
Story of a Discovery

Somenath Biswas
Department of Computer Science and Engineering,

Indian Institute of Technology Kanpur.

1 August 2002: End of a Quest

On 4 August 2002, a short e-mail message reached the mailboxes of a small
group of mathematicians and theoretical computer scientists; the message
simply asked for comments on an attached draft paper claiming to provide a
deterministic polynomial time algorithm to determine if a number, given as
input to the algorithm, is prime or not. The day being a Sunday, the message
remained unread in most of the mailboxes. One mathematician of Holland
who was then at Berkeley did see the mail on that day itself. The e-mail
had come from Manindra Agrawal, whose name was familiar to the computer
scientist recipients of the e-mail, but not to the mathematicians. The Dutch
mathematician, a leading computational number theorist, was quite used to
getting ‘solutions’ of long-standing open problems of number theory from
all kinds of people round the globe, because number theory is an area that
fascinates people in general, and whose many celebrated open problems can
be stated in the language of school mathematics. The Dutch mathematician
must have thought the e-mail to be another one from some naive enthusiast,
and yet he could not resist the temptation of having a peek at the attached
draft paper– because it was supposed to be about a problem that he himself
had been struggling with for more than two decades. Even a cursory glance
at the paper was enough to see that it could not be the work of someone
mathematically immature. As he examined further, it appeared that the
paper had a very original approach, it did not use any of the sophisticated
mathematical toolkit whose use is almost mandatory in modern day number
theory. The paper was a short one, the proposed decision algorithm was only
of thirteen lines, and the correctness proof of the algorithm, the crux of the
paper, was detailed in less than three pages. The proof rested on six lemmas,
and if their proofs were indeed correct, then it was a great breakthrough.
The Dutch mathematician phoned a brilliant young researcher, an Indian,
and together they went rigorously through every detail of the paper, sitting
in a Berkeley cafe. Finally, after several hours and many cups of coffee, the
two were fully convinced that not only was the paper correct in every detail,

1



but also that it was a gem of a mathematical discovery.

Next day, the Dutch mathematician distributed the paper to some of his
fellow researchers; one of whom, after going through the paper, contacted
the science correspondent of The New York Times informing her of the
great breakthrough. She got immediately in touch with Manindra Agrawal,
and after a number of e-mail exchanges with him, filed her report. The
August 8 issue of The New York Times carried prominently on its front
page Ms. Robinson’s report on the discovery: New Method Said to Solve
Key Problem in Math. Soon thereafter, all major newspapers around the
world also carried the news, thereby making Manindra Agrawal, Neeraj
Kayal and Nitin Saxena, the three authors of the draft paper, mathematical
celebrities. Curiously, it is some kind of an accident that this great result
came about in that summer of 2002, as none of them had planned to stay
back for the summer in Kanpur that year to work together on the problem.

Manindra, already a full Professor in the Department of Computer Science
at IIT Kanpur would turn thirty-six in August 2002. Neeraj and Nitin had
just completed their undergraduate programme in Computer Science in the
beginning of May, and were in their early twenties. Manindra had been
working on primality testing way back from 1998, sometimes with another
colleague, sometimes with undergraduate students, but most often on his
own. Although he was not aware of it himself, Manindra had already dis-
covered many of the ingredients of the celebrated result by 2001. Neeraj and
Nitin in their BTech project with Manindra as the advisor, had examined
certain aspects of the problem, and they had, by the summer of 2002, a very
good grasp of the conceptual apparatus the three would finally use.

All the same, when in May 2002 Manindra, Neeraj and Nitin decided to do
some more work on the problem, none of them had any clue that the end
was so near. As said above, it was by chance that all three were staying
back in Kanpur that summer. Manindra was supposed to be in Germany,
but at the last minute he cancelled the trip, as he was reluctant to leave
behind his wife with two small children. Nitin was expecting a scholarship
to study abroad, which somehow did not materialize. Had he been awarded
the scholarship, he would certainly have left Kanpur by mid-May to do
the many necessary chores for leaving the country in a couple of months
time. Neeraj was supposed to be at TIFR, Mumbai that summer to join the
PhD programme there, but something had happened and he was feeling too
depressed to make any effort to face a new environment.

Perhaps more to take their minds off their disappointments than anything
else, Manindra suggested to Neeraj and Nitin that all three together take
another look at the primality problem. That was sometime in the second
week of May 2002, and some magic started working. Already familiar facts

2



started tumbling into new places and they could sense that something was
emerging. Sometime in the second week of July, one little piece, fairly
simple in retrospect, suddenly came to Manindra as he was taking his little
daughter to her school. Right then, on the seat of his scooter ambling down
a quiet morning IITK road, Manindra knew that they had the final piece of
the jigsaw puzzle of the solution of a problem that had remained open since
the time of the Eratosthenes.

2 The Challenge that was: Decision Problem for
Primes

2.1 Prime numbers

Primes are whole numbers which are greater than 1, and are divisible only
by 1 and themselves, 2, 3, 5, 7, 11, 13 are the first six primes. Primes
can be thought of as atoms for the set of natural numbers, i.e., the set
{1, 2, 3, 4, . . .}, because every natural number other than 1 is the product
of a multiset of primes unique to that number. Another way of saying this
is that every natural number has a unique prime decomposition. The set
of natural numbers is the cornerstone of mathematics; as Kronecker put it:
‘God made the natural numbers, man made the rest’.1

Since the time of the ancient Greeks, primes have fascinated every generation
of mathematicians. It was Euclid who proved that there are infinitely many
primes, and his proof of this fact is considered one of the all-time gems
of mathematics. At first glance, primes appear to be distributed on the
number line in an arbitrary fashion: at times two consecutive primes differ
only by 2, e.g., 17 and 19, or 71 and 73; and then again, at times, the next
prime comes only after a huge gap. However, a closer look yields many
fascinating properties; for example, as Gauss and Lengendre had correctly
guessed and Hadamard and de la Vallée Poussin later proved, the overall
density of primes behaves very nicely as we go down the number line.

