller in spatial extent and has the
same number of feature types (orientations) as S1. Figure3 This layer provides
a model for V1 complex cells. The C1 units within for a 4x4 patch, this means
16 di�erent positions, but for each position,there are units representing each of
4 orientations.So, 4x4 patch means 4x4x4 = 64 C1 unit values.

�

Figure 3 : C1 layer[1]
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3.5 Intermediate feature (S2) layer

The S2 layer is intended to correspond to cortical area V4 or posterior IT. The
response of a patch of C1 units X to a particular S2 feature/prototype P, of size
n Ö n, is given by a Gaussian radial basis function:

R(X, P) = exp
(
−‖X − P‖2 /2σ2α

)
Both X and P have dimensionality n Ö n Ö 4, where n E {4, 8, 12, 16}. The

standard deviation σis set to 1 in all experiments.Figure 4
�

Figure 4 :S2 layer [1]

3.5.1 Sparsify S2 inputs

In brain real neurons are more selective among potential inputs.To increase
sparsity among an S2 unit's inputs, we reduce the number of inputs to an
S2 feature to one per C1 position.Here we choose the dominant identity and
magnitude orientation for each N*N positions in patch.So every resulting 4x4
prototype patch now contains only 16 C1 unit values, not 64.Figure 5

�

Figure 5 :Sparsify S2 inputs [1]
�
In conjunction with this we increase the number of Gabor �lter orientations

in S1 and C1 from 4 to 12. Since we're now looking at particular orientations,
rather than combinations of responses to all orientations, it becomes more im-
portant to represent orientation accurately.

3.5.2 Inhibit S1/C1 outputs

we ignore non-dominant orientations, we suppressing S1 and C1 unit outputs.
In cortex, lateral inhibition(the process whereby nerves can retard or prevent
the functioning of an organ or part) refers to units suppressing their less-active
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units. At each location, computed the minimum and maximum responses, Rmin
and Rmax, over all orientations. Any unit having R < Rmin +h(Rmax =Rmin)
has its response set to zero.Figure 6

�

Figure 6 : Inhibited Outputs [1]

3.6 Global invariance (C2) layer

Finally we create a d- dimensional vector, each element of which is the maximum
response (anywhere in the image) to one of the model's d prototype patches. At
this point, all position and scale information has been removed, i.e., we have a
�bag of features�.

3.6.1 Limit position/scale invariance in C2

The C2 layer simply takes the maximum response to each S2 feature over all
positions and scales. But there could be a false matching of tesing image with
training image due to the chance co-occurrence of features from di�erent objects
and/or background clutter. So, we want to know some geometric information
above the S2 level. In fact, receptive �elds of neurons in V4 and IT known are
limited to only a portion of the visual �eld and range of scales [4].

To model this, visual �eld of given S2 features �eld is restricted within the
region of ,relative to its location in the image from which it was originally
sampled, to ±tp% of image size and ±ts scales, where tp and ts are global
parameters.This approach assumes the system is �attending� close to the center
of the object. This is appropriate for datasets such as the Caltech 101, in which
most objects of interest are central and dominant.

4 Multiclass experiments (Caltech 101)

1. We chose training images at random from each category, placing 3 im-
ages(First of which is in the same catagories,second one is di�erent catagories
and Third one is blank page) in the test set,

2. Learn features vectors(C2) at random positions and scales from the train-
ing images (an equal number from each image),

3. Build C2 vectors for the 3 di�erent test images test and classify the test
Images basis on response matrix.
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5 Results

We have derived some response matrices for 10 di�erent categories of objects
with 8 training images and 3 di�erent test images for each category. Response
matrix implies that how close the test set is to the training set. It represent
the similarity on the scale of 1 and gives 1 for exact matching and 0 for not
matching at all.

The response matrix curve for one category(Revolver) is given as follows:-
�

Figure 7 : Response matrix of revolver with revolver.
�

Figure 8 : Response matrix of a revolver with boat.
�
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Figure 9 : Response matrix of a revolver with blank image.
�
Likewise we have done it for 10 catagories of objects and �nd out their

response matrix in tabular form with clearly shows that same categories object
shows more correlation.

Response matrix of di�erent objects in tabular form clearly shows that same
categories objects are more correlated. Then, we computed the di�erence(D)
between the test set and training set by adding the di�erence in response matrix
at every position (i.e. for every feature) from 1. On the basis of observed data
We can digitalize the result as:-

If D > 50, Object test image does not belonges to that categories (no)
If D < = 50, Object test image belonges to that categories (yes)
�
Tabular form of di�erent object categories compare with 3 di�er-

ent kind of test images.
Training Images Same Object test image Boat test image Blank page test image

1)Dollar 35.6939 (yes) 102.2775 (no) 125.3542 (no)
2)Menorah 48.3456 (yes) 76.6608 (no) 90.1453 (no)
3)Revolver 34.4904 (yes) 66.9993 (no) 74.0945 (no)
4)Airplane 35.7314 128.2040 (no) 138.8277 (no)
5)Buddha 43.9205 (yes) 50.8058 (no) 76.1193 (no)
6)Camera 55.4419 (no) 77.4703 (no) 113.3936 (no)
7)Chair 58.9212 (no) 75.2972 (no) 100.2698 (no)
8)Cup 48.3616 (yes) 54.2534 (no) 66.5087 (no)
9)Barrel 39.2537 (yes) 47.5643 (yes) 64.0353 (no)
10)Lamp 23.0590 (yes) 41.3912 (yes) 46.1661 (yes)

As we can see from the above results that images containing more speci�c
features (airplanes, chair ,dollar ,menorah ,revolver) can be easily distinguished
from the other object images. Similar trend can be observed for the biological
visual system. In biological visual system also it is easier to categories the object
with more speci�c features. While the features of more plane objects like barrel,
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lamp and camera are not clearly de�ne the object in vector space.Figure 10
�

Figure 10 : Graph showing comparison of Di�erent object's D values.

6 Conclusion

Both biological and computer vision systems face the same computational con-
straints .So, We can expect computer vision research to bene�t from the use
of similar basis function for describing images. In other words,this approach
strengthening the case for investigating biologically-motivated approaches to
object recognition.
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