
Universality for Nondeterministic Logspace∗

Vinay Chaudhary, Anand Kumar Sinha, and Somenath Biswas
Department of Computer Science and Engineering

IIT Kanpur†

September 2004

1 Introduction

The notion of universality was introduced [AB92] in 1992 in the context of NP. The major
motivation of the work was to capture in a theory the essential sameness of various NP-
completeness proofs. The approach was to find out precisely what is preserved by natural
reductions. When we wish to show that a language A polynomial time, many-one reduces
to an NP-complete language B vis a reduction f , the reduction f needs only to preserve
membership, viz., x ∈ A iff f(x) ∈ B. However, natural reductions can be seen to preserve
far more than membership. The notion of universality provided precisely what remains
preserved: it is the set of witnesses or solutions each witnessing x ∈ A (in the context of an
NP relation RA defining the language A) that remains preserved, in the sense that from the
set of witnesses witnessing f(x) ∈ B (in the context of an NP relation RB defining B) the
set of witnesses witnessing x ∈ A can be extracted in a feasible manner. Finally, [AB92]
also gave a structural characterization of universal NP relations.1

Further to [AB92], Portier extended universality for NP-completeness over certain alge-
braic structures [P98]. In 1994, Buhrman et. al. [BKT94] made use of NP universality
to provide sufficient conditions for NP optimization problems that admit efficient approxi-
mation algorithm. Chakraborty and Kumar [CK03] extended the notion of universality for
completeness in #Pin 2003. Fournier and Malod [FM03] subsequently provided a cleaner
treatment of #P universality. In the current paper, we consider NL universality.2

∗Work reported here has been partially supported by IFCPAR Project 2602 – 1
†The first two authors are currently at the Computer Science Department, University of Wisconsin,

Madison.
1As we shall see later that universality is defined as an attribute of a relation that defines a language,

rather than as an attribute of the language per se. If the relation is universal then the corresponding language
is guranteed to be complete.

2The work reported here is a revised version of a part of the BTech project work of Chaudhary and Sinha

1

NL is the class of languages which are accepted by nondeterministic Turing machines using
logarithmic workspace. It is well known that this class can be alternatively defined also as:
(1) the class of languages accepted by nondeterministic counter machines having a constant
number of counters where each counter can count only upto the length of the input string,
or as (2) the class of languages accepted by nondeterministic machines with a fixed number
of read-only, two-way input heads which cannot move beyond the input, these machines
have no write capability, and hence no workspace.

Languages accepted (and functions computed) with logarithmic space usage constraint are
of interest for various reasons. First, we know that

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

and that at least one of the four inclusions above must be strict, but we do not know
which one(s). We would like to know, therefore, how L relates to NL, and as well as how
these relate to P. Next, logspace restricted computations, even deterministic ones, are
fairly powerful: it is known that a fair amount of arithmetic can be done in deterministic
logspace,3 and all known natural reductions to NP-complete sets can be carried out within
this resource bound. The emerging importance streaming algorithms has also made the
question of what is computable in logspace topical.

Two reasons motivated us to investigate universality for NL. First, NP universality is ob-
tained in terms of NP relations that define NP languages. NL languages too can be defined
in terms of relations, and therefore, work similar to NP can indeed be done for NL. The
other reason is: we know from the Immerman-Szelepcsényi result [I88] that NL is closed
under complementation, and therefore, the complement of every NL-complete language is
also complete for NL. Thus, it will be interesting to see how the notion of universality that
we develop for NL will work equally well, for example, for directed graph s-t connectivity4

as well as for directed graph s-t unconnevtivity.

We cite [JLL76] for examples of NL-complete languages from various domains, the comple-
ments of all these languages are, of course, also NL-complete.

Section 2 gives the definitions that we use. Next, in Section 3 we provide a structural
characterization of NL-universality, and in Section 4 we show how directed graph s-t un-
connectivity also satisfies this characterization.

[CS04].
3An interesting recent discovery is that division can be carried out within this resource.
4which is the canonical complete problem for NL

2

2 Basic Concepts

2.1 Relations, their associated languages, and solutions

Let R ⊆ Σ∗ × Σ∗ be a relation. The language LR ⊆ Σ∗, associated with the relation R is
defined as

LR
def= {x|(∃y)(x, y) ∈ R}

When x ∈ LR, and (x, y) ∈ R, we call y to be a solution that witnesses x to be in LR.