2.2 Decision problem, polynomial time algorithm

Undoubtedly, the simplest question about primes one would like to ask is:
given a number n, is it a prime? This is the decision or the recognition
problem for primes. What we seek is an algorithm that takes as an input

1Original in German: ’Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist
Menschenwerk.’ in Leopold Kronecker by Heinrich Weber, Jahresberichte D.M.V (1893),
pp 5–31.

3



a number, and decides whether the input number is prime. Of course, one
can just invoke the definition: systematically divide n by successive numbers
from 2 to

√
n; n is not prime if and only if any of these divisions leaves the

remainder zero, that is, if we obtain a proper factor of n. In effect, we are
making an explicit and exhaustive search for a factor of n. Algorithms such
as the one we have just outlined are obvious, naive ones, merely carrying out
a systematic search for a solution in the space of all solutions. Algorithms
of this nature are unsatisfactory for many reasons, one reason being that
whenever the solution space that corresponds to an input is huge, such
an algorithm would take too many elementary steps before arriving at its
decision for the input. Can we do better for deciding primality?

But then, the question arises, what is better? How good should the algo-
rithm be for it to be satisfactory? Computational complexity, a sub-area
of theoretical computer science which interfaces mathematics and computer
science, provides a clear answer to these questions. The measure for good-
ness is taken to be the number of steps the algorithm takes on its input.
However, there are infinitely many inputs: in case of a decision algorithm
for primality any number can be the input to the decision algorithm. The
way this is handled is that we view the number of steps the algorithm takes
on an input as a function of the length of representation of the input. Many
inputs can have the same length of representation. For a given length, say l,
the definition of the measure of goodness will consider the maximum number
of steps that the algorithm would take on any input of length l.

We represent numbers by digit strings; a number whose value is n is rep-
resented by a string of about log n digits. Our naive exhaustive search
algorithm for deciding primality of n would make, in the worst case, about√

n divisions, that is, 10(log n)/2 divisions.2 Thus, for a number with l digits,
the number of elementary steps can be as many as 10l/2. To appreciate
why this is not satisfctory, let us consider a concrete case. Assume that
the computing device we have can execute a million elementary steps in one
second. Then for a number with about 100 digits, the naive algorithm when
executed on this computing device can take as long as 1012 centuries to come
up with its answer!

What is said is that a decision algorithm is good if there is some constant k
such that the algorithm takes no more than lk steps for every input whose
size of representation is l, whatever the size l may be. As bigger and bigger
inputs are provided to the decision algorithm, the algorithm will of course
take more and more steps to come up with its decision, but the growth
rate of the steps of a good algorithm is bounded by a polynomial in the
size of representation of the input, lk. Such a decision algorithm is called a

2Recall that
√

n is n
1
2 .

4



polynomial time algorithm. For a number (whose value is) n, since we require
log n digits to express the number, a polynomial time decision algorithm for
primality will have a constant k such that the algorithm will take no more
than (log n)k steps to come up with its answer, whatever the input n may be.
To appreciate why such an algorithm will be much better than the previously
considered naive algorithm, suppose we have a primality decision algorithm
that takes at most (log n)3 steps for any number n. Then, the execution of
such an algorithm on the computing device of the earlier example will take
only about one second on any number with 100 digits.

We are now in a position to state precisely what the challenge was for pri-
mality: to devise a polynomial time algorithm to decide primality.

The formal notion of a polynomial time algorithm is a recent one. However,
down the ages whenever mathematcians have looked for an algorithm, their
goal has always been what we call now polynomial time algorithms. This
intuitive identification of good algorithms with polynomial time algorithms
arises out of a consideration which is much deeper than mere efficiency of
computation. A naive algorithm would explicitly and exhaustively search
for a solution. The way a polynomial time algorithm manages to avoid
exhaustive search is by making use of some nontrivial insight into the nature
of the problem at hand. A beautiful example of a polynomial time algorithm
which is familiar to all of us is the one discovered by Euclid for computing
the gcd (i.e., the greatest common divisor) of two given numbers. Naive use
of the definition to compute the gcd of two numbers n1 and n2 will require
us to systematically try out various numbers to see if it divides evenly both
n1 and n2, i.e., whether it is a common factor, and then pick the largest
common factor as the answer. Euclid’s insight was a property of gcd:
The gcd of n1 and n2 is the least positive number that can be expressed as

an1 + bn2

where both a, b can take any integer value, positive, negative, or zero.
It is this insight that Euclid had exploited to come up with the polynomial
time algorithm that we all learn in school for computing gcd. Interestingly,
one finds again and again that a good insight which is first discovered in
the context of a specific problem, later turns out to be of key importance in
contexts that far transcend the original one. Undoubtedly, it is the above
insight of Euclid which, centuries later, was crucial to define the notion of
an ideal, a notion which is of fundamental importance in modern abstract
algebra.

One now appreciates why some of the best minds down the ages have been
searching for (what we call now) a polynomial time algorithm for deciding
primality. It was clear to them that what one needed was an appropriate
insight into primes, and primes being of such importance to all of mathe-

5



matics, the insight would have the potential of ushering in great advances
in many different areas.

