
Chapter 6

Experimental Design in Psychological Research

Daniel J. Levitin

6.1 Introduction

Experimental design is a vast topic. As one thinks about the information derived
from scientific studies, one confronts difficult issues in statistical theory and the
limits of knowledge. In this chapter, we confine our discussion to a few of the
most important issues in experimental design. This will enable students with
no background in behavior research to critically evaluate psychological experi-
ments, and to better understand the nature of empirical research in cognitive
science.

Experimental psychology is a young science. The first laboratory of experi-
mental psychology was established just over 100 years ago. Consequently, there
are a great many mysteries about human behavior, perception, and perfor-
mance that have not yet been solved. This makes it an exciting time to engage
in psychological research—the field is young enough that there is still a great
deal to do, and it is not difficult to think up interesting experiments. The goal of
this chapter is to guide the reader in planning and implementing experiments,
and in thinking about good experimental design.

A ‘‘good’’ experiment is one in which variables are carefully controlled or
accounted for so that one can draw reasonable conclusions from the experi-
ment’s outcome.

6.2 The Goals of Scientific Research

Generally, scientific research has four goals:

1. Description of behavior
2. Prediction of behavior
3. Determination of the causes of behavior
4. Explanations of behavior

These goals apply to the physical sciences as well as to the behavioral and life
sciences. In basic science, the researcher’s primary concern is not with applica-
tions for a given finding. The goal of basic research is to increase our under-
standing of how the world works, or how things came to be the way they are.

Describing behavior impartially is the foremost task of the descriptive study,
and because this is never completely possible, one tries to document any
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systematic biases that could influence descriptions (goal 1). By studying a
phenomenon, one frequently develops the ability to predict certain behaviors or
outcomes (goal 2), although prediction is possible without an understanding
of underlying causes (we’ll look at some examples in a moment). Controlled
experiments are one tool that scientists use to reveal underlying causes so that
they can advance from merely predicting behavior to understanding the cause
of behavior (goal 3). Explaining behavior (goal 4) requires more than just a
knowledge of causes; it requires a detailed understanding of the mechanisms
by which the causal factors perform their functions.

To illustrate the distinction between the four goals of scientific research, con-
sider the history of astronomy. The earliest astronomers were able to describe
the positions and motions of the stars in the heavens, although they had no
ability to predict where a given body would appear in the sky at a future date.
Through careful observations and documentation, later astronomers became
quite skillful at predicting planetary and stellar motion, although they lacked an
understanding of the underlying factors that caused this motion. Newton’s laws
of motion and Einstein’s special and general theories of relativity, taken to-
gether, showed that gravity and the contour of the space–time continuum cause
the motions we observe. Precisely how gravity and the topology of space–time
accomplish this still remains unclear. Thus, astronomy has advanced to the de-
termination of causes of stellar motion (goal 3), although a full explanation re-
mains elusive. That is, saying that gravity is responsible for astronomical motion
only puts a name on things; it does not tell us how gravity actually works.

As an illustration from behavioral science, one might note that people who
listen to loud music tend to lose their high-frequency hearing (description).
Based on a number of observations, one can predict that individuals with nor-
mal hearing who listen to enough loud music will suffer hearing loss (predic-
tion). A controlled experiment can determine that the loud music is the cause of
the hearing loss (determining causality). Finally, study of the cochlea and basi-
lar membrane, and observation of damage to the delicate hair cells after expo-
sure to high-pressure sound waves, meets the fourth goal (explanation).

6.3 Three Types of Scientific Studies

In science there are three broad classes of studies: controlled studies, correla-
tional studies, and descriptive studies. Often the type of study you will be able
to do is determined by practicality, cost, or ethics, not directly by your own
choice.