The set of all solutions of x (with respect to the relation R), denoted as solR(x), we have,
therefore, solR(x) = {y|(x, y) ∈ R}.

Throught we make the following assumption:
Every element of solR(x) has the same length, denoted as sol-lenR(x) and if |x1| = |x2| then
sol-lenR(x1) = sol-lenR(x2).

By restricting ralation R in various ways, we get the associated language LR to belong to
different complexity classes. For example, when the graph of R is a language in P and there
is a fixed polynomial p(·) such that if x ∈ LR then sol-lenR(x) = p(|x|), then LR ∈ NP.
Such a relation R is called an NP relation.

2.2 NL relations

Definition 1 A relation R is an NL relation if it satisfies the following conditions:

1. There is a fixed polynomial p(·) such that whenever x is in LR, sol-lenR(x) = p(|x|),
and

2. There is a deterministic logspace machine MR with two read only input tapes, one
of which is two-way, the other being one-way such that , for all (x, y), with x on the
two-way input tape, and y on the one-way tape, MR accepts iff (x, y) ∈ R.

Proposition 2 A language L is in NL iff there is an NL relation R such that L = LR.

The restriction that a solution y be placed in a one-way input tape of a logspace machine
is necessary to prove the only if part of the above proposition.

2.3 Blocks, block-masks, and projections through masking

Although, we can think of solutions as binary strings without loss of generality, often we
will require to view solutions in the following, more structured, fashion. We will assume

3

that if R is an NL relation, then every solution of length n is the concatenation of a number
of equal length blocks. Length of a block in a solution of x is O(log x). If x ∈ LR, then
block-len(x) specifies the length of each block in solutions of x, and further, block-len(·) is
logspace computable.(Clearly, sol-len(x) is an integral multiple of block-len(x)).

Typically, a block will be the code of an element of some set, or the label of a vertex in a
graph, etc.

We now explain what a block-mask is, the purpose of a block-mask is to filter out certain
bits from a block. Let l be the length of each block for some x. A block-mask then is also a
string of length l over {r, d, m1,m0}. The ith symbol of the block-mask specifies what is to
be done with the ith bit of a block: r is for retaining that bit, d is for dropping that bit, m1

for matching the bit with 1 and m0 is for matching with 0. When a block-mask is applied
on a block, the bits of the block are retained or dropped as specified in the mask provided
bits those are to be matched as specified by m0 or m1 in the mask are indeed matched in
the block. If this matching is not successful, then the result of applying the mask on the
block is an empty sequence. Matched bits, if any, are not retained on masking.

We will refer to symbols d and r in a mask as selection symbols, and m1 and m0 as match
symbols.

We clarify the idea of masking with an example. Suppose that the block length is seven,
and let a block-mask α berdrm1dm0r. Consider a block 0010110. When α is applied on
this block, the result is the null sequence, as the fourth and the sixth bits of the block are
not 1 and 0 respectively. On the other hand, for the block 0011101, the result of applying
α is 011.

Definition 3 (Projection through masking) Let S be a set of solutions where the block
length is l, and each solution be of m blocks. Let α be a block-mask. Then the projection of
S through α, denoted by projα(S) is defined as the set
{α(b1)α(b2) · · ·α(bm)| Each bi is a block, and b1b2 · · · bm ∈ S}

Definition 4 (Admissible block-masks) A block-mask α is said to be admissible for a
set S of solutions if

1. The length of α is same as that of a block in the solutions,

2. α has at least one r symbol, and

3. If match symbols m0 or m1 occur in α, then in every solution in S there will exist at
least one block where matching will occur on every match symbol in α.

The proposition below readily follows from the relevant definitions. We will see subsequently
that this is a key fact used in many of our results.

4

Proposition 5 For any relation R, a string x, and a block-mask α, such that α is admis-
sible for solR(x), projα(solR(x)) is non-empty iff x ∈ LR.

2.4 Solution preserving reductions, NL universility

Now we define the notion of solution preserving reductions which is used to define univer-
sality.

