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Abstract. In order to understand what makes natural proteins fold
rapidly, Sali, Shakhnovich and Karplus [SSK94a], [SSK94b] had used
the Metropolis algorithm to search for the minimum energy conforma-
tions of chains of beads in the lattice model of protein folding. Based
on their computational experiments, they concluded that the Metropolis
algorithm would find the minimum energy conformation of a chain of
beads within an acceptable time scale if and only if there is a large gap
between the energies of the minimum energy conformation and that of
the second minimum. Clote [C199] attempted to support this conclusion
by a proof that the mixing time of the underlying Markov chain would
decrease as the gap in energies of the minimum energy conformation and
that of the second minimum increased. He was able to show that an up-
per bound on the mixing time does indeed decrease as the energy gap
increases. We show in this paper that the mixing time itself, however, is
a nondecreasing function of the value of the energy gap. Therefore, our
result contradicts what Clote had attempted to prove.
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1 Introduction

One of the most outstanding open issues in biology is the rapid folding of pro-
teins: in spite of the existence of exponentially many possible configurations, a
protein, after its formation as a chain of arbitrary shape, manages to fold, i.e., to
reach its unique lowest free-energy state, very quickly.! In order to understand
the factors responsible for the rapid folding of proteins, Sali, Shakhnovich, and
Karplus [SSK94a], [SSK94b] considered the lattice model of protein folding. In
this model, one considers a chain of n beads, a1, as,...,a,, as an idealization
of the polymeric chain of amino acids that defines the primary sequence of a
protein. A conformation of the chain of beads is a placement of the beads in the
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three-dimensional lattice, a placement that is required to satisfy two constraints:
that beads a; and a;11,1 < 4 < n, will occupy adjacent lattice positions, and
that no two distinct beads will occupy the same lattice position. (In other words,
the chain is folded in such a manner that each bead occupies a lattice position
and this folding is, so called, self-avoiding). Sali et. al. defines the total energy
E of a conformation to be E = X;.;A(r;,r;)B;j, where r;’s denote positions
of the ith bead a; in the lattice, A(r;,r;) = 1if [¢ — j| > 1 and 7,7, are two
adjacent positions in the lattice, A(r;,7;) is 0 otherwise. The term B;; is the
attractive force between the bead pair a;, a;, and is defined suitably to model the
attractive forces between pairs of amino acids. The chain of beads is considered
to be folded if it is in a conformation with minimum total energy.

To study the kinetics of folding, Sali, Shakhnovich and Karplus used the
Metropolis algorithm to locate the minimum energy conformation, after identi-
fying a suitable notion of neighbourhood amongst the set of conformations. A
search of the space of conformations through the Metropolis algorithm is indeed
an acceptable approximation for the molecular dynamics reponsible for folding,
as explained in [SK91]. They considered 200 instances, each with 27 beads, with
varying B; ;’s. They found that the Metropolis algorithm was able to locate the
global minimum within an acceptable timescale in 30 of the 200 instances. On
examining the set of instances, Sali, Shakhnovich and Karplus found that what
distinguished the 30 rapidly folding instances from the rest was that all those 30
instances had pronounced gobal minima, which the rest did not. A configuration
is said to have pronounced global minimum if there is a large gap between the
energies of the minimum energy conformation and that of the second minimum.
On the basis of this finding they made the conjecture that the necessary and suf-
ficient condition for a chain to fold rapidly is that it should have a pronounced
global minimum.

Clote [C199] attempted to provide a theoretical justification for the above
conjecture by considering the effect of increasing the gap in energies of the mini-
mum and the second minimum conformations on the mixing time of the Markov
chain that the Metropolis algorithm uses. If the conjecture is true then it is
reasonable to expect that the mixing time will decrease with increase in the
gap. What Clote was able to show is that an upper bound on the mixing time
does, indeed, decrease as the energy gap increases. However, as Clote himself
had pointed out, the result does not prove anything about the mixing time per
se.

Our work here actually contradicts what Clote had set out to prove. In partic-
ular, we show that the second largest eigenvalue of the underlying Markov chain,
as a function of the energy gap between the minimum and and second minimum
energy configurations, is non-decreasing. As the mixing time decreases with the
decrease in the second-largest eigenvalue, our result proves that increasing the
gap in energies will not reduce the mixing time.

Our approach to the problem is different from that of Clote’s. Clote used the
notion of canonical paths [S93] to argue about an upper bound on the conduc-
tance of the underlying graph of the Markov chain, whereas we directly work



with the second largest eigenvalue. Further, our proof is not entirely algebraic,
it also uses certain facts from analysis, e.g., that the eigenvalues of a matrix are
continuous functions of its entries.

