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ABSTRACT
This paper focusses on the performance of the Metropolis al-
gorithm when employed for solving combinatorial optimiza-
tion problems. One finds in the literature two notions of
success for the Metropolis algorithm in the context of such
problems. First, we show that both these notions are equiv-
alent. Next, we provide two characterizations, or in other
words, necessary and sufficient conditions, for the success
of the algorithm, both characterizations being conditions on
the family of Markov chains which the Metropolis algorithm
gives rise to when applied to an optimization problem. The
first characterization is that the Metropolis algorithm is suc-
cessful iff in every chain, for every set A of states not con-
taining the optimum, the ratio of the ergodic flow out of A
to the capacity of A is high. The second characterization
is that in every chain the stationary probability of the op-
timum is high and that the family of chains mixes rapidly.
We illustrate the applicability of our results by giving alter-
native proofs of certain known results.

Categories and Subject Descriptors
G.1.6 [Optimization]: simulated annealing; G.3 [Probability
And Statistics]: Probabilistic algorithms (including Monte
Carlo)

General Terms
Theory, Algorithms

Keywords
Metropolis algorithm, optimization, success of Markov chain
families, rapid mixing of Markov chains

1. INTRODUCTION
The Metropolis algorithm [2] is a very simple-to-implement

randomized search heuristic which can be used to locate an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

optimum point in a large search space. Although the algo-
rithm is widely used, our theoretical understanding of the
performance of the algorithm is somewhat limited. While
it is known that the Metropolis algorithm cannot work effi-
ciently on all instances of even problems like the maximum
bipartite matching [4] or the minimum spanning tree [6],
yet it has been proved to be efficient on random instances of
even some NP-hard problems, e.g., the graph bisection prob-
lem [1]. We provide in this paper two characterizations (i.e.,
necessary and sufficient conditions) for the success of the
Metropolis algorithm for optimization. As our characteriza-
tions relate certain notions (e.g., rapid mixing of a family of
Markov chains) which have been very well studied in related
but different contexts, we hope that our results will help to
understand better why and when the Metropolis algorithm
will work efficiently for optimization.

Given an optimization problem, the Metropolis algorithm
defines a Markov chain for each instance of the problem, the
state space of the chain being the set of feasible solutions
of the instance. There is also a neighborhood structure de-
fined on the set of feasible solutions where the set N(s) of
neighbors for a solution s is the set of all those feasible solu-
tions which can be reached from s by one inexpensive local
move. The algorithm also defines a probability distribution
on N(s) for every s. The Markov chain when at s at a step
will move in its next step to one element of N(s) as per the
defined probability distribution on N(s). In this manner the
chain traverses the space of feasible solutions with the aim
of encountering an optimum solution sooner or later.

The probability distribution on N(s) is so defined that it
will favor an element with a value better than the one for
the current element s, the extent of the preference depend-
ing on a parameter called temperature which is defined for
each specific chain. One would then consider the Metropo-
lis algorithm to be successful for an optimization problem Π
if for each instance of Π, there is a temperature such that
the corresponding Markov chain is guaranteed to encounter
an optimum solution efficiently, i.e., in a number of steps
bounded by a fixed polynomial in the instance size, irrespec-
tive of the initial solution the chain starts at. One finds in
the literature two somewhat different formalizations of this
notion of efficient behavior: one in terms of the expected
number of steps to reach an optimum, the other in terms of
the probability that the number of steps to reach an opti-
mum is bounded by a fixed polynomial in the instance size.
We show both of these formalizations of success to be, not
surprisingly, equivalent to each other. We then provide a



necessary and sufficient condition for success, which is that
for every set A of search points, A not containing an op-
timum, the ratio Φ(A) of the ergodic flow out of A to the
capacity of A is high.