Definition 6 f : Σ∗ → Σ∗ is said to be a solution preserving reduction of an NL relation
Q to an NL relation R if

1. f is computable in logspace, and

2. for all x ∈ Σ∗ there exist some string z and a block-mask α admissible for solR(z)
such that f(x) = 〈z, α〉 satisfying projα(solR(z)) = solQ(x).

(We make the assumption that the pairing function used in the definition above is such that
its inverse is computable in logspace).

Using Proposition 5, we get

Proposition 7 If f is a solution preserving reduction of NL relation Q to NL relation R,
then LQ ≤log

m LR via an f ′ readily obtained from f .

Definition 8 (NL-universality) An NL relation R is NL universal if for every NL rela-
tion Q there is a solution preserving reduction of Q to R.

We have, therefore,

Proposition 9 If R is NL universal then LR is NL-complete.

Although it appears, as we shall see later, that for all known NL-complete languages,
natural NL relations that define these languages are NL universal, the converse of the
above Proposition will be a major breakthrough. Because, it will immediately imply that
L 6= NL. Because, if NL collapses to L then the trivial language {1} will be NL-complete,
but no NL relation defining this trivial language can have a solution preserving reduction
from an NL-relation Q with LQ the set of solution set of which is infinite.

The immediate question that arises is if there are NL-universal relationis. Indeed, the
natural NL relation defining the canonical NL-complete problem, viz., directed graph con-
nectivity, is NL-universal. Next definition recalls this language, usually named as STCONN.

5

Definition 10 STCONN = {〈G, s, t〉|G is a directed graph, s and t are two distinguished
vertices, and there is a path from s to t in G}.

The NL relation we use for STCONN is RSTCONN, and it is defined as:
(〈G, s, t〉, y) ∈ RSTCONN iff y = vi1vi2 . . . vin where G has n vertices, vij ’s are vertex labels
of G, vi1 is s, and there is some k such that for all j, 1 ≤ j < k, (vij , vij+1) is an edge of G,
and vik = vik+1

= . . . = vin = t. In other words, y gives the label of some s − t path in G
with the end padded with repetitions of the vertex label t so that y has exactly n vertex
labels.
(We need this padding to make every solution of 〈G, s, t〉 to have the same length).

Theorem 11 RSTCONN is NL universal.

Proof: We prove this by showing that for every NL relation Q, there is a solution preserving
reduction of Q to RSTCONN.

Let M be an NL machine that, given x ∈ LQ as input, guesses bit-by bit a solution y of
x (w.r.t. the NL relation Q)5 and verifies that (x, y) ∈ Q. We assume M to be such that
whatever guess bit is chosen, it immediately appears as the last bit in the workspace of M .

For any input x, let lx be the length of every configuration of M on x, let us assume that
the workspace contents come at the end of the configuration, therefore, the guess bit chosen
at a configuration appears as the last bit of the immediately next configuration. We note
that given x, lx is logspace computable. Let STARTx be the start configuration of M on x,
(from which there are two possible transitions, one to one to a state with guess bit 1, the
other with guess bit 0). Let M be such that it goes to a unique accepting configuration,
ACCEPT, if it does accept x. Let us assume that the state label appears in the beginning
of every configuration, and this labelling ensures that states of STARTx, ACCEPT, as well
as all states that are required to achieve the uniqueness of ACCEPT, (e.g., when M is
blanking out the workspace, moving the heads to the leftmost positions) all start with 0,
and rest of the states start with 1.

Consider the following logspace transducer T . On input x, first it cycles through all possible
configurations of M on x, and outputs as the labels of vertices of the graph of configurations
Gx. Next, T cycles through all pairs of these configurations, and outputs pairs (A,B) if
M can go in a single step from configuration A to B. These are the edges of Gx. Then, T
outputs STARTx and ACCEPT.

Next, T outputs the block-mask α. The length of α is lx, this block-mask is such that it
retains the last bit of a block (which is the guess bit used to arrive at the configuration that
corresponds to this block from the previous configuration), and selects a block for projecting
only if its first bit is 1.

5Without loss of generality we are assuming here that solutions of strings in LQ are binary strings.

6

As M accepts x using a solution y as guess iff there is a path from STARTx to ACCEPT
in Gx, and y is the concatenation of the bits chosen by α. Hence, T computes a solution
preserving reduction from Q to RSTCONN.