2 Preliminaries

To find the minimum energy conformation, the Metropolis algorithm runs a
Markov chain. The state space of the chain is the set of conformations. There is
a neighbourhood structure associated with the set of conformations: one confor-
mation ¢ is a neighbour of another, co, if due to a local move ¢y can result from
c1. We assume that the neighbourhood structure is an undirected, connected
d-regular graph.? Let f(c) denote the energy of the conformation c. As per the
Metropolis algorithm, if the Markov chain is in the state (i.e., current conforma-
tion is) ¢; at a certain instant of time, and ¢; is a neighbour of ¢;, then the chain
will move to ¢; with probability min{1/2d, (1/2d) x (e=#(¢)/T Je=F(c)/T) (T is
the ambient temperature in which the modeled physical process is situated; for
our purpose, it is simply a constant.) Our goal in this paper is to study how
the mixing time of the chain would change, as we change the f value of the
minimum energy conformation, leaving the f values of the other conformations
unchanged.

In order to keep the notations simple, we study the following equivalent
problem. Let G be a d-regular undirected connected graph with vertex set
{0,1,...,n—1}. Associated with each vertex i, is the value of the vertex: V;. We
consider the Metropolis algorithm that aims to identify the vertex with the high-
est value. We assume without loss of generality that Vo >V > ... >V,_1 > 0.
(Vi’s are proportional to the stationary probabilities of the respective i’s, hence
negative values for V;’s are not considered).

The Metropolis algorithm runs a Markov chain to find the vertex having
the largest value; the state space of the chain is the set of vertices of G, and
its transition probability matrix P = {p;;} is as defined below: (We recall that
Vo>Vi>... >Vn,1.)

0 if i #j and ¢ ¢ Neighbour(j)

i = 2V if j € Neighbour(i) and j > i

! L if j € Neighbour(i) and j < i
1= Yigppe fi=j

It is well-known (see, e.g., [S93]) that matrices such as P have n real eigen-
values in [0, 1];® further, as the Markov chain using P is ergodic,* the chain has
a unique stationary distribution corresponding to the unique largest eigenvalue
1.

2 The regularity condition is not necessary, but the connectedness of the neighbour-
hood structure is necessary for the chain to have a stationary distribution.

3 The self loop probability, ps; > 1 /2 ensures that there is no negative eigenvalue.

4 The connectedness of the neighbourhood structure ensures irreducibility of the chain,
and as pi; > 0, the aperiodicity of the chain is guaranteed.



Instead of working with the matrix P, it is more convenient to work with
another matrix N defined as

N =2d(IL,xn — P)

A is an eigenvalue of P iff 2d(1 — \) is an eigenvalue of N. With respect to N
our goal, therefore, is to show that as V| increases, while the other V;’s remain
the same, the second smallest eigenvalue is non-increasing.

We make the substitution y for 1/V; in the matrix N; let N(y) denote the
matrix N with this substitution, and let A(y) denote the second smallest eigen-
value of N(y). Our goal is proved by showing that A(y) is a non-decreasing
function in y.

. . 1/2 {,1/2 1/2 .

Let D be the diagonal matrix diag(V,’",V;'7,...,V,,.7). Let the matrix M
be defined as M = DND~'. M is similar to N, and therefore, it has the same
set of eigenvalues as N does. M is also a symmetric matrix and therefore has
eigenvectors which are pairwise orthogonal.

Notations: We use the following notations in the rest of the paper:

N(y), M(y) : The matrices N and M with V{ substituted as 1/y,
A(y): The second smallest eigenvalue of N(y), therefore, of M (y),
M;;(y): The i, jth entry of the matrix M (y).

3 Results

First, we show that there is an interval starting at 0 where A(y) > A(0). Using
this, we prove later that A(y) is a non-decreasing function in y.

Lemma 1. There is a 6,0 > 0 such that for all y,0 < y < §,A(0) < A(y).

Proof. We consider two cases:
Case 1: A\(0) =0
Consider y > 0, and suppose that A(y) = 0. In this case, 0 is the value of the two
smallest eigenvalues of N(y), therefore, of M(y). As M(y) is symmetric, there
will exist two orthogonal eigenvectors for these two minimum eigenvalues, which
in turn means that corresponding to these two 0 eigenvalues, N (y) will have two
distinct eigenvectors. This will imply that P(y) will have two distinct stationary
distributions, which is not possible as P(y) is ergodic for every y > 0. Therefore,
Ay) > 0 for y > 0, which proves the Lemma for the present case.

