
Metropolis Algorithm for solving Shortest Lattice
Vector Problem(SVP)

Ajitha Shenoy K B
Department of Computer
Science and Engineering

Indian Institute of Technology
Kanpur, INDIA

ajith@cse.iitk.ac.in

Somenath Biswas
Department of Computer
Science and Engineering

Indian Institute of Technology
Kanpur, INDIA

sb@cse.iitk.ac.in

Piyush P Kurur
Department of Computer
Science and Engineering

Indian Institute of Technology
Kanpur, INDIA

ppk@cse.iitk.ac.in

Abstract—In this paper we study the suitability of the Metropo-
lis Algorithm and its generalization for solving the shortest
lattice vector(SVP) problem. SVP has numerous applications
spanning from robotics to computational number theory, viz.,
polynomial factorization. At the same time, SVP is a notoriously
hard problem. Not only it is NP-hard, there is not even any
polynomial approximation known for the problem that runs in
polynomial time. What one normally uses is the LLL algorithm
which, although a polynomial time algorithm, may give solutions
which are an exponential factor away from the optimum. In
this paper, we have defined an appropriate search space for
the problem which we use for implementation of the Metropolis
algorithm. We have defined a suitable neighbourhood structure
which makes the diameter of the space polynomially bounded,
and we ensure that each search point has only polynomially
many neighbours. We can use this search space formulation for
some other classes of evolutionary algorithms, e.g., for genetic
and go-with-the-winner algorithms. We have implemented the
Metropolis algorithm and Hasting’s generalization of Metropolis
algorithm for the SVP. Our results are quite encouraging in all
instances when compared with LLL algorithm.

Index Terms—SVP, Search Space, Metropolis Algorithm, Hast-
ing’s Generalization, LLL.

I. INTRODUCTION

We investigate in this paper the suitability of using the
Metropolis algorithm [1][2] to solve the shortest lattice vector
problem (SVP, for short). The Metropolis algorithm is a
widely used randomized search heuristic and is often used in
practice to solve optimization problems. It is known that the
algorithm performs surprisingly well even for some provably
hard problems; e.g, [2] showed that the Metropolis algorithm is
efficient for random instances of the graph bisection problem.
It is, therefore, of interest to investigate the performance of
the algorithm for SVP, which is another hard problem of great
interest, both from the theoretical and practice considerations.

Van Emde Boas [3] proved in 1981 that SVP is NP-hard
for the ∞ norm and mentioned that the same should be true
for any p norm. However, proving NP-hardness in the 2 norm
(or in any finite p norm) was an open problem for a long
time. A breakthrough result by Ajtai[4] in 1998 finally showed
that SVP is NP-hard under randomized reductions. Another
breakthrough by Micciancio [5]in 2001 showed that SVP is
hard to approximate within some constant factor, specifically

any factor less than
√
2. This was the best result known so far

leaving a huge gap between the
√
2 hardness factor and the

exponential approximation factors achieved by Lenstra et. al.
[6] in 1982, Schnorr [7] in 1988, and Ajtai et. al. [8] in 2003.
At the same time, there are many situations in practice which
require us to get at least a good solution for SVP, because
this is an essential step in most algorithms for factorizing
polynomials.

The structure of the paper is as follows: in the following
section, we define SVP, in Section 3 we define an appropriate
search space for our approach to solve SVP, in Section 4
we show how we use our search space to implement the
Metropolis and Hasting’s generalization of the Metropolis
algorithm, we also mention why the latter is more appropriate
for our search space. Section 5 provides some experimental
data on how our implementation compares with a standard
implementation of the LLL algorithm. The paper ends with
some concluding remarks.

II. SHORTEST VECTOR PROBLEM (SVP)

Definition 2.1 (Lattices): Let B = {b1,b2, . . . ,bn} be a
set of linearly independent vectors in m-dimensional Eu-
clidean space Rm where m ≥ n. The set L(B) of all vectors
a1b1 + . . . + anbn, ai’s varying over integers, is called the
integer lattice, or simply, the lattice with basis B (or generated
by B) and n is the dimension of L(B) . If m = n, we say
that the lattice is of full dimension.