2.3 Hunt becomes intense since 1970s

Since the middle of the 1970s, there have been a number of results that
indicated the plausibility of the existence of a polynomial time decision al-
gorithm for primes. Pratt showed in 1975 that for every prime p, there
exists a short and easily verifiable proof that p is indeed a prime. One al-
ways knew that every composite does have such a short, easily verifiable
proof that it is composite: for a composite n, the prover provides a nontriv-
ial factor for n, say n1, and the verifier carries out the division of n by n1,
and as he would find the remainder to be zero, the verifier is convinced that
n is a composite. However, that primes also possess short, easily verifiable
proofs was a beautiful revelation. This immediately placed the problem of
primality decision amongst a class of problems3 which researchers did not
believe to be inherently hard. Therefore, the belief that this problem would
admit a polynomial time algorithm gained currency. In 1976 came Miller’s
result which proved that primality testing can indeed be done in polynomial
time if the so called Extended Riemann Hypothesis is true. Although math-
ematicians do believe the Riemann hypothesis, even its extended version to
be true, yet so far the hypothesis, possibly the most important question of
mathematics today, has remained unproven. As the correctness of Miller’s
algorithm rested on an unproven hypothesis, it did not settle the question
regarding primality, though certainly it was an indication in favour of believ-
ing that an unconditional polynomial time decision algorithm does indeed
exist. This belief was further strengthened by the discovery of a random-
ized polynomial time primality testing algorithm. Solovay and Strassen in
1977, and subsequently Rabin in 1980 showed that if our computation can
make use of random bits (e.g., as would be provided by tossing an unbiased
coin), then we can decide primality in polynomial time. One does pay a
price though: the answer that such an algorithm gives can be erroneous;
and although the error probability can be reduced arbitrarily by using more
and more random bits, it cannot be eliminated completely.

The randomized algorithms, particularly the one by Rabin, turned out to
be quite acceptable to people who need large primes in real-life.4 However,
for theoreticians these randomized algorithms merely indicated that a true
polynomial time algorithm must be somewhere round the corner– all that
one needed was some fresh insight into the nature of primality. Several
researchers of the highest calibre from round the world began working on

3Technically, this class is known as NP ∩ co-NP.
4Large primes have many practical uses, for example, in secure communication.

6



the problem trying out every intricate concept and technique of number
theory. There was some progress, e.g., Adleman, Pomerance, and Rumely
discovered an algorithm that was almost5 polynomial time. Goldwasser and
Kilian in 1986 gave another such algorithm. Some progress was seen in
the 1990s also, but the goal of a truly polynomial time algorithm remained
elusive, in spite of every effort by some of the best minds. Slowly, a feeling
came about that primality testing was just too hard a problem for present
day mathematics, and that one must await some kind of a breakthrough
before a solution could emerge. It was in this setting that Manindra started
looking at primality testing, or to put it more correctly, was led to the
problem.

3 1997–1998: Route to Primality Testing Problem

3.1 Polynomial identity problem

An important open problem of computational complexity is the identity
testing problem for multivariate polynomials. It was Manindra’s interest in
this problem that led him to seriously consider the primality testing problem.
A multivariate polynomial, in its standard or explicit form, is the sum of a
number of terms, each term being of the form bxi1

1 xi2
2 . . . x

ip
p , where xi’s are

variables, i1, i2, . . .’s are non-negative integers, and b, called the coefficient
of the term, is some constant element from what is called a commutative
ring, a familiar example of which is the set of integers. A simple example
of such a polynomial is x2 + 2xy + y2. The same polynomial could be given
in an implicit form: (x + y)2. A polynomial is called a zero polynomial if
the coefficient of each term in the polynomial is zero. The identity testing
problem essentially is: given a polynomial, is it a zero polynomial?6 Of
course, if the polynomial is given explicitly, the identity testing problem is
trivial: just verify if the coefficient of each term is zero or not. The problem
is nontrivial when the polynomial to be tested is given implicitly. A simple
example of an implicitly given polynomial which is zero is: (x + y)(x −
y) − x2 + y2. Of course, every implicit representation of a polynomial can
be converted to its explicit representation by carrying out some amount of
computation. However, the catch is that in general such conversion would
take too many steps. As a result, we cannot obtain a polynomial time
algorithm for polynomial identity testing simply by converting the given

5This algorithm would take no more than (log n)k log log log n steps for some constant k
for any input number n. Although, log log log n grows very very slowly with n, it is not a
constant, and therefore, the algorithm is not polynomial time.

6More accurately, in the identity testing problem, one is given two polynomials, P and
Q, and the question is: are P and Q identically the same? Equivalently, is P −Q a zero
polynomial?

7



polynomial to its explicit representation. The best that is known about the
problem is that it can be solved by randomized polynomial time algorithms.
The basic fact such algorithms use is that whereas a zero polynomial will
evaluate to zero no matter what values are chosen for the variables, a non-
zero polynomial will evaluate to a non-zero value for a substantial fraction
of possible values that the variables can take.7 If we choose the values for
the variables randomly, the chance is good that if the input polynomial is
non-zero, the result of the evaluation of the polynomial on the randomly
chosen values will also be non-zero. Thus, a randomized testing algorithm
is: Given input polynomial Q in variables x1, x2, . . . xm, randomly choose
values for each xi, and then evaluate the polynomial with these values for
the variables. If on evaluation we obtain a non-zero value, we are sure that
Q is a non-zero polynomial, and if the evaluation is 0, we conclude that most
probably Q is a zero polynomial. Note however, that we can never be sure
in the latter case– Q might have have been non-zero, but we were unlucky
to have picked up values at which Q evaluates to zero.

3.2 Work of Chen and Kao

Chen and Kao, two researchers from Berkeley, came up in 1997 with an in-
teresting new approach to tackle the problem. They considered polynomials
over rationals, i.e., each coefficient is a rational number.8 Since the context
is the set of rational numbers, then for using the randomized algorithm of
the last paragraph, one would evaluate the input polynomial by plugging in
rational values for its variables. What Chen and Kao showed was that if
we plug in some carefully chosen irrational values into the variables, then
the result of the evaluation of the polynomial will be zero if and only if the
polynomial is zero. They thus showed that instead of viewing the problem
in the given context (in this particular case, the set of rational numbers),
the problem can be solved by viewing it in an extended context (here, the
extension is done by introducing a few irrationals into the infinite set of
rationals).