3 Characterization of NL universality

3.1 build and prune operations

We show in this section that an NL relation is universal iff it admits two operations, called
here build, and prune. The operation build computes strings with certain specific solution
spaces, and prune can be used to appropriately prune these solution spaces. We will prove
that if these two operations exist for an NL relation R, then there will exist a solution
preserving reduction from RSTCONN to R, and therefore, R is universal. For the other
direction, first we will see that for RSTCONN, both build and prune exist. Next, we show
that if a solution preserving reduction exists from RSTCONN to an NL relation R, then it is
possible to define build and prune of R from the corresponding operations of RSTCONN.

Definition 12 (build operation) An NL relation R is said to have the build operation if
there is a logspace computable function buildR : 1∗ → Σ∗ such that for all positive integers
n, there will exist a string x over the alphabet of Σ, and a block-mask α, this block-mask is
admissible for solr(x), such that blockR(1n) = 〈x, α〉 satisfying the following:

projα(solR(x)) =
n−2⋃
k=1

⋃
P,|P |=k,P⊆{2,...,n−1}

⋃
σ∈Sk

c1 · cσ(p1) · . . . · cσ(pk) · cn . . . · cn

In the above, Sk denotes all the permutations of k elements, pi denotes the ith element of
P (in canonical ordering), (P being a set of k integers), ci denotes the binary encoding of
the positive integer i, and finally, in the argument string, at the end there will be exactly
as many cn’s so that the total number of ci’s in the argument becomes exactly n. (We have
used · to denote the string concatenation operation).

The definition captures (rather in a formidable manner!) the following property of the
NL relation R. For every n, we can in logspace find x and α such that projα(solR(x)) is
precisely the set of the solutions with respect to RSTCONN of the complete directed graph
of n vertices, where the vertices of the graph are labelled with the binary encodings of
numbers 1 to n, 1 being the distiguished s vertex and n being the distinguished t vertex of
STCONN.

7

Our next definition defines the prune operation.6

Definition 13 We say that an NL relation R has a prune operation if there exists a logspace
computable function pruneR : Σ∗ → Σ∗ such that for all x, and for all admissible block-
masks α, and for every set of pairs
{(u1, v1), (u2, v2), . . . , (uk, vk)}, all ui, vj’s being equal length strings, there exist z and an
admissible block-mask β such that

pruneR(〈x, α, {(u1, v1), (u2, v2), . . . , (uk, vk)}〉) = 〈z, β〉

with z and β satisfying

projβ(solR(z)) = {w|w ∈ projα(solR(x)) with the property that if w is the blocked pro-
jection (with α) of the solution y of x, where y = b1b2 · · · br, each bi being a a block of y,
then there exists no j, 1 ≤ j < r such that for some i, 1 ≤ i ≤ k, the string ujvj is equal to
α(bj)α(bj+1}

Basically, prune is a way of pruning solution space in the following sense. Consider the
set S′ of solutions of x which are all the solutions except those where the projections (with
α) of two successive blocks results as the string uivi, for some i. Now, z is a string whose
solution set, when projected with β, is precisely the pruned solution set S′ of x.

It is obvious that RSTCONN has build. We argue that it has prune too.

Proposition 14 RSTCONN has prune operation.

Proof: Suppose, we need to compute pruneRSTCONN
on the argument

(〈G, s, t〉, α, {(u1, v1), (u2, v2), . . . , (uk, vk)}〉). Recall the standard input format for 〈G, s, t〉:
first the vertices of G are listed, then the edges in the form of pairs of vertices, and finally,
s and t appear on the input.

Consider a logspace transducer T which first copies the set of vertices of G onto the output
tape. Then it examines each edge (u, v) one after another. T will copy this edge onto the
output tape iff α(u)α(v) 6= uivi for any i. After T has considered all the edges of G, it
outputs s, and t, and finally, copies α onto the output tape. This concludes description of
T which computes pruneRSTCONN

.

Logspace complexity of T is obvious. A witness for 〈G, s, t〉 is a sequence of vertices of G
which traces out an s− t path. Deleting all edges (u, v) from G such that α(u)α(v) = uivi

6There is a problem in the definition as given here: the two strings ui and vi of a pair can come together
not from successive blocks of a solution, but from distant blocks becuse the intermediate blocks are masked
out with α. This can be fixed by insisting in the definition that prune needs to remove only those solutions
where ui and vi are from successive blocks. However, there may be a less restrictive condition which will
suffice.