In this paper, we consider only full dimensional lattices.
Furthermore, we consider only lattices whose basis vectors
have rational components. In such a case, we can clear the
denominators and assume that the each of the basis element
is a vector in Z instead of R.

The basis can be compactly represented as an n×n matrix
(also denoted as B) with columns being the basis vectors
b1, . . . ,bn as its columns. Then we can write L(B) =
{Ba : a ∈ Zn}

Problem 2.2 (Shortest Lattice Vector Problem (SVP)):
Given a lattice L(B) contained in Zn specified by linearly
independent vectors b1, . . . ,bn, the SVP problem is to find
a shortest (in Euclidean norm) non-zero vector of L(B).

Without loss of generality, we consider the decision (and the
search) version of the above problem: Given a a basis B as
above, and a rational number K > 0, the problem is to decide
if there is non-zero vector v that belongs to L(B) such that
||v|| < K where ||v|| denotes the Euclidean norm of v, and
if the answer is ’yes’, output such a vector.

Clearly, SVP can be solved by logarithmically many appli-
cations of the decision version of the problem.

III. SEARCH SPACE FOR SVP

The working of the Metropolis algorithm on an instance
can be viewed as a random walk with a bias on a finite
neighbourhood structure of states. Each state of the structure
represents a feasible solution of the optimization problem
instance being solved, and the structure has a goal state, the
optimum point, which the algorithm intends to locate. For
minimization problems, as our problem, SVP, is, each point
in the structure has a cost, and the goal state is the state with
minimum cost (or, for decision versions, the state with cost less
than or equal to a given specified cost). At any given step, the
algorithm is at one of the points in the search space, it selects
one of the neighbouring points and then transits to that point.
The point is selected probabilistically, the bias ensures that the
algorithm would reach the goal state eventually without getting
stuck at local minima. For the Metropolis algorithm to run
efficiently, it is necessary that the neighbourhood structure for
an instance to satisfy (a) there should be at most exponentially
(in instance size) many elements in the structure, (b) the
diameter of the structure should be bounded above by a fixed
polynomial in the instance size, (c) the set of neighbours of
any element should be computable in time polynomial in the
instance size, and similarly, the cost of any state also should
be computable efficiently.

For justifying the way we define our search space for the
SVP, we need the following result.

Proposition 3.1: Let B be an n×n non-singular matrix and
let u be a n×1 vector, ‖ u‖≤ k, k being a non-zero constant.
If there is an integer vector w such that Bw = u, then the
magnitude of every component of w is bounded above by M ,
M = (αn)n, where α denotes the largest value amongst the
magnitudes of all the elements of B and k taken together.
The proof follows easily from the Cramer’s rule, noting that
first, the determinant of B is 6= 0, and second, if β is the
largest magnitude of all the entries of an n×n matrix Y , then
detY ≤ (nβ)n

Definition 3.2: [Search Space for SVP] Let B, an n × n
matrix, be the basis of a lattice L and k be a given constant.
Our goal is to look for a lattice vector of norm k or less. The
search space for this instance of the SVP is as follows, where
M is as in Proposition 3.1, and m is a parameter as fixed in
the implementation. (m can be a fixed as a constant for all
instances, or, more usually, it will be a fixed multiple of n.)

1) [Search space elements] The search space elements
consist of matrices of the form A′ = [A|I], where I
is the n× n identity matrix and A is an n×m matrix

with all entries of magnitude bounded above by M , M
as in Proposition 3.1.

2) [Definition of neighbourhood] For two elements R′ and
S′, the latter is a neighbour of the former if S can be
obtained from R by any of the following elementary
operations:

a) By swapping two columns of R,
b) By multiplying a column of R by −1,
c) By adding a power of 2 multiple of one column of

R′ to another column of R, provided the resultant
column satisfies that the magnitude of each of its
components is less than equal to M . In particular,
ri ← r

′

i±c×r
′

j , (i 6= j, 1 ≤ i ≤ m, 1 ≤ j ≤ m+n,
and c, a positive integer, where c = 20, . . . , 2k,
k = n · log (αn). (For a matrix R, ri denotes its
ith column.)(As stated already, this operation is
allowed only if the component magnitude condition
is satisfied.)