6.3.1 Controlled Studies (‘‘True Experiments’’)
In a controlled experiment, the researcher starts with a group of subjects and
randomly assigns them to an experimental condition. The point of random
assignment is to control for extraneous variables that might affect the outcome
of the experiment: variables that are different from the variable(s) being studied.
With random assignment, one can be reasonably certain that any differences
among the experimental groups were caused by the variable(s) manipulated in
the experiment.
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A controlled experiment in medical research might seek to discover if a cer-
tain food additive causes cancer. The researcher might randomly divide a group
of laboratory mice into two smaller groups, giving the food additive to one
group and not to the other. The variable he/she is interested in is the effect of
the food additive; in the language of experimental design, this is called the
‘‘independent variable.’’ After a period of time, the researcher compares the
mortality rates of the two groups; this quantity is called the ‘‘dependent vari-
able’’ (figure 6.1). Suppose the group that received the additive tended to die
earlier. In order to deduce that the additive caused the difference between the
groups, the conditions must have been identical in every other respect. Both
groups should have had the same diet, same feeding schedule, same tempera-
ture in their cages, and so on. Furthermore, the two groups of mice should have
started out with similar characteristics, such as age, sex, and so on, so that these
variables—being equally distributed between the two groups—can be ruled
out as possible causes of the difference in mortality rates.

The two key components of a controlled experiment are random assignment of
subjects, and identical experimental conditions (see figure 6.1). A researcher might
have a hypothesis that people who study for an exam while listening to music
will score better than people who study in silence. In the language of experi-
mental design, music-listening is the independent variable, and test performance,
the quantity to be measured, is the dependent variable.

No one would take this study seriously if the subjects were divided into two
groups based on how they did on the previous exam—if, for instance, the
top half of the students were placed in the music-listening condition, and the

Figure 6.1

In a controlled experiment, subjects are randomly assigned to conditions, and differences between

groups are measured.
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bottom half of the students in the silence condition. Then if the result of the
experiment was that the music listeners as a group tended to perform better on
their next exam, one could argue that this was not because they listened to
music while they studied, but because they were the better students to begin
with.

Again, the theory behind random assignment is to have groups of subjects
who start out the same. Ideally, each group will have similar distributions on
every conceivable dimension—age, sex, ethnicity, IQ, and variables that you
might not think are important, such as handedness, astrological sign, or favor-
ite television show. Random assignment makes it unlikely that there will be
any large systematic differences between the groups.

A similar design flaw would arise if the experimental conditions were different.
For example, if the music-listening group studied in a well-lit room with win-
dows, and the silence group studied in a dark, windowless basement, any dif-
ference between the groups could be due to the different environments. The
room conditions become confounded with the music-listening conditions, such
that it is impossible to deduce which of the two is the causal factor.

Performing random assignment of subjects is straightforward. Conceptually,
one wants to mix the subjects’ names or numbers thoroughly, then draw them
out of a hat. Realistically, one of the easiest ways to do this is to generate a
different random number for each subject, and then sort the random numbers.
If n equals the total number of subjects you have, and g equals the number of
groups you are dividing them into, the first n/g subjects will comprise the first
group, the next n/g will comprise the second group, and so on.

If the results of a controlled experiment indicate a difference between groups,
the next question is whether these findings are generalizable. If your initial
group of subjects (the large group, before you randomly assigned subjects to
conditions) was also randomly selected (called random sampling or random selec-
tion, as opposed to random assignment), this is a reasonable conclusion to draw.
However, there are almost always some constraints on one’s initial choice of
subjects, and this constrains generalizability. For example, if all the subjects
you studied in your music-listening experiment lived in fraternities, the finding
might not generalize to people who do not live in fraternities. If you want to be
able to generalize to all college students, you would need to take a representa-
tive sample of all college students. One way to do this is to choose your sub-
jects randomly, such that each member of the population you are considering
(college students) has an equal likelihood of being placed in the experiment.

There are some interesting issues in representative sampling that are beyond
the scope of this chapter. For example, if you wanted to take a representative
sample of all American college students and you chose American college stu-
dents randomly, it is possible that you would be choosing several students
from some of the larger colleges, such as the University of Michigan, and you
might not choose any students at all from some of the smaller colleges, such as
Bennington College; this would limit the applicability of your findings to the
colleges that were represented in your sample. One solution is to conduct a
stratified sample, in which you first randomly select colleges (making it just as
likely that you’ll choose large and small colleges) and then randomly select the
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same number of students from each of those colleges. This ensures that colleges
of different sizes are represented in the sample. You then weight the data from
each college in accordance with the percentage contribution each college makes
to the total student population of your sample. (For further reading, see
Shaughnessy and Zechmeister 1994.)