As each of the Markov chains defined by the Metropolis
algorithm for a problem Π is ergodic, each chain is guaran-
teed to reach close to its unique stationary distribution when
run for sufficiently many steps. It is easy to see, therefore,
that a sufficient condition for the success of the Metropo-
lis algorithm for Π is that (a) the Markov chain for each
instance reaches a distribution close to its stationary distri-
bution in steps polynomial in instance size (in other words,
the family of chains is rapidly mixing) and (b) the station-
ary distribution probability of an optimum solution is high.
Because, in such a case, if we run the chain corresponding
to an instance for polynomially many steps, the probability
of encountering an optimum is high.

Our other result is that the above sufficient condition for
success is actually also a necessary one. We prove this by
showing that our first characterization is equivalent to this
new condition. Thus we prove that rapid mixing is necessary
for the success of the Metropolis algorithm for optimization.

We then show that our characterizations can be used in
a straightforward and easy manner to provide both positive
and negative results about the success of the Metropolis al-
gorithm by providing alternative proofs of two results on
the behavior of the Metropolis algorithm on certain classes
of inputs for the minimum spanning tree problems, which
were originally proved in [6]. We also provide a necessary
condition on the density of states (a notion defined in [3])
needed for the success of the Metropolis algorithm, making
use of our characterization of success. The result is similar
to the one given in [3].

2. THE METROPOLIS ALGORITHM, NO-
TIONS OF SUCCESS

2.1 The Metropolis Algorithm
Let Π be an optimization problem, and without loss of

generality, we will consider it to be a minimization problem.
Let I denote a set of instances of Π. For i ∈ I, let ni de-
note the size of the instance i. We denote by S(i) the set of
all feasible solutions of the instance i. (Typically, |S(i)| is
exponential in ni.) Without loss of generality, we make the
following assumptions:

1. For every instance i in I, the neighborhood structure
N (i) on S(i), the set of feasible solutions of i, is a con-
nected, undirected graph. We use d(i) to denote the
largest degree of the graph. We assume that d(i) is
bounded above by a fixed polynomial in ni.Thus, the
neighbourhood structure graph is symmetric and typ-
ically, the degree of any vertex in the graph is small
compared to the total number of vertices.

2. There is an easy to evaluate cost function c(·) which,
given a feasible solution r, gives the cost c(r) of r, and
this cost is a non-negative real number.

3. Every instance has a unique optimum. (The case of
multiple optima can be reduced to the unique one case
by a reduction given in [3]).

The Metropolis algorithm on instance i runs a Markov chain

X(i) = (X
(i)
0 , X

(i)
1 , . . .), using the temperature parameter as

some T (i). The state space of the chain is the set S(i) of
the feasible solutions of i, and the transition probabilities
are defined as below. (u and v denote any two feasible solu-
tions).

P[Xk+1 = v|Xk = u] =



0
(if u 6= v and v /∈ N(u))

1

2d(i)
e
− c(v)−c(u)

T (i)

(if c(v) > c(u) and v ∈ N(u))
1

2d(i)

(if c(v) ≤ c(u) and v ∈ N(u))
1−

∑
j′ 6=uP[Xk+1 = j′|Xk = u]

(if u = v)

Let P (i) = (p
(i)
u,v : u, v ∈ S(i)) denote the transition matrix

of the Markov chain X(i) where for all u, v ∈ S(i), p
(i)
u,v =

P [Xk+1 = v|Xk = u]. As per [3], for T = 0, δ ≥ 0, we define

e−
δ
T =

{
0 if δ > 0
1 if δ = 0

The above chain can easily be seen to be ergodic and time-
reversible, and its unique stationary distribution π = (πj :

j ∈ S(i)) is given by:

πj =
e
− c(j)

T (i)∑
v∈S(i) e

− c(v)
T (i)

Our chain is a so called lazy Markov chain because it sat-

isfies the condition that for every state j ∈ S(i), p
(i)
jj ≥ 1

2
.

This condition is necessary for the applicability of the Con-
ductance Theorem [5]. We note that every Markov chain
can be easily modified into a lazy one without incurring a
slowdown of its rate of convergence by more than a constant
factor.