3) [Cost associated with a search space element] For an
element A′ = [A|I] of the search space, its cost c(A′)
is defined to be t, where t is the norm of that vector
v which has the smallest norm amongst the (n + m)
vectors B[A|I]. (In other words, by pre-multiplying the
basis matrix B to [A|I], we obtain an n×m matrix; t is
the norm of the column vector with least norm amongst
these n+m column vectors of the matrix B[A|I].)

The following Proposition follows easily from the the way
we have defined our search space.

Proposition 3.3: Let the n× n matrix B be a basis of the
lattice L, and k is a given constant for the SVP instance.

1) For every element [A|I] of the search space, each of
the (n+m) (column) vectors of the matrix B[A|I] is a
vector of the lattice L. Also, the (m+n) column vectors
of B[A|I] generate the lattice L.

2) If L contains a vector of norm k or less, then the search
space for SVP with L, k, will contain an element [A|I]
such that one of the (m+n) column vectors of B[A|I]
will be of norm k or less. (The search space uses M as
defined in Proposition 3.1.)

The first part is obvious, as every column vector of B[A|I]
is an integer linear combination of the n lattice vectors. Also,
as the vectors of B are contained in the vectors of B[A|I],
therefore, B and B[A|I] both generate the same lattice (Here,
we use the assumption that L is full dimensional). The second
part of the Proposition also follows easily: we know from
Proposition 3.1 that if there is a lattice vector of norm k or
less, then there is a v, the magnitude of each component of
v bounded by M , such that the norm of Bv is k or less. Our
search space will have a member [A|I] with A containing v,
as the latter can be obtained from the elementary operations
we allow from the identity matrix I .

We now show that our search space definition satisfies the
requirements we stated at the start of the Section. First we
prove that every search space element has at most polynomi-
ally many neighbours.

Theorem 3.4: Let n,m be as in Definition 3.2 and M be
as in Proposition 3.1. The number of neighbours for any
node A

′
in the search space is O(m2 logM). (As logM is

n log (αn), and logα being the number of bits required to
specify the largest magnitude number in the problem instance,
we therefore have that every element has at most polynomially
many neighbours.)
The proof follows by noting that a search space element has
at most mC2 neighbours through the first kind of elementary
operation, m through the second kind, and mC2×2 (k + 1)+
2mn (k + 1) of the third kind, where k is O(logM).

Next, our goal is to show that the search space has a
polynomially bounded diameter.

Theorem 3.5: There is an O(mn logM)-length path be-
tween the elements A′ = [A|I] and B′ = [B|I] (and vice
versa), where A′ and B′ are any two elements in the search
space.

Proof: Let us first show how we can replace the ith

column ai of A with bi, the ith column of B. In the first
stage, using elementary operations, we get ej in place of ai,
where ej denote jth column of the Identity matrix I (Since
A has m ≥ n columns and m is multiple of n, i = qn + j
for some q ∈ Z, where 1 ≤ j ≤ n, j = n if i = qn). We
have to set jth component of ai to 1 and other component
of ai to 0. Suppose that the rth component of ai was x.
Let x = c0x0 + . . . + ckxk, where each ci is 2i and each
xi is 0 or 1, and k is O(logM). For r 6= j we set the rth