One cannot do computations with irrationals.9 Chen and Kao avoided this
problem by making use of randomization. Interestingly, they showed that
it is possible to use only a fixed amount of randomization and yet make the
error probability decrease by using more and more computation. Usually,
one needs to use more and more random bits to obtain less and less error.

7When we plug in concrete values for the variables of a polynomial, we get a concrete
number. This number is called the result of the evaluation of the polynomial for the values
chosen for the variables. E.g., (x + y)2 evaluates to 9 for x = 2, y = 1.

8A rational number is one which can be seen as the ratio of two integers.
9Each step of a computation can work with only finite, explicitly given objects, but

irrationals have no explicit finite representations.

8



Thus, Chen and Kao managed to trade (upto a point) randomness with
computation.

Because of these two fresh and interesting ideas, Manindra and a colleague
of his took immediate notice of Chen and Kao’s work and decided to explore
further possibilities. In particular, they thought of two possible directions
of work: first, extend the Chen-Kao work from the context of rationals to
other contexts, in particular, to the context of finite fields; second, explore
if, for the primality testing problem too, one can trade randomness for com-
putation. Very soon, however, they came to know that a group from MIT
had already extended the Chen-Kao work to finite fields. The two colleagues
read the preprint of the MIT work. Strangely, neither was disheartened that
some other group had already done something they were planning to do. A
reason perhaps was that they felt that the MIT work was too closely tied
to the details of the Chen-Kao work, and not to its essence.

3.3 Two birds with one stone

It was at this time that Manindra took notice of a text-book result:
For every prime p, (x+1)p = xp+1 (mod p). In other words, if p is a prime,
then the polynomial (x + 1)p− xp− 1 is a zero polynomial in the context of
the arithmetic modulo p.10 Manindra almost immediately realised that this
provided a way of reducing the primality testing problem to the polynomial
identity testing problem. Because, with a little work one can show that given
a number n, the polynomial (x+1)n−xn−1 is a zero polynomial (mod n),
if and only if n is a prime. Therefore, to test if a given nummber n is prime
or not, check if (x+1)n−xn−1 is a zero polynomial (mod n). This gives us
the reduction: if we can solve the polynomial identity testing problem easily
(even for univariate polynomials), then we can solve the primality testing
problem easily as well.

10Ordinary arithmetic essentially is a structure with a set which is the set of integers,
and two operations defined on this set, viz., addition and multiplication. In arithmetic
modulo n, the set may be thought of as {0, 1, . . . , n − 1}, and the two operations are
addition modulo n and multiplication modulo n. When we add two numbers modulo n,
we add the two numbers using ordinary addition, and then divide the resultant by n, and
retain the remainder, this being the result of the addition modulo n. For example, 17+15
modulo 20 is 12. We write this as 17 + 15 = 12 (mod 20). Multiplication modulo n is
also defined in a similar way. E.g., 17× 15 = 15 (mod 20). It was Gauss who had defined
formally the notion of modular arithmetic, and showed that in many ways such arithmetics
behave like the familiar arithmetic. We should add here that polynomials in one variable
behave very similar to numbers: like numbers, we can add, multiply, subtract and divide
one polynomial to/by/from/by another polynomial. Therefore, given two polynomials
p(x) and q(x), we can speak of p(x) (mod q(x)), the latter is the remainder on dividing
p(x) by q(x). Modular arithmetic over polynomials is a notion we will use extensively
later.

9



The reduction further reduced Manindra and his co-worker’s interest in the
MIT group’s extension of the Chen-Kao work, because the MIT extension
could not tackle the identity testing problem for the polynomial above.11

They began examining the specific case of the identity problem right from
first principles.

Chen and Kao had extended the context of their concern. The question
then was, how does one extend the context of the arithmetic modulo n?
When n is a prime, say p, the arithmetic modulo p is a finite field, denoted
as Fp,12 and standard abstract algebra tells us how to extend Fp. Elements
of the extension can be seen as those polynomials which are obtained as
remainders when we divide general polynomials by a specific polynomial.13

Dividing polynomials by polynomials to consider the remainders left– with
this idea somewhere at the back of their mind, one afternoon in the latter
half of 1998, Manindra and his colleague came upon a very simple idea for
testing if a given univariate polynomial is zero or not: suppose the given
polynomial g(x) is indeed a zero polynomial. Then no matter which poly-
nomial one uses to divide g with, the remainder will always be zero. On
the other hand, if g is not a zero polynomial, then division by only a few
polynomials will leave the remainder zero.14 It is easy computationally to
obtain the remainder polynomial which results from division of a polyno-
mial g(x) by any small degree monic polynomial h(x), in the context of
modulo n arithmetic, whatever n may be. Since there are a huge number of
monic polynomials for doing the division, the simple observation above led
Manindra and his colleague to a randomized test to see if a given univari-
ate polynomial g(x) is a zero polynomial modulo n or not: choose a small
degree monic polynomial h(x) randomly, and then obtain the remainder of
division of g(x) by h(x). If the remainder is not a zero polynomial, then
g(x) is definitely not a zero polynomial. If on the other hand the remainder
is a zero polynomial, then most probably so is g(x).

Since this randomized algorithm can test if (x+1)n−xn− 1 is zero modulo
11There are two reasons: first, the MIT work could handle polynomials only of a small

degree, whereas the above polynomial is of a degree whose value is (exponentially) large.
Secondly, in general, arithmetic of modulo n will not be a finite field.

12Elements of Fp are the numbers 0, 1, . . . p− 1, and the two operations of Fp on these
numbers are: addition modulo p, and multiplication modulo p.