Choosing subjects randomly requires careful planning. If you try to take a
random sample of Stanford students by standing in front of the Braun Music
Building and stopping every third person coming out, you might be selecting a
greater percentage of music students than actually exists on campus. Yet truly
random samples are not always practical. Much psychological research is con-
ducted on college students who are taking an introductory psychology class,
and are required to participate in an experiment for course credit. It is not at all
clear whether American college students taking introductory psychology are
representative of students in general, or of people in the world in general, so
one should be careful not to overgeneralize findings from these studies.

6.3.2 Correlational Studies
A second type of study is the correlational study (figure 6.2). Because it is not
always practical or ethical to perform random assignments, scientists are
sometimes forced to rely on patterns of co-occurrence, or correlations between
events. The classic example of a correlational study is the link between cigarette
smoking and cancer. Few educated people today doubt that smokers are more
likely to die of lung cancer than are nonsmokers. However, in the history of
scientific research there has never been a controlled experiment with human
subjects on this topic. Such an experiment would take a group of healthy non-
smokers, and randomly assign them to two groups, a smoking group and a
nonsmoking group. Then the experimenter would simply wait until most of the
people in the study have died, and compare the average ages and causes of
death of the two groups. Because our hypothesis is that smoking causes cancer,
it would clearly be unethical to ask people to smoke who otherwise would not.

The scientific evidence we have that smoking causes cancer is correlational.
That is, when we look at smokers as a group, a higher percentage of them do
indeed develop fatal cancers, and die earlier, than do nonsmokers. But without
a controlled study, the possibility exists that there is a third factor—a mysteri-
ous ‘‘factor x’’—that both causes people to smoke and to develop cancer. Per-
haps there is some enzyme in the body that gives people a nicotine craving,
and this same enzyme causes fatal cancers. This would account for both out-
comes, the kinds of people who smoke and the rate of cancers among them,
and it would show that there is no causal link between smoking and cancer.

In correlational studies, a great deal of effort is devoted to trying to uncover
differences between the two groups studied in order to identify any causal fac-
tors that might exist. In the case of smoking, none have been discovered so far,
but the failure to discover a third causal factor does not prove that one does not
exist. It is an axiom in the philosophy of science that one can prove only the
presence of something; one can’t prove the absence of something—it could al-
ways be just around the corner, waiting to be discovered in the next experiment
(Hempel 1966). In the real world, behaviors and diseases are usually brought
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on by a number of complicated factors, so the mysterious third variable, ‘‘factor
x,’’ could in fact be a collection of different, and perhaps unrelated, variables
that act together to cause the outcomes we observe.

An example of a correlational study with a hypothesized musical cause is
depicted in figure 6.2. Such a study would require extensive interviews with the
subjects (or their survivors), to try to determine all factors that might separate
the subjects exhibiting the symptom from the subjects without the symptom.

The problem with correlational studies is that the search for underlying fac-
tors that account for the differences between groups can be very difficult. Yet
many times, correlational studies are all we have, because ethical considera-
tions preclude the use of controlled experiments.

6.3.3 Descriptive Studies
Descriptive studies do not look for differences between people or groups, but
seek only to describe an aspect of the world as it is. A descriptive study in
physics might seek to discover what elements make up the core of the planet
Jupiter. The goal in such a study would not be to compare Jupiter’s core with

Figure 6.2

In a correlational study, the researcher looks for a relation between two observed behaviors—in this

case, the relation between untimely death and listening to Madonna recordings.
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the core of other planets, but to learn more about the origins of the universe. In
psychology, we might want to know the part of the brain that is activated when
someone performs a mental calculation, or the number of pounds of fresh green
peas the average Canadian eats in a year (figure 6.3). Our goal in these cases is
not to contrast individuals but to acquire some basic data about the nature of
things. Of course, descriptive studies can be used to establish ‘‘norms,’’ so that
we can compare people against the average, but as their name implies, the pri-
mary goal in descriptive experiments is often just to describe something that
had not been described before. Descriptive studies are every bit as useful as
controlled experiments and correlational studies—sometimes, in fact, they are
even more valuable because they lay the foundation for further experimental
work.