component to zero by performing the elementary operations
ai ← ai−xer in atmost k+1 elementary operation. For r = j
we set the component to one by performing the elementary
operation ai ← ai − (x− 1)ej in at most (k + 1) elementary
operations, since x−1 = y = 20y0+. . .+2kyk, where each yt
is 0 or 1, 0 ≤ t ≤ k. So total number of elementary operations
to set each component of ai is bounded by n(k+1) elementary
operation. Therefore the total number of elementary operations
to set ai for 1 ≤ i ≤ m is bounded by mn(k+1). Now in the
second stage, using elementary operations, we get bi in place
of ai = ej . Let rth component of bi be z = 20z0+ . . .+2kzk,
where each zt is 0 or 1, 0 ≤ t ≤ k. If r = j by performing
the elementary operation ai ← ai + (z − 1)ej , we can set
jth component of ai to jth component of bi in atmost k + 1
elementary operations. For r 6= j we set the rth component of
ai to rth component of bi by performing elementary operation
ai ← ai+ zer. This implies that we can set ai to bi in atmost
n(k+1) elementary operations. Hence we can set ai to bi for
all 1 ≤ i ≤ m in atmost nm(k + 1) elementary operations.
Therefore we can set A to B in atmost 2nm(k+1) elementary
operations. i.e. O(mn logM). Hence the proof.

We have proved that the entries of A is bounded by O (αnn)
and Theorem 3.5 suggest that there exists a path using which
we can reach any node in the search space. Hence our
search space Definition 3.2 ensures that entries of intermediate
matrices will not grow exponentially and we can also reach
from one state to another with in polynomial number of steps.
We are always interested in finding shortest non zero vector in
the lattice but there are chances that we may get zero vector

while applying the elementary operations defined in Definition
3.2 on the matrix A

′
= [A|I]. To avoid this, we can define a

cost of zero vector as infinity which prevents from moving to
such neighbours due to its very high cost. Let us now define
the Metropolis algorithm for SVP.

IV. METROPOLIS ALGORITHM

The pseudo-code of the Metropolis algorithm is given below
(Algorithm 1). As mentioned before, the metropolis algorithm
is the execution of a Markov process. It is therefore completely
defined once the transition probabilities are defined.

Consider a search space and neighbourhood structures as
defined in Definition 3.2. Observe that only one row of
current solution will be changed by the elementary operations
performed on it. The cost function can be modified as follows:
Let R

′
be the current solution and S

′
be the new solution.

S
′

is obtained from R
′

by applying one of the elementary
transformation as defined in the Definition 3.2 to the rth

column of R. Hence, the cost function c(R
′
) is the Euclidian

norm of the rth column vector of B ∗ R and c(S
′
) is the

Eulidian norm of the rth column vector of B ∗ S.
The Metropolis algorithm on instance R

′
= [R|I] runs a

Markov chain XR
′

= (XR
′

1 , XR
′

2 , . . .), using the temperature
parameter T . The state space of the chain is the set SR

′

of the
feasible solutions of R

′
. Let d denote the degree of the node

in a search graph where d = O(m2 · logM) as in Theorem
3.4. Let R

′
and S

′
denote any two feasible solutions and

neighbourhood of R
′

is denoted by N(R
′
). Then the transition

probabilities are as follows:

qR′S′ =

0 if R

′ 6= S
′

and S
′
/∈ N(R

′
)

e
−

(
c(S
′
)−c(R

′
)

)
/T

d if c(S
′
) > c(R

′
) and R

′ ∈ N(R
′
)

1
d if c(R

′
) ≥ c(S′) and S

′ ∈ N(R
′
)

1−
∑

J′ 6=R′ qJ′R′ if R
′
= S

′

The complete algorithm (Algorithm 1) is give below.

HASTING’S GENERALIZATION OF METROPOLIS
ALGORITHM

The way the Metropolis algorithm decides about moving
from the current state si to a state in the neighbourhood can
be seen as a two stage process: first, choose a neighbour sj
uniformly at random (the proposal stage), and then, with a
probability α which depends upon the relative costs of the
solutions associated with sj and si, move to sj or remain at
si (the acceptance stage).