13The specific polynomial has to be an irreducible polynomial over Fp, that is a poly-
nomial which does not non-trivially factorize in the context of Fp.

14One can appreciate the situation easily if one considers numbers instead of polynomi-
als. Actually, the comparison is not out of place technically, because many properties are
commonly shared by arithmetic with numbers, and arithmetic with polynomials. Suppose
we are given a number N (implicitly or explicitly). If N is zero, then every number will
divide the number N . On the other hand, if N is not 0, then only the factors of N will
divide it. The number of factors of a number N is very few in comparison with the value
of N .

10



n or not, they now had a new randomized algorithm for primality testing.
Importantly, theirs was the first algorithm which could tackle exponentially
large degree polynomials. Soon thereafater, Manindra came up with a sim-
ple method for reducing the identity testing problem of multivariate poly-
nomials of relatively small degrees to that of univariate polynomials. (The
resulting univariate polynomial may have exponentially large degree, but as
said before, their algorithm can handle large degree univariate polynomials).
Therefore, in addition to a new randomized polynomial time primality test,
Manindra and his colleague now also had a new randomized polynomial time
identity test for all the classes of general polynomials considered till then.

There was an irony in the new results: although what first spurred Manin-
dra and his colleague was the idea of extending the given context, in effect
what they finally exploited was the breaking down of the given context. For
numbers, the ‘breaking down’ idea is embodied in a well-known result called
the Chinese remainder theorem. The proposed new algorithms essentially
make use of the Chinese remainder theorem for polynomials. This was why
the publication that disseminated the new results was entitled ‘Primality
and Identity Testing via Chinese Remaindering’. This was concluded in
mid 1999. By then, Manindra’s colleague had left IIT Kanpur on sabbat-
ical leave. Before he left, Manindra and the colleague had discussed a few
times if and how their randomized test could be turned to a deterministic
polynomial time algorithm, thereby setting at rest the real big problem.
Invariably, these discussions would get stuck at very hard technical issues.
Manindra’s colleague did not really believe that anything further could be
done from what they had. Had not all others, in spite of using highly so-
phisticated tools, failed so far in discovering a polynomial time primality
test? In comparison with those attempts, the Chinese remaindering idea
was fairly elementary. In any case, they already had a nice, state-of-the-art
result; Manindra’s colleague left Kanpur on his sabbatical fairly contented.

4 1999–2001: Period of Groping

Manindra, however, was far from contented, he had a hunch that more
could be done. Off and on, during 1999 to 2001, he would think about
how their randomized primality testing could be derandomized. Quite early
on, he came to focus his attention on a condition that he felt was worth
investigating as a possible test for primality.

11



4.1 An intriguing test

In the randomized primality test that used Chinese remaindering, the poly-
nomial (x+1)n−xn−1 was divided by a randomly chosen polynomial. The
algorithm would not give the correct answer if the choice was a wrong one.
Given input n, could one choose a polynomial carefully so that the choice
would never be wrong? Manindra had a hunch that the answer to this ques-
tion is yes, and moreover, he felt that it was worthwhile to investigate if
such a polynomial could simply be of the form xr − 1, for a suitable choice
of r. Given an n, the primality of which we would like to decide, we find a
suitable r, and then check if the remainder of dividing (x + 1)n − xn − 1 by
xr − 1 is zero in modulo n arithmetic. Stated another way, the condition
that we are checking is: whether the two polynomials, (x + 1)n and xn − 1,
are equal or not, when performing modulo operations simultaneously with
respect to both n and xr−1 on the two polynomials. Expressed in symbols,
the condition is:

(x + 1)n = xn + 1 (mod xr − 1, n) (1)

Without any loss of generality, r above can be taken as a prime.

If r is not too large15, then in polynomial time we can check whether n
satisfies the condition above or not. The hope is that if one finds the right
small prime r for the given n (and if indeed, should such an r exist in the
first place), then verifying the condition (1) will be the same as verifying
(x + 1)n = xn + 1 (mod n). Since the latter condition is satisfied only by a
prime we will then have a polynomial time algorithm for primality testing.

Upto a point one can appreciate the preference for the specific form xr − 1
for the polynomial for taking the modular operation. One reason is that
performing the modular operation becomes computationally very simple:
going modulo xr − 1 means considering xr − 1 as 0, which in turn means
replacing xr, wherever it may occur, by 1. Thus, whenever we encounter
some term xr+k where k ≥ 0, we simply replace it by xk. Another reason is
that when r is a prime, xr−1 factorizes into (besides the factor (x−1)) the
largest possible irreducible factors, and this has certain technical advantages.

At the same time it appears very unlikely that there would exist a small
prime r such that the test (1) by itself, which after all makes use of just one
polynomial modular operation, could give us all the relevant information.
In spite of it apparently being such a long shot, Manindra just could not
leave (1) as a possibility. During the period of 1999 to 2001, he tried several
different approaches to prove the sufficiency of this test. In the process, he
discovered two properties of (1) which later on would turn out to be two

15For some constant k, we should have r ≤ (log n)k.

12



key ingredients of the final proof that Manindra, Neeraj and Nitin would
discover in 2002.

Notational convention:
In the rest of the article, the symbol n will always be used to denote the
number whose primality we wish to check, and r will be used for a prime
which is small with respect to n.

4.2 Two key ingredients

We need to consider a slightly different version of the test (1) to appreciate
the two key ingredients. Given an input number n, what we check computa-
tionally is whether the condition in (1) is satisfied or not. However, because
n can be a composite in general, analyzing the consequences of modular n
arithmetic can become quite a messy affair technically. What is simpler is
to consider modulo p arithmetic for some prime p. Let p be a prime factor
of the given n. Since two quantities which are equal modulo n are also equal
modulo p, the condition

(x + 1)n = xn + 1 (mod xr − 1, n)

implies
(x + 1)n = xn + 1 (mod xr − 1, p) (2)

It is known that for every polynomial g(x), and for every power pk of any
prime p, the following is satisfied:

(g(x))pk
= g(xpk

) (mod p)

Therefore, it follows that the condition

(g(x))pk
= g(xpk

) (mod xr − 1, p)

will be satisfied for every polynomial g(x), and for every power pk of any
prime p.