8

for any i is necessary and sufficient to ensure that the resultant graph solution set will
satisfy the prune requirements.

3.2 Characterization theorem for NL universality

The Theorem below structurally characterizes universal NL relations.

Theorem 15 An NL relation R is NL universal iff R has the two operations, build and
prune.

Proof: Proof of ⇐ direction:

We prove the only if part by showing that if an NL relation has build and prune then we
shall be able to construct a solution preserving reduction of RSTCONN to R.

First, notice that in logspace we can transform an arbitrary instance 〈G, s, t〉 of STCONN,
G having n vertices, to 〈G′, 1, n〉 where G′ is an isomorphic copy of G with the vertices of
G′ being labelled with binary encodings of 1 to n, and with s mapped to 1 and t mapped
to n. 7 We assume then, w.l.o.g., that we have an instance 〈G, 1, n〉 where vertices of G are
1 through n. Consider the following logspace transducer T1. Given 〈G, 1, n〉, T1 computes
buildR(1n) which is, say, 〈x, α〉. We have that projα(solR(x) is the set of all 1−n paths of a
complete graph with n vertices, labelled with 1 to n. First part of T1’s output is x and the
second part is α. T1 also computes the set S which is E1−E2, E1 denoting the set of edges
in the complete graph with n vertices labelled as mentioned, and E2 denoting the edges in
the input graph G to T . This S is the third part of T1’s output. Now, let T2 be a logspace
transducer that applies pruneR to the output of T1. The composition of T1 followed by T2

provides8 a solution preserving reduction of RSTCONN to R which directly follows from the
definitions of block and prune.

Proof of ⇒ direction:

For the other way, assuming R to be universal, there is a solution preserving reduction say
f , of RSTCONN to R. buildR can then simply be defined as buildR(1n) = f(〈G, 1, n〉).

7How is this done? n is easy to determine, and s and t labels of G are kept in store. These two will
be mapped to 1 and n respectively. A vertex gets the label m, if it is the mth vertex of G (respecting, of
course, the committed labellings to s and t.) Here, we assume that the input is given in the usual way: first,
the list of vertices, and then the list of edges, then s and t. Any other reasonable encoding (for example,
without explicit vertices list, but with s and t, and followed by the list of edges) will also serve equally well.

8We recall that the composition of a constant number of logspace transducers can be carried out by a
single logspace transducer.

9

Now, let us see how we can define pruneR(〈x, α, S〉). Let g be a solution preserving reduction
of R to RSTCONN, and assume g(x) to be 〈z1, γ〉. Let pruneRSTCONN

(〈z1, α·γ, S〉) be 〈z2, δ〉.
(It is clear that the composed block-mask α · γ will be admissible for blocks of x solutions).
Next, let f(z2) be 〈x1, ε〉. Then, prune(〈x, α, S〉) will be 〈x1, δ · ε〉.

The reason this definition of pruneR works is as follows. Clearly, the appropriately pruned
version of the set of solutions of x that we need is projδ(solRSTCONN

(z2)). However, we
have that solRSTCONN

(z2) = projε(solR(x1)). Therefore, projδ(projε(solR(x1)) is the value
of pruneR on the specified argument.

4 Universality of directed graph s− t unconnectivity

4.1 NL relation for s− t unconnectivity

From the Immerman-Szelepscényi result [I88], we know that the complement of directed
graph connectivity problem is NL-complete. We argue in this section that the NL-relation,
which follows from the inductive counting technique as used in the proof of the Immerman-
Szelepscényi result, does possess both build and prune operations, and therefore, the relation
is NL-universal. We need the following result to state precisely what this relation is.

Theorem 16 Let G be a directed graph with n vertices, and with two distinguished vertices
s and t. Then, we can construct in logspace another directed graph G′ with O(n8) vertices
and with distinguished vertices s′ and t′ such that there is no directed path from s to t in G
iff there is a directed path from s′ to t′ in G′.

Terminology: We will refer to the graph G′ as the Immerman-Szelepcsényi graph of G,
where G and G′ are as in the Theorem 16 above.

We define below an NL relation for the graph s-t unconnectivity, we denote this NL relation
as RSTUNCONN.