In our case, the neighbours of a state [A|I] are [A′|I]’s
where A′ is obtained by performing an elementary operation
using the vectors in A and I . Some of the elementary op-
erations represent what we call long jumps because a vector
v is replaced by another u where there is a large difference
in the norms of v and u. This happens when v is replaced
by v ± cw when the constant c is large. It is desirable
to have a control on how extensively our algorithm will
make use of such long jumps. This is not possible in the

Algorithm 1 Metropolis Algorithm
1: Input : B ← Basis for the lattice L and a rational num-

ber K
2: Output : Matrix R

′
such that B ∗R′ contains a vector v

with ||v|| ≤ K.
3: Let I ← n× n Identity matrix. Let R

′
= [R|I] be the

starting state in the search space as in Definition 3.2 and
c(R

′
) denote cost of R

′
as defined in the beginning of

this section.
4: Set BestNorm = c(R

′
)

5: while BestNorm > K do
6: Select any one of the neighbour S

′
of R

′
uniformly at

random by performing one of the elementary operation
as defined in Definition 3.2

7: if BestNorm > c(S
′
) then

8: BestNorm = c(S
′
)

9: end if
10: Set R

′
= S

′
with probability

α = min

(
e−c(S

′
)/T

e−c(R
′)/T

, 1

)
11: end while

standard Metropolis algorithm as the proposal stage will chose
a neighbour uniformly at random.

To overcome this problem, we make use of the Hasting’s
generalization [9] of the Metropolis algorithm. In this gener-
alization, we can use any probability to select the neighbour
of a state in the proposal stage. Let qxz denote the probability
by which we select a neighbour z when the current state is x.
Let x be a state. If y1, . . . , ynx be neighbours the neighbours
of x. Then

qxz =

 0 if x 6= z and z /∈ N(x)
θ if x = z,
ri if z = yi

,

where the values ri can be chosen appropriately depending
on how much we want to invest on each of the strategy.

The Hasting’s generalized metropolis algorithm M2 runs on
the same state space but has a different transition probability:
Suppose the chain M2 is at a state the state x at some step.
Then

1) With probability qxz , M2 selects a state z in the neigh-
bourhood.

2) If z = x then the next state of M2 is x.
3) If z = yi, we first compute α defined as

α = min

(
e−c(yi)/T · qyix

e−c(x)/T · qxyi

, 1

)
Here, for any state z, c(z) represents the cost of the
candidate solution of z and T is a fixed temperature
parameter.

4) We move to yi with probability α else we remain in the
present state x.

It can be verified easily that the chain M2 is time-reversible
and the in its stationary distribution, the probability of x, πx
is given by:

πx =
e−c(x)/T

Z
,

where Z is the normalizing factor
∑

i πi. The chain M2

is the Hasting’s generalization. This chain has the same
stationary distribution as the usual Metropolis algorithm, but
has the flexibility of fine tuning the probability of choosing a
neighbour to reflect the structure of the problem at hand. In
our implementation, we shall keep qxyi

the same as qyix. The
detailed algorithm (Algorithm 2) is given below. In the next
section we will compare the results of our algorithm with that
of LLL algorithm.

Algorithm 2 Hasting’s Generalization
1: Input : B ← Basis for the lattice L and a rational num-

ber K
2: Output : Matrix R

′
such that B ∗R′ contains a vector v

with ||v|| ≤ K.
3: Let I ← n× n Identity matrix. Let R

′
= [R|I] be the

starting state in the search space as in Definition 3.2 and
c(R

′
) denote cost of R

′
as defined in the beginning of

this section. Let d denote total number of neighbours as
in Theorem 3.4

4: Set BestNorm = c(R
′
)

5: while BestNorm > K do
6: Select any one of the neighbour S

′
of R

′
by perform-

ing one of the elementary operations defined below.
• Swap two columns of R with probability

mC2

d ,
• Multiply a column of R by −1 with probability m

d
• Add a power of 2 times a column of R′ to another

column of R i.e. in particular, ri ← r
′

i±c×r
′

j , (i 6= j,
1 ≤ i ≤ m, 1 ≤ j ≤ m + n, where c = 20, . . . , 2k,
k = n · log (αn)) with probability d−mC2−m

d · Pi,
where Pi denote probability of selecting the value of
c = 2i and

∑k
i=0 Pi = 1.