6.4 Design Flaws in Experimental Design

6.4.1 Clever Hans
There are many examples of flawed studies or flawed conclusions that illustrate
the difficulties in controlling extraneous variables. Perhaps the most famous
case is that of Clever Hans.

Clever Hans was a horse owned by a German mathematics teacher around
the turn of the twentieth century. Hans became famous following many dem-
onstrations in which he could perform simple addition and subtraction, read
German, and answer simple questions by tapping his hoof on the ground
(Watson 1967). One of the first things that skeptics wondered (as you might) is
whether Hans would continue to be clever when someone other than his owner
asked the questions, or when Hans was asked questions that he had never
heard before. In both these cases, Hans continued to perform brilliantly, tap-
ping out the sums or differences for arithmetic problems.

In 1904, a scientific commission was formed to investigate Hans’s abilities
more carefully. The commission discovered, after rigorous testing, that Hans
could never answer a question if the questioner did not also know the answer,

Figure 6.3

In a descriptive study, the researcher seeks to describe some aspect of the state of the world, such as

people’s consumption of green peas.
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or if Hans could not see his questioner. It was finally discovered that Hans had
become very adept at picking up subtle (and probably unintentional) move-
ments on the part of the questioner that cued him as to when he should stop
tapping his foot. Suppose a questioner asked Hans to add 7 and 3. Hans would
start tapping his hoof, and keep on tapping until the questioner stopped him
by saying ‘‘Right! Ten!’’ or, more subtly, by moving slightly when the correct
answer was reached.

You can see how important it is to ensure that extraneous cues or biases do
not intrude into an experimental situation.

6.4.2 Infants’ Perception of Musical Structure
In studies of infants’ perception of music, infants typically sit in their mother’s
lap while music phrases are played over a speaker. Infants tend to turn their
heads toward a novel or surprising event, and this is the dependent variable in
many infant studies; the point at which the infants turn their heads indicates
when they perceive a difference in whatever is being played. Suppose you ran
such a study and found that the infants were able to distinguish Mozart selec-
tions that were played normally from selections of equal length that began or
ended in the middle of a musical phrase. You might take this as evidence that
the infants have an innate understanding of musical phraseology.

Are there alternative explanations for the results? Suppose that in the exper-
imental design, the mothers could hear the music, too. The mothers might
unconsciously cue the infants to changes in the stimulus that they (the mothers)
detect. A simple solution is to have the mothers wear headphones playing
white noise, so that their perception of the music is masked.

6.4.3 Computers, Timing, and Other Pitfalls
It is very important that you not take anything for granted as you design a
careful experiment, and control extraneous variables. For example, psycholo-
gists studying visual perception frequently present their stimuli on a computer
using the MacIntosh or Windows operating system. In a computer program,
the code may specify that an image is to remain on the computer monitor for a
precise number of milliseconds. Just because you specify this does not make it
happen, however. Monitors have a refresh rate (60 or 75 Hz is typical), so the
‘‘on time’’ of an image will always be an integer multiple of the refresh cycle
(13.33 milliseconds for a 75 Hz refresh rate) no matter what you instruct
the computer to do in your code. To make things worse, the MacIntosh and
Windows operating systems do not guarantee ‘‘refresh cycle accuracy’’ in their
updating, so an instruction to put a new image on the screen may be delayed
an unknown amount of time.