2.2 Notions of Success
One finds in the literature two notions of success, one in

terms of the worst expected number of steps to reach the op-
timum as we vary the starting state, and the other in terms
of the minimum of the probabilities to reach the optimum
within steps bounded by a fixed polynomial, the minimiza-
tion being done over all starting states. (See, e.g., [3] and

[6].) We recall that for the chain X(i), S(i) denotes its state

space, P (i) = (p
(i)
j,k : j, k ∈ S(i)) denotes its transition prob-

ability matrix and (π
(i)
j : j ∈ S(i)) denotes its unique sta-

tionary probability distribution. Let s
(i)
opt denote the state in

S(i) with the maximum stationary probability(which corre-
sponds to minimum cost). We now define formally the two
notions of success.

Definition 1 (S-success). The family X = {X(i)|i ∈
I} is defined to be S-successful if there exist constants k, n0 >
0 such that ∀i ∈ I such that ni ≥ n0,

max
s∈S(i)

E[min{t ≥ 0|X(i)
t = s

(i)
opt} | X

(i)
0 = s] ≤ nki

Definition 2 (W-success). The family X = {X(i)|i ∈
I} is defined to be W-successful if there exist constants k1, k2, n0 >



0 such that ∀i ∈ I such that ni ≥ n0,

min
s∈S(i)

P[min{t ≥ 0|X(i)
t = s

(i)
opt} ≤ n

k1
i | X

(i)
0 = s] ≥ n−k2i

These definitions for success may perhaps be considered too
stringent as they require the Metropolis algorithm to do well
in the worst case over all possible start states. This is be-
cause, in practice, one may start the algorithm either from a
state uniformly selected at random, or from a state which we
have reasons to believe to be a good start state. However, in
the general case with which we are concerned in this paper,
selecting a state uniformly at random is in itself a difficult
problem, and we may not have any a priori idea as to which
of the states would be good as start state(s).

The following Theorem shows that the two definitions are
actually equivalent.

Theorem 1. The family X = {X(i)|i ∈ I} is S-successful
if and only if it is W-successful.

We defer the proof of the above to Appendix A.
From the above theorem we have that we can use either

of the two definitions of success to argue that a family of
Markov chains is successful.

Definition 3 (Success). A family X of Markov chains
is successful if it is W-successful, or equivalently, S-successful.

3. TWO CHARACTERIZATIONS OF SUC-
CESS

In this section we give two different characterizations of
success of a family of Markov chains.

Definition 4 (Jerrum and Sinclair, [5]). Let X be
an ergodic Markov chain with state space S, transition ma-
trix P = (pi,j : i, j ∈ S) and stationary distribution π =
(πi : i ∈ S). Then for all non empty proper subsets A of S,

Φ(A) =

∑
i∈A,j∈A πipij∑

i∈A πi

The conductance of the chain is defined as

Φ(X) = min
A⊂S,A 6=φ,cap(A)≤ 1

2

Φ(A)

where cap(A) =
∑
i∈A πi.

Let I be a set of problem instances for a combinatorial opti-
mization problem. For each i in I with temperature of i as

Ti, let X(i) = (X
(i)
0 , X

(i)
1 , . . .) be the Markov chain i gives

rise to. We assume each X(i) to satisfy the assumptions
listed in Section 2.1. As before, let ni denote the size of the

instance i, and let S(i) and P (i) = (p
(i)
j,k : j, k ∈ S(i)) denote

the state space and the state transition matrix of X(i) re-

spectively. Let s
(i)
opt be the state in S(i) with the minimum

cost. Let the stationary probability distribution of X(i) be

(π
(i)
j : j ∈ S(i)). We assume that there is a polynomial q(·)

such that for all i in I, π
(i)
j ≥ 2−q(ni) for every j in S(i).

Theorem 2. The following three statements are equiva-
lent:
(a) The family X of Markov chains is successful.
(b) There exist constants k, n0 > 0, such that for all i in I

with ni ≥ n0, for all non-empty subsets A of S(i) − {s(i)opt},
the condition

Φ(A) ≥ n−ki
is satisfied.
(c) The family X of Markov chains mixes rapidly1, and there
exist constants n0, k > 0 such that for all i in I with ni ≥ n0

we have that π
(i)
o ≥ n−ki where o is s

(i)
opt.