[We can use more than one probability distribution
to select values for c. In our implementation we have
selected two probability distributions Pi =

1
k+1 and

Qi = 2(k+1− i)/(k+1)(k+2) to select values for
c. We will keep on changing our selection probability
distribution with Pi and Qi for every selected number
of steps(500 steps).]

7: if BestNorm > c(S
′
) then

8: BestNorm = c(S
′
)

9: end if
10: Set R

′
= S

′
with probability

α = min

(
e−c(S

′
)/T

e−c(R
′)/T

, 1

)
11: end while

TABLE I
COMPARISON OF RESULTS LLL : METROPOLIS (DATA TAKEN FROM [10])

Lattice Dim. Best Norm CPU Time Input
Type n Found in seconds size

(LLL : Our Algo) (LLL : Our Algo) in bits

Swift 8 4.242 : 4.123 0.04 : 0.004 8

NTRU 8 4.358 : 3.6055 0 : 0.004 8

Modular 10 2.449 : 2.449 0.04 : 0.024 8

Duarl 10 3.6055 : 3.6055 0.004 : 0.004 8
Modular

Random 10 2.828 : 2.645 0.004 : 0.012 8

V. RESULTS

In this section we describe how our algorithm compares
with the celebrated LLL [6] algorithm on benchmark instances
SVPs’. The LLL algorithm computes a vector which is at most
2

n−1
2 of the shortest vector of the lattice and has a complexity

of O
(
n6 · log3 α

)
, where α is max1≤i≤n||bi||. Although it

does not compute the shortest vector, the output vector is short
enough for applications like polynomial factoring.

We now describe the benchmark lattices that we ran this
algorithm on. A class of SVP instances are generated using
the techniques developed by Richard Lindner and Michael
Schneider [10]. They have given sample bases for Modular,
Random, ntru, SWIFT and Dual Modular lattices of dimension
10. We have tested our code for all these instances and found
that our algorithm works faster and gives shorter lattice vector
when compared to LLL. The tested results are given in the
Table I

Based on the result by Ajtai [11], Johannes Buchmann,
Richard Lindner, Markus Ruckert and Michael Schneider [12]
[13] constructed a family of lattices for which finding the
short vector implies being able to solve difficult computational
problems in all lattices of a certain smaller dimension. For
completeness we give a quick description of these family.

Definition 5.1: Let n be any positive integer greater than
50, c1, c2 be any two positive real numbers such that c1 > 2
and c2 ≤ c1 ln 2− ln 2

50·ln 50 . Let m = c1 · n · lnn and q = nc2 .
For a matrix X ∈ Zn×m, with column vectors x1, . . . , xm, let

L(c1, c2, n,X) =

{
(v1, . . . , vm) ∈ Zm|

m∑
i=1

vixi ≡ 0 mod q

}
.

All lattices in the set L(c1, c2, n, .) = {L(c1, c2, n,X)|X ∈
Zn×m
q } are of dimension m and the family of lattices L is the

set of all L(c1, c2, n, .)
They also proved that all lattices in L(c1, c2, n, .) of the

family L contain a vector with Euclidean norm less than
√
m

and it is hard to find such vector. The challenge is to try
different means to find a short vector. The Challenge is defined
in the following definition:

Definition 5.2 (Lattice Challenge:): Given lattice basis of
lattice Lm, together with a norm bound ν. Initially set ν =

TABLE II
COMPARISON OF RESULTS LLL : METROPOLIS (DATA TAKEN FROM

[13][12]: TOY CHALLENGE)

Dimension Best Norm CPU Time Input size
n Found in seconds in bits

(LLL : Our Algo) (LLL : Our Algo)

15 1234.58 : 1147.2279 0.016 : 201.651 150

20 3 : 2.8284 0.2680 : 0.052 8

25 1.73 : 1.73 0.008 : 0.004 8

30 4.123 : 3.8729 0.008 : 0.008 8

50 20.49 : 8.66 0.108 : 291.892 100

d
√
me. The goal is to find a vector v ∈ Lm, with ||v||2 ≤ ν.