It is important, therefore, always to verify, using some external means, that
the things you think are happening in your experiment are actually happening.
Just because you leave the volume control on your amplifier at the same spot
doesn’t mean the volume of a sound stimulus you are playing will be the same
from day to day. You should measure the output and not take the knob posi-
tion for granted. Just because a frequency generator is set for 1000 Hz does not
mean it is putting out a 1000 Hz signal. It is good science for you to measure
the output frequency yourself.
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6.5 Number of Subjects

How many subjects are enough? In statistics, the word ‘‘population’’ refers to
the total group of people to which the researcher wishes to generalize findings.
The population might be female sophomores at Stanford, or all Stanford stu-
dents, or all college students in the United States, or all people in the United
States. If one is able to draw a representative sample of sufficient size from a
population, one can make inferences about the whole population based on a
relatively small number of cases. This is the basis of presidential polls, for ex-
ample, in which only 2000 voters are surveyed, and the outcome of an election
can be predicted with reasonable accuracy.

The size of the sample required is dependent on the degree of homogeneity
or heterogeneity in the total population you are studying. In the extreme, if you
are studying a population that is so homogeneous that every individual is
identical on the dimensions being studied, a sample size of one will provide all
the information you need. At the other extreme, if you are studying a popula-
tion that is so heterogeneous that each individual differs categorically on the
dimension you are studying, you will need to sample the entire population.

As a ‘‘rough-and-ready’’ rule, if you are performing a descriptive perceptual
experiment, and the phenomenon you are studying is something that you ex-
pect to be invariant across people, you need to use only a few subjects, perhaps
five. An example of this type of study would be calculating threshold sensitiv-
ities for various sound frequencies, such as was done by Fletcher and Munson
(1933).

If you are studying a phenomenon for which you expect to find large indi-
vidual differences, you might need between 30 and 100 subjects. This depends
to some degree on how many different conditions there are in the study. In
order to obtain means with a relatively small variance, it is a good idea to have
at least five to ten subjects in each experimental condition.

6.6 Types of Experimental Designs

Suppose you are researching the effect of music-listening on studying effi-
ciency, as mentioned at the beginning of this chapter. Let’s expand on the sim-
pler design described earlier. You might divide your subjects into five groups:
two experimental groups and three control groups. One experimental group
would listen to rock music, and the other would listen to classical music. Of the
three control groups, one would listen to rock music for the same number of
minutes per day as the experimental group listening to rock (but not while they
were studying); a second would do the same for classical music; the third
would listen to no music at all. This is called a between-subjects design, because
each subject is in one condition and one condition only (also referred to as an
independent groups design). If you assign 10 subjects to each experimental con-
dition, this would require a total of 50 subjects. Table 6.1 shows the layout of
this experiment. Each distinct box in the table is called a cell of the experiment,
and subject numbers are filled in for each cell. Notice the asymmetry for the no
music condition. The experiment was designed so that there is only one ‘‘no
music’’ condition, whereas there are four music conditions of various types.
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Testing 50 subjects might not be practical. An alternative is a within-subjects
design, in which every subject is tested in every condition (also called a repeated
measures design). In this example, a total of ten subjects could be randomly
divided into the five conditions, so that two subjects experience each condition
for a given period of time. Then the subjects switch to another condition. By the
time the experiment is completed, ten observations have been collected in each
cell, and only ten subjects are required.

The advantage of each subject experiencing each condition is that you can
obtain measures of how each individual is affected by the manipulation, some-
thing you cannot do in the between-subjects design. It might be the case that
some people do well in one type of condition and other people do poorly in it,
and the within-subjects design is the best way to show this. The obvious advan-
tage to the within-subjects design is the smaller number of subjects required.
But there are disadvantages as well.

One disadvantage is demand characteristics. Because each subject experiences
each condition, they are not as naive about the experimental manipulation.
Their performance could be influenced by a conscious or unconscious desire to
make one of the conditions work better. Another problem is carryover effects.
Suppose you were studying the effect of Prozac on learning, and that the half-
life of the drug is 48 hours. The group that gets the drug first might still be
under its influence when they are switched to the nondrug condition. This is a
carryover effect. In the music-listening experiment, it is possible that listening to
rock music creates anxiety or exhilaration that might last into the next condition.