Case 2: \(0) >0
First we prove the following:

Claim. Let z = (20, 21, .-, 2n—1), With ¥22 = 1, be the eigenvector correspond-
ing to the second smallest eigenvalue, \(y), of M(y), with the assumption that
y > 0. Let 2/ = (0,21, 22,...,2n—1). Then

2/ .M(0).2'T

Moo(y) < Ay) = R

< Ay).

2.z



Proof.

2 M(0).2"" = S 20 2 M;(0) 2]
= X S 2iM5(0)2), as My; =0 for i =0 or j =0
=X 12” 1z’Mj(y) ' as M;;(0) = M;; when neither ¢ nor j =0
:2;‘ 12’.’ L2iM;j(y)z; as z1, = 2, when k # 0,
=X % En 1M i)z

=X 11%(2?:01]\/[@' (y)zj — Mio(y)20)
= X 2 (My)z — Mio(y)20)
= AMy) X2 1122 — 20X zzMiO(y)
A(y)(l = 28) = 20( 215 7 Mio(y) — 20Moo(y))
My) (1 —23) — zO(E?:_OlziMOi (y) — 20Moo(y)) as M is symmetric,
(y)(l —28) — 20(M(y)z0 — 20Moo(y))

Now,
Z/ En 1 / /
= Ez’;fz?
=1- zg
Therefore,
2. M(0).2"" _ Ay)(L — 23) — z0(A(y)20 — 20Moo(y))
22T 1—2z2
%
=Ay) + 5 (Moo(y) — AMy))
1—2§
Whenever y > 0, we have z3 < 1. Because, otherwise, z becomes (1,0,...,0).

However, such a z cannot be an eigenvector of M(y). Reason: let k be a vertex

adjacent to vertex 0. Such a k must exist as the underlying Markov chain is

irreducible. As y > 0, Myo(y) # 0. So, denoting My (y) as the kth row of M(y),

Mi(y)(1,0,...,0)T = 0. Therefore, (1,0,...,0) is not an eigenvector of M (y).
As we have 22 < 1, the Claim follows from the last equality.

Claim. There is a d,6 > 0 such that for all y,0 <y <, Moo(y) < A(y).

Proof. By definition, Myo(y) = y(XicsV;), where S is the set of neighbouring
vertices of the vertex 0. Hence, lim, .o Moo(y) = 0, but lim,_o A(y) = A(0)
which is greater than 0 by assumption in the case under consideration. Hence,
the proposition follows.



Using Claims 3 and 3, we now can complete the proof for Case 2 of Lemma 1.

We consider the interval (0,0),6 as in Claim 3 and any y in this interval.
(1,0,...,0) is an eigenvector of M (0) corresponding to its smallest eigenvalue 0.
As M (0) is a symmetric matrix, we can use the variational characterization for
A(0), its second smallest eigenvalue, to get

t.M(0).tT

A(0) = T
0) u({flol,lvl--,o) t.tT

2/ .M(0).2'T

S AR N A—

77— (here 2’ is as in Claim 3)

2.z

< Ay)

for all y, 0 <y <6, where § is as in 3.

The first inequality is because z’ is orthogonal to (1,0,...,0) and the next
inequality follows then from the Claim 3.

This completes the proof of Case 2, and hence that of Lemma 1.

We are now in a position to prove our main result which is about the be-
haviour of A(y) as y increases from 0 onwards. (Recall that y is the inverse of
Vo, and is greater than 0).

Theorem 1. With y > 0, A(y), the second smallest eigenvalue of N(y), hence
that of M (y), is a non-decreasing function in y.

Proof. We consider the characteristic polynomial p(x,y) of N(y). The polyno-
mial p(z,y), being det(N(y) — xl,xn), is a degree n polynomial in z, and is
linear in y. It can be easily seen that for each y,

lim p(z,y) = oo
r——00

We recall that all the roots of p(x,y) are non-negative. Therefore, z < 0 =
p(z,y) >0and 0 < z < A(y) = p(z,y) < 0.
Suppose the theorem is false, let

(Fa, ¥6)[0 < Ya < yp and A(ya) > A(yp)]

(As a witness of the contradiction, the assumption that y, > 0 is justified because
if A(0) > r, for some r, then for a z within a small neighbourhood of 0, A(z) > r,
as the function A(y) is continuous in y). Further, we assume that the ¢ in Lemma
1 is such that

0<6<ya<u (1)

This condition can be made true by making ¢ take a value smaller than y,, if so
needed.