Proof. ((a) implies (b)) Let X be successful and hence
W-successful. Thus there exist constants k1, k2, n0 > 0 such
that ∀i ∈ I with ni ≥ n0,

min
s∈S(i)

P[min{t ≥ 0|X(i)
t = s

(i)
opt} ≤ n

k1
i | X

(i)
0 = s] ≥ n−k2i

For each i such that ni ≥ n0, suppose that the start state is
chosen from S(i) according to some probability distribution

(f
(i)
s : s ∈ S(i)) on states. Then

P[min{t ≥ 0|X(i)
t = s

(i)
opt} ≤ n

k1
i ]

=
∑
s∈S(i)

P[min{t ≥ 0|X(i)
t = s

(i)
opt} ≤ n

k1
i | X

(i)
0 = s]P[X

(i)
0 = s]

≥ n−k2i

∑
s∈S(i)

f (i)
s

= n−k2i (1)

Our proof is obtained by showing that we reach a contra-
diction if we assume that the successful family X does not
satisfy the condition of (b).

Let us assume that for X it holds that for all constants
k,m > 0, ∃i ∈ I with ni > m, and an A ⊆ S(i)−{s(i)opt} such
that

Φ(A) < n−ki (2)

We fix constants k′,m′ > 0. Then ∃i′ ∈ I with ni′ > m′,and

an A ⊆ S(i′) − {s(i
′)

opt}, such that

Φ(A) < n−k
′

i′ (3)

For the chain of i′, using the A satisfying 3, we define the

following initial distribution f
(i′)
s : s ∈ S(i′):

f (i′)
s =

{
π
(i′)
s

cap(A)
if s ∈ A;

0 otherwise;

With this as the initial distribution, we derive a contradic-

tion to 1 above for the chain X(i′) of i′. First, we prove by

induction on t that the probability that X(i′) makes a tran-
sition from some state in A to some state in A for the first
time in the t-th step, with initial distribution as f

(i′)
s , is less

than n−k
′

i′ . Let P (i′) = (p
(i′)
j,k : j, k ∈ S(i′)) be the transition

matrix of X(i′).
Base step(t=1): The probability that the 1st step of X(i′)

is from some state in A to some state in A is clearly∑
j∈A,k∈A

f
(i′)
j p

(i′)
j,k = Φ(A) < n−k

′

i′ (from 3)

1Informally, a family of chains mixes rapidly means that
within steps bounded by a fixed polynomial in instance size,
each chain will come very close to its stationary distribution,
irrespective of the initial distribution. For the definition, see
[5].



Induction step: We assume the induction hypothesis to be

true for all t ≤ t′. The probability that X(i′) makes a move
from some state in A to some state in A for the first time in
(t′ + 1)-th step is Tt′+1/cap(A), where

Tt′+1 =
∑

s1,...,st′+1∈A,st′+2∈A

π(i′)
s1 p(i

′)
s1,s2 . . . p

(i′)
st′+1,st′+2

=
∑

s1,...,st′+1∈A,st′+2∈A

π(i′)
s2 p(i

′)
s2,s1 . . . p

(i′)
st′+1,st′+2

(using the time reversibility of X(i′).)

=
∑

s2,...,st′+1∈A,st′+2∈A

(
π
(i′)
s2 p

(i′)
s2,s3 . . . p

(i′)
st′+1,st′+2

∑
s1∈A p

(i′)
s2,s1

)

≤
∑

s2,...,st′+1∈A,st′+2∈A

π(i′)
s2 p(i

′)
s2,s3 . . . p

(i′)
st′+1,st′+2

= Tt′

Thus, the probability that X(i′) makes a move from some
state in A to some state in A for the first time in the (t′+1)-
th step

= Tt′+1/cap(A)

≤ Tt′/cap(A)

This is the probability that X(i′) makes a move from some
state in A to some state in A for the first time in the t′-th
step and this probability is less than n−k

