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Introduction 

 

"Going beyond Given Information", there are two basic ways in which this can be achieved viz. 

Deductively or Inductively. In Deductive infrerences we draw out inferences that were previously 

unstated but were implicit. However, in Inductive inferences we arrive at conclusions in a more 

fundamental way, which are likely but not certain as per the given set of information.  

 

Property Induction 

 

P1, . . . Pn -> C (property) : n-premise argument 

where, Pi � ith premise and C is the conclusion.  

 

For example, Hippos have skin that is more resistant to penetration than most synthetic fibers. 

Therefore housecats have skin that is more resistant to penetration than most synthetic fibers.  

Can be represented as hippos -> housecats (thick skin).  

 

Inductive Phenomena 

 

The most systematic studies of property induction have generally used blank properties. For 

arguments involving animal species, blank properties are properties that are recognized as 

biological but about which little else is known�for example, �has enzyme X132.� For reasons 

described below, we usually classify arguments according to inductive context instead of the 

�blankness� of the property involved. Arguments like horses -> cows (enzyme) belong to the 

default biological context. We call it the default context since it remains active even when a 

recognizably biological property (�has enzyme X132�) is replaced with a completely blank 

property (�has property P�). 

 

Premise-conclusion similarity is the effect that argument strength increases as the premises become 

more similar to the conclusion: for example, horses -> dolphins (enzyme) is weaker than seals -> 

dolphins (enzyme). 

 

Typicality is the effect that argument strength increases as the premises become more typical of the 

conclusion category. For example, seals -> mammals (enzyme) is weaker than horses -> mammals 

(enzyme), since seals are less typical mammals than horses. 

 

Diversity is the effect that argument strength increases as the diversity of the premises increases. 

For example, horses, rhinos -> mammals (enzyme) is weaker than seals, squirrels -> mammals 

(enzyme). 

 

Problem The problem is especially difficult because arguments that are strong according to one 

criterion may be weak according to another: for example, seals, squirrels -> mammals (enzyme) has 

premises that are quite diverse, but are not very typical of the conclusion. For reasons of this sort, 

our primary measure of model performance will consider quantitative predictions across collections 

of many arguments. 

 



The strength of an argument often depends critically on the property involved. 

For example, brontosaurus -> triceratops (cold blood) is relatively strong, but 

brontosaurus -> triceratops (weighs one ton) is relatively weak 

 

Consider the arguments flies -> bees (P) and flowers -> bees (P) where P is a completely blank 

predicate (�has property P�). The first argument triggers the default biological context, but the 

second argument invokes knowledge about feeding relations. For this reason we will classify 

arguments according to the inductive context they trigger instead of the property they use. This 

brief survey of the literature suggests that property induction depends on the inductive context in 

subtle and intricate ways. 

 

Formal Models 

 

The SCM proposes that the strength of an inductive argument is a linear combination of two 

factors: the similarity of the conclusion to the premises and the extent to which the premises 

�cover� the smallest superordinate taxonomic category including both premises and conclusion. 

 

Instead of founding a model on similarity, an appealing alternative is to start with a collection of 

features. In some settings it will be necessary to assume that the features are extracted from another 

kind of input (linguistic input, say), but in general the move from similarity to features is a move 

towards models that can be directly grounded in experience. 

 

Bayesian Property Induction 

 

We formalize this Bayesian approach by specifying a framework with two components: a recipe for 

specifying prior distributions, and an engine for inductive inference. The Bayesian Inference Engine  



 

 

Generating a Prior 

 

The prior distribution p(f) should capture expectations about the property or feature of interest. 

Formalizing the relevant prior knowledge may initially seem like a difficult problem�if there are n 

species, somehow we need to generate 2n numbers, one for each possible feature vector. 

 

Instead, we develop an approach where the prior p(f) is generated by two kinds of background 

knowledge: knowledge about relationships between the categories in a domain, and knowledge 

about how the property of interest depends on these relationships. 

 

These two aspects of background knowledge can be formalized as a structure S and a stochastic 

process T defined over this structure. 

 

A central theme of our work is that that different kinds of structures can capture different kinds of 

relationships between categories. Tree structures can capture taxonomic relationships between 



categories, multidimensional spaces can capture proximity relationships between categories, graphs 

can capture directed relationships between categories, and formulae in predicate logic can capture 

all of these relationships and many others besides. 