We know, therefore, that the numbers 1, p, p2, p3, . . ., i.e. every power of
p, will satisfy16 the condition (2). Suppose our n is such that it satisfies
(2). Therefore, we know that powers of p, and n are instances of numbers
that satisfy (2). A natural question then is: What can we say in general
about numbers that satisfy (2)? What we call the first key ingredient is the

16When we say that m satisfies (2), we mean that

(x + 1)m = xm + 1 (mod xr − 1, p)

holds.

13



following property of this set of numbers:

First key ingredient:
If n1 and n2 satisfy (2), n1, n2 not necessarily distinct, then their product,
viz., n1n2, will also satisfy (2).

The second key ingredient is also a property about the numbers that satisfy
(2). It can be stated as:

Second key ingredient:
If n1 and n2 satisfy (2), and are both congruent modulo r, then n1 and n2

will also be congruent modulo N , where N is a number which in general will
be much larger than r.17

In other words, the above property says that if n1 and n2 both satisfy (2),
and r divides n1−n2, then a much larger number N will also divide n1−n2.
This is a remarkable property; let us understand why it is so.

Let us keep in mind that r is a small number, whereas N is a very large
number. Consider the range 0 to N − 1, and suppose that we have two
numbers n1 and n2, both belonging to this range, and both satisfying (2),
which are congruent modulo r, that is, both leave the same remainder on
division by r. The second key ingredient says that n1 and n2 must also leave
the same remainder on division by N . But that is not possible if n1 and n2

are distinct. Because, as each is less than N , on division of such a number
by N , we will get the number itself as remainder. The conclusion, therefore,
is that in the range 0 to N − 1, two distinct numbers satisfying (2) cannot
be congruent modulo r, they must leave different remainders on division by
r. There are only r possible distinct remainders on division by r (which are:
0, 1, . . . r− 1). Therefore, in the huge range 0 to N − 1, there can only be at
most r numbers which can satisfy (2).18

To summarise, whereas the first key ingredient says that lots of numbers
can satisfy the condition (2), (because the moment two numbers do, then
their product will also satisfy (2)), the second key ingredient says that such
numbers cannot occur densely.

17When we say that two numbers are congruent modulo a number, say k, it means that
the two numbers both leave the same remainder on division by k. Another way of stating
it is that the difference between the two numbers is a multiple of k. For example, 28 and
73 are congruent modulo 5.

18Much later, Neeraj and Nitin during their BTech project work independently discov-
ered this key ingredient. Neeraj was so excited on noticing the property that he could not
sleep the entire night!

14



4.3 A hazy landscape

It is clear that each of the two, what we have called key ingredients, on its
own reveals something of interest about the intriguing test (1). However,
during the period 1999 – 2001, neither Manindra, nor those of his students
who had spent time on the primality question, could make use of these in-
gredients to make a definite advancement. And yet, Manindra could discern
a hazy landscape which he kept on exploring in various ways.

For (1) to be an effective primality test, one needs to show that if n satisfies
(1), then, as we had outlined earlier, n cannot be any number other than
some power of a prime. We have also said that technically it is more viable
to deal with (2), which n satisfies by implication when it satisfies (1). We
have seen that all powers pk of p will satisfy (2), where p is a prime factor
of n, in terms of which (2) is expressed. Therefore, the goal Manindra had
in mind was to prove that no number other than the various powers of p,
namely, 1, p, p2, p3, . . . can possibly satisfy (2).

Suppose n satisfies (2). Then we know from the first key ingredient that
n×n, i.e., n2 will also satisfy (2), and then so will n3, and so on. Thus, every
power ns of n will satisfy the condition. We also know that every power pt

of p will also satisfy (2). Let us now consider the second key ingredient.
Let N in the statement of the second key ingredient be larger than both
ns and pt. Therefore, 1, p, p2, . . . , pt as well as n, n2, . . . , ns all lie in the
range 0 to N − 1. However, the second key ingredient tells us that in this
range there are at most r places where these powers of p’s and n’s can be,
and thus 1, p, . . . pt and n, n2, . . . ns all compete for these r positions. One
may hope that due to this jostling for occupying the few available positions,
some power pi of p, and some power nj of n may come to occupy the same
position. That is, pi = nj , which immediately implies that n is some power
of p,19 and the goal is reached.

If things work out as above, then we do have a polynomial time primality
test. Given an n, we first check if it is of the form ab, where both a, b ≥ 2.20

If this is the case then we conclude that n is composite, and we are done.
Next, we test if n satisfies the condition (1). If it does not, again we know
that n is composite. If n does satisfy (1), then it is a prime.

Although this scenario does seem to contain the goal, many issues are hazy.
We may not find a suitable small prime r, N may not be large enough, and
most damagingly, all of 1, p, . . . , pt and n, n2, . . . , ns may find their places
uniquely in the range 0 to N , without any pi and nj coinciding.

19The simple reasoning for this is: the number pi has only p as its prime factor. Any
number (here nj) which happens to be equal to pi cannot then contain any prime factor
other than p.

20Computationally, this check can be done in polynomial time.