A third disadvantage of within-subjects designs is order effects, and these are
particularly troublesome in psychophysical experiments. An order effect is sim-
ilar to a carryover effect, and it concerns how responses in an experiment might
be influenced by the order in which the stimuli or conditions are presented. For
instance, in studies of speech discrimination, subjects can habituate (become
used to, or become more sensitive) to certain sounds, altering their threshold
for the discriminability of related sounds. A subject who habituates to a certain
sound may respond differently to the sound immediately following it than he/
she normally would. For these reasons, it is important to counterbalance the
order of presentations; presenting the same order to every subject makes it dif-
ficult to account for any effects that are due merely to order.

One way to reduce order effects is to present the stimuli or conditions in
random order. In some studies, this is sufficient, but to be really careful about
order effects, the random order simply is not rigorous enough. The solution is
to use every possible order. In a within-subjects design, each subject would

Table 6.1

Between-subjects experiment on music and study habits

Condition Only while studying Only while not studying

Music

Classical Subjects 1–10 Subjects 11–20

Rock Subjects 21–30 Subjects 31–40

No music Subjects 41–50 Subjects 41–50
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complete the experiment with each order. In a between-subjects design, different
subjects would be assigned different orders. The choice will often depend on
the available resources (time and availability of subjects). The number of pos-
sible orders is N! (‘‘n factorial’’), where N equals the number of stimuli. With
two stimuli there are two possible orders ð2! ¼ 2� 1Þ; with three stimuli there
are six possible orders ð3! ¼ 3� 2� 1Þ; with six stimuli there are 720 possible
orders ð6! ¼ 6� 5� 4� 3� 2� 1Þ. Seven hundred twenty orders is not practical
for a within-subjects design, or for a between-subjects design. One solution in
this case is to create an order that presents each stimulus in each serial position.
A method for accomplishing this involves using the Latin Square. For even-
numbered N, the size of the Latin Square will be N �N; therefore, with six
stimuli you would need only 36 orders, not 720. For odd-numbered N, the size
of the Latin Square will be N � 2N. Details of this technique are covered in ex-
perimental design texts such as Kirk (1982) and Shaughnessy and Zechmeister
(1994).

6.7 Ethical Considerations in Using Human Subjects

Some experiments on human subjects in the 1960s and 1970s raised questions
about how human subjects are treated in behavioral experiments. As a result,
guidelines for human experimentation were established. The American Psy-
chological Association, a voluntary organization of psychologists, formulated a
code of ethical principles (American Psychological Association 1992). In addi-
tion, most universities have established committees to review and approve re-
search using human subjects. The purpose of these committees is to ensure that
subjects are treated ethically, and that fair and humane procedures are fol-
lowed. In some universities, experiments performed for course work or experi-
ments done as ‘‘pilot studies’’ do not require approval, but these rules vary
from place to place, so it is important to determine the requirements at your
institution before engaging in any human subject research.

It is also important to understand the following four basic principles of ethics
in human subject research:

1. Informed consent. Before agreeing to participate in an experiment, sub-
jects should be given an accurate description of their task in the experi-
ment, and told any risks involved. Subjects should be allowed to decline, or
to discontinue participation in the experiment at any time without penalty.
2. Debriefing. Following the experiment, the subjects should be given an
explanation of the hypothesis being tested and the methods used. The ex-
perimenter should answer any questions the subjects have about the pro-
cedure or hypothesis. Many psychoacoustic experiments involve difficult
tasks, leading some subjects to feel frustrated or embarrassed. Subjects
should never leave an experiment feeling slow, stupid, or untalented. It is
the experimenter’s responsibility to ensure that the subjects understand
that these tasks are inherently difficult, and when appropriate, the sub-
jects should be told that the data are not being used to evaluate them
personally, but to collect information on how the population in general
can perform the task.
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3. Privacy and confidentiality. The experimenter must carefully guard the
data that are collected and, whenever possible, code and store the data in
such a way that subjects’ identities remain confidential.
4. Fraud. This principle is not specific to human subjects research, but
applies to all research. An essential ethical standard of the scientific com-
munity is that scientific researchers never fabricate data, and never know-
ingly, intentionally, or through carelessness allow false data, analyses, or
conclusions to be published. Fraudulent reporting is one of the most seri-
ous ethical breaches in the scientific community.