 

 

We will occasionally use the term �theory� to refer to a structured statistical model that generates 

a prior p(f) for Bayesian inference. Each of the theories we consider is a combination of a structure 

and a stochastic process defined over that structure. 

 

Taxonomic Reasoning 

 

Generating a prior for any inductive context involves a two-step procedure. 

 

First we must identify the structure that best captures the relevant relationships between the 

categories in the domain. 

 



Next we must identify a stochastic process that captures knowledge about how properties tend to be 

distributed over this representation. 

 

A natural representation for the default biological context is a tree structure where the animals are 

located at the leaves of the tree. 

 

The tree structure ensures that species nearby in the tree will tend to have similar properties. The 

process, however, should allow species to share a property even if they are very distant in the tree: 

as a biologist might say, we need to allow for the possibility of convergent evolution. We also need 

to allow for exceptions�for example, even though penguins may be located near all the other birds 

in the tree, we know that they lack some important avian features. All of these requirements can be 

captured by a process we will call the diffusion process. 

 

We describe the diffusion process as a recipe for generating a single feature vector. If we create a 

large sample of feature vectors by following the recipe many times, the prior probability of any 

feature vector is proportional to the number of times it appears in the sample. 

 

 



More formally, suppose that we are working with a set of n species, and we have a tree structure S 

where the species are located at the leaves of the tree. To generate a binary feature f, we first 

generate a continuous feature y that includes a real-valued label for every node in graph S. The 

feature y is drawn from a prior which ensures that it tends to vary smoothly over structure S. 

Formally, y is drawn from a multivariate Gaussian distribution with zero mean and a covariance 

matrix that encourages nearby nodes in the tree to have similar labels. 

 

If we sample continuous features y using this covariance matrix, pairs with high covariance (e.g. 

chimps and gorillas) will tend to have similar feature values.  

 

After generating a continuous feature y, we convert it to a binary vector f by thresholding at zero. 

The complete generative model can be written as: 

 

y ~ N(0,K)  

fi = F(yi)  

where, F(yi)=1 if yi > 0 

else 0  

The diffusion property leads to: 

 

Symmetry is the first of these phenomena: for all pairs of categories (a, b), the diffusion process 

predicts that a -> b and b -> a are equally strong.  

 

Distance effect: the strength of a one-premise argument decreases as the distance between premise 

and conclusion increases.  

 

Spatial Reasoning 



 

 

Threshold Reasoning 

 

Like the taxonomic and spatial models, our threshold model uses a prior p(f) induced by a 

stochastic process defined over a structure. The structure is a one-dimensional space that 

corresponds to a familiar dimension. For the sake of example, suppose that the underlying 

dimension is skin toughness (Figure 10a), and that skin toughness can be measured on a scale from 

0 to 100. The property of interest should correspond roughly to a threshold along this dimension: all 

species with skin toughness greater than some value should have �skin that is more resistant to 

penetration than most synthetic fibers.� To capture this intuition, we introduce a stochastic process 

called the drift process that tends to generate features shared by all categories beyond some point in 

the underlying dimension. 

 

Causal Reasoning 

 

Our threshold model captures one kind of reasoning that cannot be explained by similarity alone, 



but many other examples can be found in the literature (S. A. Gelman & Markman, 1986; Heit & 

Rubinstein, 1994; Shafto & Coley, 2003; Medin et al., 2005). One class of examples focuses on 

causal relations: for example, gazelles -> lions (babesiosis) is stronger than lions -> gazells 

(babesiosis), where babesiosis is an infectious disease. 

 

Like all of our models, the causal model relies on a structure and a stochastic process. The structure 

captures knowledge about predator-prey relationships among a group of species. This knowledge 

can be represented as a food web, or a directed graph with an edge from B to A if B is eaten by A. 

The stochastic process captures knowledge about how diseases are transmitted over a food web. 

 

 

The curve also suggests that the causal model leads to asymmetry: inferences up the food chain are 

stronger than inferences in the opposite direction. 

 

The causal model provides a good account of inferences about the disease property, but not the 

genetic property, and the taxonomic model shows the opposite pattern of results. This double 

dissociation provides further evidence that different prior distributions are needed in different 



inductive contexts, and that a Bayesian approach to property induction can capture very different 

patterns of inference when provided with an appropriately structured prior. 

 

Acquiring Background Knowledge 

 

Each of our models relies on a structure and a stochastic process, and this section discusses how 

these components of background knowledge can be acquired by a learner. 
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