Definition 17 (RSTUNCONN) Our NL relation for the graph s-t unconnectivity, RSTUNCONN,
will relate 〈G, s, t〉 to y if

1. The vertex s is not connected to vertex t in the directed graph G, and

2. y is an s′ − t′ path in G′ where G′ is the Immerman-Szelepcsényi graph of G (pos-
sibly with some nodes in the path occurring several times consecutively in the path

10

y to satisfy the constraint that all solutions of instances of same size to have the
same length. To render this possible, we will have a self-loop at each node of the
Immerman-Szelepcsényi graph).

4.2 Construction of Immerman-Szelepcsényi graph

We need some details about Immerman-Szelepcsényi graph to argue that RSTUNCONN has
both build and prune operations.

The construction of Immerman-Szelepcsényi graph is based directly on the proof that non-
deterministic space classes are closed under complementation [I88]. Consider a graph G
with n vertices, denoted by labels 1 to n. For a nondeterministic machine M to conclude
that n is not reachable from 1 in the graph G, first M computes all Nds, the number of
vertices reachable from 1 in d or less steps, with d varying from 1 to n. Computation of
Nds is done inductively. Then, M guesses Nn distinct verices, verifies that each is reachable
from 1, and is different from n. At this point M concludes that n is not reachable from 1
in G, and goes into its accepting state.

M uses the following nondeterministic algorithm to obtain Nd+1 once Nd is computed. It
is assumed, without loss of generality, that there is a self-loop on every vertex of the graph
G. (This is helpful to ensure every solution to have the same length).

Code fragment that computes Nd+1 given Nd.
Here, the vertex set of input graph is {1, . . . , n}, with 1 as the source vertex and n as the
target vertex.

Nd+1 = 0;
for i = 1 to n{
/* this loop determines if i contributes to Nd+1 */

check-count = 0; flag = 0;
for j = 1 to n {
/* this loop determines if j contributes to Nd */

nondeterministically decide if vertex j is reachable from 1
in d or less steps
if decision is yes {

k = 1;
for l = 1 to d {

nondeterministically choose an edge (k, k′);
k = k’;

}
if (k 6=j) reject;
else { check-count++;

if(i is equal to j or (i, j) is an edge)

11

flag = 1;
}

}
}
if (check-count 6= Nd) reject;
else if (flag is equal to 1) Nd+1++;

}
/* at this point the computation of Nd+1 is complete */

In the overall algorithm that M uses, first, the above is iterated n times successively to
compute all Nd’s, 1 ≤ d ≤ n. This completes what can be termed as the first phase of
the algorithm. In the second phase, the algorithm essentially checks if n is among the Nn

vertices reachable from source vertex 1. Verifying that vertex n is not in this set of vertices,
M accepts. Phase 2 algorithm too can be made very similar to the code fragment given
above: in this phase, when a path is found from 1 to j then flag is set if i is equal to j,
and not when i is a neighbour of j as done in Phase 1.

As we said, the definition of Immerman-Szelepcsényi graph follows M ’s algorithm, which is
basically several iterations of the code fragment shown above, with some minor variations.
A node of Immerman-Szelepcsényi graph can be seen as a record with several fields (Figure
1) except for two special nodes, START and ACCEPT, we treat START as the source
vertex and ACCEPT as the target vertex. ACCEPT will be reachable from START iff n
in G is not reachable from 1.

In a node of Immerman-Szelepcsényi graph, the field PHASE will have value 1 when the
algorithm is in its first phase. For the next phase, PHASE value will be 2. All other fields
as shown in Figure 1 correspond to the variables as shown in the code fragment.

PHASE d Nd Nd+1 i j k l flag
check-
count

Figure 1: Node of a Immerman-Szelepcsényi graph

From the algorithm, along with the definition of G, it is fairly straight-forward to define
what the edges of Immerman-Szelepcsényi graph will be. For example, a node w with
PHASE value 1, and with l value less than d, will have an edge to node w′, w′ has all values
same as that in w, except that l value will be one more, k field in w′ will have value k′,
provided (k, k′) is an edge in G. The detailed definition of Immerman-Szelepcsényi graph
for G can be found in [CS04].