15



At this juncture, Manindra would have created in his mind a list of the
issues to be tackled in order to chart a path through this confusing and
hazy landscape. First of all, one needed to ensure that N , of the second key
ingredient, should be large. For this to happen, first, the size of a certain
group21 needs to be large; and next, the order of (x+1) in this group needs
to be large. For the group to be large, the order of p modulo r should be
large.22 How would one ensure this condition? Manindra had noted an
obvious point: if order of p modulo r had the largest possible value, viz.,
r − 1, then the goal was attained (assuming N was large enough), because
then all the available r slots in the range would be taken up by the powers of
p, thereby forcing n to coincide with one of these powers. Of course, another
unresolved issue was how to obtain an appropriate value of r, which would
be small enough to be found out by an exhaustive search in polynomial time,
for all the happy things to happen. r could not be too small either, for in
that case N would not be large enough.23 It was also clear to Manindra that
the nice case that arose because the order of p modulo r took the largest
possible value was at best suggestive of the possibility that large order of
p might be helpful, but one could not pin one’s hope on p actually taking
a value even close to the largest possible one. Though number theory did
suggest that there are many primes p whose order modulo a fixed r are near
to the maximum value, it would be foolhardy to expect that the input n
would have such a prime as one of its factors.

The reader may very well find the discussion above to be quite confusing;
it was indeed an era of confusion with many issues requiring clarity and no
clear direction in sight. And yet, Manindra had a hunch that it would be
worthwhile to focus attention to two questions:

1. how large can one guarantee order of p modulo r to be?, and

2. how large can one guarantee N to be?

As we will see later, Manindra’s hunch did lead him and his two students to
the right path.

21It is the multiplicative group of Fp[x]/(g(x)), g(x) being an irreducible factor of xr−1.
22Order of p modulo r is the least value m such that pm = 1 (mod r). Order of (x + 1)

is similarly the least value m such that (x+1)m in the multiplicative group is the identity
element of the group.

23Quantitatively, r cannot be larger than (log n)k for some fixed constant k, at the same
time it has to be larger than log n.

16



4.4 End of the era: some encouragement, some disappoint-
ment

Manindra had asked an undergraduate student to do some experiments. The
student, Rajat Bhattacharya, shared with Manindra the enhusiasm for (1)
as a basis for primality testing. He tested all numbers upto hundred million
and found that composites that satisfied the condition (1), did so for very
few r’s even in the small range of 2 to 100. Thus (1) indeed worked as
a criterion for separating all primes from composites in the range of 2 to
hundred million.

Neeraj Kayal and Nitin Saxena started their BTech project work in August
2001 with Manindra as the supervisor. They further extended the experi-
mental work of Rajat, and checked numbers till 1010 (i.e., ten billion). Again,
it turned out that (1) as a criterion for primality testing was spectacularly
successful. The three thus had a fair amount of empirical support that the
criterion may work for all numbers. Neeraj and Nitin, with all their youthful
zeal and energy, joined Manindra in the hunt for a proof. It is interesting
that on their own, the two students rediscovered several facts that Manin-
dra had found before, most notably, the second key ingredient. Though
the facts they discovered and the observations they made were quite inter-
esting, Neeraj and Nitin realised, as Manindra had done previously, that
some crucial links of the proof were missing, if indeed such a proof did exist.
They completed their BTech project at the end of April 2002; it was excep-
tionally good work for an undergraduate project work and earned them the
Best BTech Project Award of the Department for that year. In early May,
their bags packed, Neeraj and Nitin were ready to leave IIT Kanpur having
graduated with their BTech degrees.

5 May – August, 2002: Discovery of the Missing
Links

It so happened, however, that Neeraj and Nitin stayed on for the summer
in Kanpur, for reasons which we have narrated earlier. This time around
no sooner had Manindra and his two students started taking a fresh look
at their problem of proving the adequacy of (1) for primality testing, than
they discovered one of the missing links: how to make N (of the second key
ingredient) provably large. They came upon this missing link by modifying
their earlier view slightly: instead of verifying the condition

(x + 1)n = xn + 1 (mod xr − 1, n)

verify
(x + a)n = xn + a (mod xr − 1, n), 1 ≤ a ≤ T (3)

17



That is, try out (3) for all values of a’s lying in a certian range 1 to T . If
the condition holds for all the (x + a)’s, then it is an easy deduction that
the condition

(g(x))n = g(xn) (mod xr − 1, n)

also will be true where g(x) is any polynomial obtained by multiplying to-
gether various powers of each (x + a). In particular therefore, this g(x) can
be taken to be the generator of the underlying cyclic multiplicative group,
which makes the corresponding N (the order of g(x) in the group) as large
as the group itself. Suppose that order of p modulo r is d. Manindra and his
students knew that a lower bound on the size of the group could be given
in terms of this d; this lower bound being 2d. Therefore, how large N could
be was now seen to depend crucially on d.

Manindra saw that it was fairly easy to prove that a small (relative to n)
prime r existed such that d is at least

√
r. Now, the remaining big question

was: could one provably show that there would exist some pi and some
nj , both less than N (thereby being in the range 0–N − 1), such that both
eavaluate to the same value modulo r? Again a slight shift in perspective led
the way forward. So far they were considering 1, p, p2, . . . and n, n2, . . . for a
clash in the range 0 to N − 1. One morning in July 2002, as Manindra was
taking his younger daughter to the campus school, the shift in perspective
suddenly occurred to him. Instead of considering powers of p’s and powers
of n’s, consider nipj for various values of i and j. 24. Let each i and j take
every value in the range 0 to

√
r. That gives us more than r nipj ’s, and

therefore, two distinct nipj ’s must evaluate to the same value modulo r.25

The equality modulo r is also an equality modulo N , from the second key
ingredient. If N ≥ n2

√
r, 26 then the equality modulo N will not just be

a conditional, modular equality, but the equality will be unconditional. In
other words, we will have ni1pj1 = ni2pj2 for some i1, i2, j1, j2, where at least
one of i1 6= i2 or j1 6= j2 holds. Immediately then, n is some power of p, and
we are done.