Consider z = A(0). From Lemma 1, we have that p(A(0),0) > p(A(0),0).
Now, the fact that p(z,y) is linear in y gives us

p(A(0),0) > p(A(0),6) > p(A(0), ya) > p(A(0), ys) (2)



However, as A(ys) < A(ya), the two curves p(x,y,) and p(z,y,) will intersect
at some value of z, say x*, with z* < A(yp), L.e., p(z*,ys) = p(x*,y) = b
(say). Again, the fact that p(z,y) is linear in y implies that for every value,
say yi, that y takes, the resultant curve p(x,y;) will also pass through that
point of intersection. In particular, p(z*,0) will also be b. We consider two cases
()A(0) < z* < A(yp) and (ii) A(0) > z* > A(yp)
Case (1): AM(0) < x* < A(yp)

Since 0 < z* < A(wp), p(z*,yp) < 0. Therefore the number of intersections of
p(z,yp) between z = 0 and x = z*, both inclusive, with the x-axis is exactly 1.

But z* > A(0) and p(z*,0) = p(z*,y5) < 0, therefore, the curve p(x,0) will
intersect the x-axis at some x5, A(0) < xo < x*. This implies that there is some
y1 such that p(z,y1) is tangent to the x-axis at some point between A(0) and zo.
The reason is as follows.

For the sake of convenience, let 1 denote A(0). We recall that the function
p(x,y) is of the form r(z) + ys(x). We show that there exist @, 1 < n, < T2,
and some y; such that r(z,,) + y18(xmy) = 0 as well as 7' (z,,) + y18' (xm) = 0.
(r'(x) and s'(z) denote the derivatives of r(x) and s(z).) For this to happen,

r(@m) _ r'(Tm)

s@n)  Sam)

will hold.
We define g(x) as
9(z) =r(z)s'(z) —1'(z)s(z)
As p(x1,0) = p(z2,0) = 0, we have r(z1) = r(x2) = 0. Further, as p'(x1,0) >
0 and p’(z2,0) < 0, we have r/(z1) > 0 and 7'(x2) < 0. Since p(x,y,) < 0 for
x1 < x < x9, and y, > 0, we have s(z1) < 0 and s(x2) < 0. These facts imply

that g(xz1) > 0 and g(xz2) < 0. Therefore, there is an z,,,z1 < x,, < x3 such
(Tm)

s(xm)”

that g(z,) = 0. Setting y; as — we have that p(z,y1) is tangent to the
x-axis at T,.

Applying the same reasoning after shifting the x-axis by a small §, we see
that there is an y. in the neighbourhood of y; such that p(x,y.) either has a
maximum below the x-axis, or a minimum above the x-axis.

We arrive at the same conclusion for Case (ii) as well.

But p(x, y.) is a degree n polynomial in z, therefore, it can have at most (n—1)
maxima/minima in total. Further, p(z,y.) has n real roots. So, between each
pair of consecutive roots there will be exactly one maximum or one minimum,
counting multiplicities, implying that it cannot have a maximum below the x-
axis or a minimum above the x-axis. Hence, the assumption that A(yp) < A(ya),
even though y, > y,, is false.

4 Concluding remarks

We have investigated in the paper the effect of increasing the difference between
the energies of the lowest and the second-lowest energy states on the mixing



time of the Markov chain of a Metropolis algorithm that seeks to find the lowest
energy state. We show that such an increase in the difference will not reduce the
mixing time of the chain; our result thus contradicts what [C199] had expected.

Besides the immediate context of the Sali, Shakhnovich and Karplus conjec-
ture, our result may be considered of interest because ours is a statement about
the performance of the Metropolis algorithm solely on an aspect of the station-
ary probabilities of the underlying Markov chain. The work of Sasaki [S91] is
also of a similar kind, as it provides a lower bound on a performance measure of
the Metropolis algorithm in terms of density of states, the density D(m) being
the ratio of the number of states with stationary probability = and the total
number of states.

We would like to strengthen our result to show that the second smallest
eigenvalue A(y) of N(y) is an increasing function in y. To do so, besides what we
have done here, we would also need to prove that there exist no y1, 42,0 < y1 < y2
with A(y1) = AM(y2) = w, (say). It would follow immediately then than for every
value of y, w would be an eigenvalue of N(y). The limited experimentation that
we did suggest that such is not the case, however, we have not been able to
provide a proof for it.
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