Even from the above condensed description of Immerman-Szelepcsényi graph for a graph
G, it is not difficult to be convinced that

12

Proposition 18 If there is a path p in G from 1 to n, then there will be a path p′ in
Immerman-Szelepcsényi graph such that the path p can be recovered from p′ using a suitable
block-mask.

4.3 Existence of build and prune for RSTUNCONN

Suppose G is a complete directed graph on the vertex set {1, . . . , n}. Let G1 be the
Immerman-Szelepcsényi graph of G, and let G2 be the Immerman-Szelepcsényi graph of
G1. Note that as n is reachable from 1 in G, ACCEPT of G1 is not reachable from START
of G1, this in turn means that ACCEPT of G2 is reachable from START of G2. Further,
a path from START to ACCEPT in G2 is a RSTUNCONN solution witnessing that in G1

ACCEPT is not reachable from START. Now, making appeals to Proposition 18, we can
conclude that an 1−n path in G can be retrieved from a RSTUNCONN solution of G1. As G
has all possible paths from 1 to n, a suitable blocked projection of the set of RSTUNCONN

solutions of G1 will span through all these paths. We see, therefore, build for RSTUNCONN

on input 1n should simply output G1, along with a suitable block-mask.

Similarly, it is not difficult to see that RSTUNCONN has prune. Input to prune is a G, 1, n,
a block-mask α, and a set S of tuples of strings. prune needs to prune out all RSTUNCONN

solutions of G, 1, n which, when projected with α, will have an occurrence of ss′, for some
(s, s′) ∈ S. Any RSTUNCONN solution of 〈G, 1, n〉 will be a path from START to ACCEPT
in the Immerman-Szelepcsényi graph G′ of G. Consider an logspace tarnsducer T which
is (conceptually) the composition two logspace machines T1 and T2. The first machine T1

computes the Immerman-Szelepcsényi graph G′ of G. What T2 does is very similar to how
we defined pruneR in the ⇒ part of Theorem 15. T2 considers each edge of G′ one after
another, and determines if this edge’s occurrence in a path will lead to obtaining ss′, for
any (s, s′) ∈ S, when the path is projected through α. If so, it determines the necessary
update of the edge set of G that is required. We again appeal to Proposition 18 to argue
that T2 is can indeed determine the necessary update. Output of T is G with all updates
done, along with a suitable block-mask.

5 Concluding remarks

We believe that the present work is another evidence that the notion of universality is fairly
robust: for language classes defined through relations, it is indeed possible to define univer-
sality for the corresponding class of relations, and provide its structural characterization.
It is not clear to us whether or not a better structural characterization of NL universality is
possible than what we have provided here. In case of NP universality, one can considerably
simplify many completeness proofs making use of the structural characterization. On the
face of it, this does not seem to be the case with our structural characterization of NL uni-
versality. Therefore, it may be worthwhile to look for a better structural characterization

13

of NL universality. One of our original motivation to define universality was to understand
what natural reductions preserve beyond membership. The approach that has been taken
so far in answering this question (through NP, #P, or NL universality) will clearly not work
for some classes of reductions, in particular, for randomized reductions. Can we answer the
question satisfactorily for such classes of reductions as well? This appears to us an issue
worth investigation.

References

[AB92] Manindra Agrawal and Somenath Biswas, Universal Relations. In Proc. 7th Struc-
ture in Complexity Theory Conference, pp 207–220, 1992.

[BKT94] Harry Buhrman, Jim Kadin, and Thomas Thierauf, On Functions Computable
with Nonadaptive Queries to NP. In Proc. 9th Structure in Complexity Theory Con-
ference, pp 43–52, 1994.

[I88] N. Immerman, Nondeterministic space is closed under complementation, SIAM Jl. of
Computing, pp 935–938, 1988.

[JLL76] N.D. Jones, E. Lien, and W.T. Lasser, New problems complete for nondeterministic
logspace, Math. Syst. Theory, 10, 1, pp 1–17.

[P98] Natacha Portier, Réesolutions universelles pour des problèmes NP-complets, Theo-
retical Computer Science (201) 1–2, pp 137–150, 1998.

[CK03] BTP report of Chakraborty and Kumar available at
http://www.cse.iitk.ac.in/reports

[FM03] Fournier and Malod report

[CS04] BTP report of Chaudhary abd Sinha available at
http://www.cse.iitk.ac.in/reports

14