6.8 Analyzing Your Data

6.8.1 Quantitative Analysis

Measurement Error Whenever you measure a quantity, there are two compo-
nents that contribute to the number you end up with: the actual value of the
thing you are measuring and some amount of measurement error, both human
and mechanical. It is an axiom of statistics that measurement error is just as
likely to result in an overestimate as an underestimate of the true value. That is,
each time you take a measurement, the error term (let’s call it epsilon) is just as
likely to be positive as negative. Over a large number of measurements, the
positive errors and negative errors will cancel out, and the average value of
epsilon will approach 0. The larger the number of measurements you make, the
closer you will get to the true value. Thus, as the number of measurements
approaches infinity, the arithmetic average of your measurements approaches
the true quantity being measured. Suppose we are measuring the weight of a
sandbag.

Formally, we would write:

n !y; e ¼ 0

where e ¼ the mean of epsilon, and

n !y; w ¼ w

where w ¼ the mean of all the weight measurements and w ¼ the true weight.
When measuring the behavior of human subjects on a task, you encounter

not only measurement error but also performance error. The subjects will not
perform identically every time. As with measurement error, the more observa-
tions you make, the more likely it is that the performance errors cancel each
other out. In psychoacoustic tasks the performance errors can often be rela-
tively large. This is the reason why one usually wants to have the subject per-
form the same task many times, or to have many subjects perform the task a
few times.

Because of these errors, the value of your dependent variable(s) at the end
of the experiment will always deviate from the true value by some amount.
Statistical analysis helps in interpreting these differences (Bayesian inferencing,
meta-analyses, effect size analysis, significance testing) and in predicting the
true value (point estimates and confidence intervals). The mechanics of these
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tests are beyond the scope of this chapter, and the reader is referred to the sta-
tistics textbooks mentioned earlier.

Significance Testing Suppose you wish to observe differences in interval iden-
tification ability between brass players and string players. The question is
whether the difference you observe between the two groups can be wholly
accounted for by measurement and performance error, or whether a difference of
the size you observe indicates a true difference in the abilities of these musicians.

Significance tests provide the user with a ‘‘p value,’’ the probability that the
experimental result could have arisen by chance. By convention, if the p value
is less than .05, meaning that the result could have arisen by chance less than
5% of the time, scientists accept the result as statistically significant. Of course,
p < :05 is arbitrary, and it doesn’t deal directly with the opposite case, the
probability that the data you collected indicate a genuine effect, but the statis-
tical test failed to detect it (a power analysis is required for this). In many
studies, the probability of failing to detect an effect, when it exists, can soar to
80% (Schmidt 1996). An additional problem with a criterion of 5% is that a
researcher who measures 20 different effects is likely to measure one as signifi-
cant by chance, even if no significant effect actually exists.

Statistical significance tests, such as the analysis of variance (ANOVA), the
f-test, chi-square test, and t-test, are methods to determine the probability that
observed values in an experiment differ only as a result of measurement errors.
For details about how to choose and conduct the appropriate tests, or to learn
more about the theory behind them, consult a statistics textbook (e.g., Daniel
1990; Glenberg 1988; Hayes 1988).

Alternatives to Classical Significance Testing Because of problems with tradi-
tional significance testing, there is a movement, at the vanguard of applied
statistics and psychology, to move away from ‘‘p value’’ tests and to rely on
alternative methods, such as Bayesian inferencing, effect sizes, confidence
intervals, and meta-analyses (refer to Cohen 1994; Hunter and Schmidt 1990;
Schmidt 1996). Yet many people persist in clinging to the belief that the most
important thing to do with experimental data is to test them for statistical sig-
nificance. There is great pressure from peer-reviewed journals to perform sig-
nificance tests, because so many people were taught to use them. The fact is, the
whole point of significance testing is to determine whether a result is repeatable
when one doesn’t have the resources to repeat an experiment.