The only issue that remained was to ensure that N would be greater than
n2
√

r. Manindra could show fairly easily that this would be achieved if d,
the order of p modulo r, was to satisfy d ≥ r

1
2
+ε, for any constant (which

could be a fraction) ε, however small. There was a proviso, however; for d
to have such a value, r needs to be of the magnitude (log n)k, for a certain

24The second key ingredient is applicable for nipj ’s, because, from the first key ingredient
we know that nipj will satisfy (3), as both ni and pj do.

25This kind of argument, though very simple, is very powerful– it goes by the name
pigeonhole principle: there are more than r pigeons (nipj ’s) and only r pigeonholes (the r
possible values modulo r operation can take), and the commonsensical principle says that
(at least) two of the pigeons must find themselves in the same pigeonhole.

26Recall that p is a factor of n, so p < n. Therefore, nipj < ni+j , and as each i, j ≤
√

r,
every nipj that we are considering is less than n2

√
r.

18



constant k depending on ε. An earlier simple reasoning of Manindra’s could
ensure the condition that d ≥

√
r, i.e., d ≥ r

1
2 . But if such simple reason-

ing could give a bound on d which was almost adequate (but not quite!),
would not number theorists have already discovered some results implying
a better bound on d? With this in mind, Manindra and his two students
did a search on the Internet and came across a result by Fouvry, a French
mathematician, proved way back in 1985. From Fouvry’s result, in a few
steps, came the proof that a prime r in the appropriate range can be found
corresponding to which d would be as large as r

2
3 . And that concluded the

quest for a deterministic polynomial time algorithm for primality testing
that Eratosthenes had started around 300 BCE.

6 Some Speculative Remarks on Truth and Beauty

‘Elegance’, ‘beauty’ are words which are often used in describing great math-
ematical results. The work of Manindra, Neeraj and Nitin also has been
hailed as one of great elegance and beauty. As one reads their paper, one
gets the feeling that they first select a number of opaque, irregular shaped
pieces, and then they assemble these pieces together and suddenly what
emerges is a translucent sculpture. They use familiar mathematical objects
in an unfamiliar manner, they use facts and attributes that were previously
regarded as reasons for difficulty in bringing about clarity. They make use of
a small prime to unlock the primality question of a large candidate number.
Till then people had found primes which are smooth to be easier to handle,
but they make essential use of the very non-smoothness of one prime to
decide the primality of the input number. Indeed, the paper of Manindra,
Neeraj and Nitin is a work of beauty in the same sense that many great
results are considered beautiful.

However, I would like to speculate on a deeper notion of beauty. In 2002,
soon after the discovery was made, Manindra was asked by a media per-
son, ‘What made you keep on looking for a deterministic polynomial time
algorithm for primality testing in spite of knowing that the problem was so
hard?’ Manindra’s reply was that because he had an approach which no
one had tried before, he felt that it was worth pursuing. Later, he confided
in someone that that had been only half the answer– the other half was
that he knew that the approach would succeed. One is tempted to enquire
into the nature of such knowledge. Surely, no one could really know any
such thing in the familiar sense of the word know; after all, had Manindra
shared with any other researcher all that he was consciously aware of till,
say, 2001, about his approach, most certainly the researcher would not have
pursued the approach with any degree of seriousness for long. What was it
that Manindra knew about the issue which was so convincing to him, but

19



would not have been so convincing to someone else?

The history of science is replete with many examples, as Lakatos has pointed
out, where it appears that one first knows the end result; the verification or
proof comes later, through a process guided by a kind of conviction that no
hypothesis can ever generate, but a vision of truth can. Kepler verified his
laws of planetary motion through a huge amount of calculations on observed
data. Curiously, there were many mistakes in his calculations, but overall,
the mistakes nullified one another. No sane man would climb up a tall tower,
as Galileo did, merely to observe two objects of different weights fall from
the height, unless he knew that the result would be different from what the
authority of Aristotle had pronouncd. One is tempted to hold that such
knowledge and the resultant conviction can come only from an awareness of
truth, not in the ordinary sense of the word, but as that which ‘is what the
voice within tells you.’

However, there are also voices without, and they tell us to be prudent, to
be careful, not to waste time in running after that which could very well
turn out to be a mere chimera. How comes it then that one can ignore these
voices and remain steadfast to the voice within? The reason perhaps is that
simultaneously the eye within sees something of great beauty. Manindra
found something so attractive in the the condition (2) that he just could
not ignore it, he kept coming back again and again to (2) in spite of many
and repeated disappointments. The voyage of discovery is often a long and
painful one, but what guides the voyage is perhaps the perception of truth
and what sustains the voyage is a vision of beauty. Ours is a blessed existence
because some amongst us sometimes are capable of perceiving truth and
beauty.

Notes and Acknowledgements: The Dutch computational number theorist in
the Introduction section is Heinrich W Lenstra, Jr. The young Indian mathemati-
cian who along with Lenstra carefully verified the correctness of the proofs in the
manuscript Manindra had sent is Manjul Bhargav. Carl Pomerance was the col-
league of Lenstra who had contacted Sara Robinson, The New York Times science
correspondent, giving her the news of the discovery. Manindra’s colleague men-
tioned in Section 3 is Somenath Biswas.

By making use of an observation made by Lenstra, Manindra, Neeraj and Nitin
were able to avoid depending on the density result of Fouvrey, thereby making
their final proof completely elementary; the journal version of their result appeared
as the paper PRIMES is in P, Annals of Mathematics 160(2): 781 – 793 (2004).

I am grateful to Manindra Agrawal for many discussions and to Kiran Biswas for her
help in getting rid of many awkward sentences. My sincere thanks to V. Arvind,
Amiya Dev and Rajnish Mehra for their comments on the draft version of this
article.

20