Each solution v to the challenge decreases ν to ||v||2.
We have tested our algorithm for toy challenges(i.e. with

m ≤ 50) and the comparison results with LLL is listed in
Table II.

An important step in the LLL algorithm is the computation
of the Gram-Schmidt orthogonalisation of the basis in hand.
In practical implementations, this computation is done using
floating point numbers instead of multiprecision arithmetic to
speed up computation. We apply a similar technique here. At
each step our transition probabilities are based on the value
of the objective function, which is the length of the smallest
vector in the current solution. We compute this length using
floating point arithmetic instead of the full multiprecission
arithmetic.

Our results are very encouraging. For all the examples
considered, we found that our algorithm performs well either
in value or in time and often in both than LLL. When the
number of bits used to represent integer value is more than
100 bits we found that LLL is more faster than our algorithm
but our algorithm gives shorter vector than LLL.

VI. CONCLUSION

In this paper we have considered the use of the Metropolis
algorithm, and its generalization due to Hastings, for solving
SVP, a well-known, hard combinatorial optimization problem.
To the best of our knowledge, this is the first such attempt. Our
approach rests on an appropriate definition of a search space
for the problem, which can be used for some other classes
of evolutionary algorithms as well, e.g., genetic algorithm
and the go-with-the-winner algorithm. We have compared the
performance of our implementation with that of a standard
implementation of the LLL algorithm; and the results we have
obtained are fairly encouraging. Given this experience, it is
worth while to explore if it can be shown that our approach
is efficient for random instances of SVP.

REFERENCES

[1] S. Sanyal, S. Raja, and S. Biswas, “Necessary and sufficient conditions
for success of the metropolis algorithm for optimization,” in GECCO’10,
Copyright ACM, Portland, USA, 2010.

[2] T. Carson, “Emperical and analytic approaches to understanding local
search heuristics,” in PhD Thesis, University of California, San Diego,
2001.

[3] P. V. E. Boas, “Another np-complete problem and the complexity of
computing short vector in a lattice,” in Tech. rep 8104, University of
Amsterdam, Department of Mathematics, Netherlands, 1981.

[4] M. Ajtai, “The shortest vector problem in l2 is np-hard for random-
ized reductions,” in STOC 98: Proceedings of the 30th Annual ACM
Symposium on Theory of Computing, New York, NY, USA, 1998, pp.
10–19.

[5] D. Micciancio, “The shortest vector in a lattice is hard to approximate
to within some constant,” SIAM Journal of Computing, vol. 30(6), pp.
2008–2035, 2001.

[6] A. Lenstra, H. W. L. Jr., and L. Lovasz, “Factoring polynomials with
rational coefficients,” Mathematische Annalen, vol. 261(4), pp. 515–534,
1982.

[7] C. Schnorr, “A more efficient algorithm for lattice basis reduction,”
Journal of Algorithms, vol. 9(1), pp. 47–62, 1988.

[8] M. Ajtai, “The worst-case behavior of schnorr’s algorithm approximating
the shortest nonzero vector in a lattice,” in STOC-03: Proceedings of the
35th Annual ACM Symposium on Theory of Computing, ACM Press,
2003, pp. 396–406.

[9] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Page 269: Cambridge
University Press, 2005.

[10] S. reference v4.7, “Cryptography,” www.sagemath.org/doc/reference/
sage/crypto/lattice.html.

[11] M. Ajtai, “Generating hard instances of lattice problems (extended
abstract),” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, STOC’96, ACM, New York, NY, USA, 1996.

[12] J. Buchmann, R. Lindner, M. Ruckert, and M. schneider, “Explicit hard
instances of the shortest vector problem,” in PQ Crypto, 2nd Internation
Workshop on Post Quantum Cryptography, LNCS 5299, 2008, pp. 79–
94.

[13] T. Darmstadt, “Lattice challenge,” www.latticechallenge.org.