Let us return to the hypothetical example mentioned earlier, in which we
examined the effect of music on study habits using a ‘‘within-subjects’’ design
(each subject is in each condition). One possible outcome is that the difference
in the mean test scores among groups was not significantly different by an
analysis of variance (ANOVA). Yet suppose that, ignoring the means, every
subject in the music-listening condition had a higher score than in the no-music
condition. We are not interested in the size of the difference now, only in the
direction of the difference. The null hypothesis predicts that the manipulation
would have no effect at all, and that half of the subjects should show a differ-
ence in one direction and half in the other. The probability of all 10 sub-
jects showing an effect in the same direction is 1/210 or 0.0009, which is highly
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significant. Ten out of 10 subjects indicates repeatability. The technique just de-
scribed is called the sign test, because we are looking only at the arithmetic sign
of the differences between groups (positive or negative).

Often, a good alternative to significance tests is estimates of confidence inter-
vals. These determine with a given probability (e.g., 95%) the range of values
within which the true population parameters lie. Another alternative is an
analysis of conditional probabilities. That is, if you observe a difference between
two groups on some measure, determine whether a subject’s membership in
one group or the other will improve your ability to predict his/her score on the
dependent variable, compared with not knowing what group he/she was in
(an example of this analysis is in Levitin 1994a). A good overview of these al-
ternative statistical methods is contained in the paper by Schmidt (1996).

Aside from statistical analyses, in most studies you will want to compute the
mean and standard deviation of your dependent variable. If you had distinct
treatment groups, you will want to know the individual means and standard
deviations for each group. If you had two continuous variables, you will prob-
ably want to compute the correlation, which is an index of how much one vari-
able is related to the other. Always provide a table of means and standard
deviations as part of your report.

6.8.2 Qualitative Analysis, or ‘‘How to Succeed in Statistics without Significance
Testing’’
If you have not had a course in statistics, you are probably at some advantage
over anyone who has. Many people who have taken statistics courses rush to
plug the numbers into a computer package to test for statistical significance.
Unfortunately, students are not always perfectly clear on exactly what it is they
are testing or why they are testing it.

The first thing one should do with experimental data is to graph them in a
way that clarifies the relation between the data and the hypothesis. Forget
about statistical significance testing—what does the pattern of data suggest?
Graph everything you can think of—individual subject data, subject averages,
averages across conditions—and see what patterns emerge. Roger Shepard has
pointed out that the human brain is not very adept at scanning a table of
numbers and picking out patterns, but is much better at picking out patterns in
a visual display.

Depending on what you are studying, you might want to use a bar graph,
a line graph, or a bivariate scatter plot. As a general rule, even though many
of the popular graphing and spreadsheet packages will allow you to make
pseudo-three-dimensional graphs, don’t ever use three dimensions unless the
third dimension actually represents a variable. Nothing is more confusing
than a graph with extraneous information.

If you are making several graphs of the same data (such as individual subject
graphs), make sure that each graph is the same size and that the axes are scaled
identically from one graph to another, in order to facilitate comparison. Be sure
all your axes are clearly labeled, and don’t divide the axis numbers into units
that aren’t meaningful (for example, in a histogram with ‘‘number of subjects’’
on the ordinate, the scale shouldn’t include half numbers because subjects come
only in whole numbers).
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Use a line graph if your variables are continuous. The lines connecting your
plot points imply a continuous variable. Use a bar graph if the variables are
categorical, so that you don’t fool the reader into thinking that your observa-
tions were continuous. Use a bivariate scatter plot when you have two contin-
uous variables, and you want to see how a change in one variable affects the
other variable (such as how IQ and income might correlate). Do not use a
bivariate scatterplot for categorical data. (For more information on good graph
design, see Chambers et al. 1983; Cleveland 1994; Kosslyn 1994).

Once you have made all your graphs, look them over for interesting patterns
and effects. Try to get a feel for what you have found, and understand how the
data relate to your hypotheses and your experimental design. A well-formed
graph can make a finding easy to understand and evaluate far better than a dry
recitation of numbers and statistical tests can do.
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