′

i′ (from the induc-
tion hypothesis). Using the union bound, again for the same
initial distribution, ∀k′′ > 0,

P[min{t ≥ 0|X(i′)
t = s

(i)
opt} ≤ nk

′′

i′ ]

≤ P[min{t ≥ 0|X(i′)
t ∈ A} ≤ nk

′′

i′ ]

< nk
′′

i′ .n
−k′
i′

= n
−(k′−k′′)
i′

Since we are free to choose k′, k′′ and m′, we have, therefore,
proved that ∀c, c′,m′′ > 0, ∃i ∈ I with ni > m′′ and an
initial distribution, such that

P[min{t ≥ 0|X(i)
t = s

(i)
opt} ≤ nci ] < n−c

′

under that initial distribution. This contradicts 1, hence
the family X could not have been successful and we have a
contradiction.

((b) implies (c)) Let there exist constants k, n0 > 0, such
that ∀i such that ni ≥ n0,

min
A⊆S(i)−{s(i)opt},A6=φ

Φ(A) ≥ n−ki

We first show that this implies at least inverse polynomial
conductance and therefore rapid mixing.
Let m be a constant such that ∀x ≥ m, xk + 1 ≤ xk+1. Let
i ∈ I be an instance where ni ≥ max{n0,m}. From Defini-
tion 4 and the time reversibility of Xi, we have
Φ(X(i)) = minA⊆S(i),A6=φ max{Φ(A),Φ(A)}. As one of A

and A does not contain s
(i)
opt, Φ(X(i)) is at least n−ki . To-

gether with the assumption that ∀j ∈ S(i), π
(i)
j ≥ 2−q(ni) for

a fixed polynomial q(·), and the assumptions of Section 2.1,
it follows from the Conductance Theorem(see Corollary 2.8
of [5]) that X is a rapidly mixing family of Markov chains.

Next we prove that the optimum element has a high sta-

tionary distribution probability. Let A′ = S(i) − {s(i)opt} and

let o denote s
(i)
opt. Thus,

Φ(A′) =

∑
j∈S(i)−{o} π

(i)
j p

(i)
j,o∑

j∈S(i)−{o} π
(i)
j

=

∑
j∈S(i)−{o} π

(i)
o p

(i)
o,j

1− π(i)
o

(From time reversibility of X(i))

=
π
(i)
o

∑
j∈S(i)−{o} p

(i)
o,j

1− π(i)
o

≤ π
(i)
o

1− π(i)
o

Also Φ(A′) ≥ n−ki . Thus, we have

n−ki ≤ π
(i)
o

1− π(i)
o

=⇒ 1− π(i)
o ≤ nki π(i)

o

=⇒ π(i)
o (1 + nki ) ≥ 1

=⇒ π(i)
o ≥

1

1 + nki
≥ 1

nk+1
i

(as ni ≥ m)

((c) implies (a)) Let X be a rapidly mixing family of Markov

chains. Let ∀i ∈ I, such that ni is large enough, s
(i)
opt ≥ n

−k1
i

for some constant k1 > 0. Let k2 > 0 be a constant such
that if (f

(i)
j : j ∈ S(i)) be the distribution of Xi after nk2

steps, and, ∀j ∈ S(i), f
(i)
j ≥

π
(i)
j

2
, for any start state (since

X is a rapidly mixing family of Markov chains, there exists
such a constant). Then the expected number of steps till
the chain hits the optimal state for the first time is at most
2nk1+k2i (in other words, on expectation, the chain requires

at most 2nk1i blocks, each of nk2i steps, to reach s
(i)
opt for the

first time). This shows that X is S-successful and hence
successful.

4. APPLICATIONS
We have shown that the performance of the Metropolis

algorithm is closely related to the mixing time of the under-
lying family of Markov chains. More specifically, a family of
Markov chains generated by instances from a set satisfying
certain properties, is successful if and only if the family is
a rapidly mixing one and the stationary probability of the
goal state is at least some inverse polynomial in the size of
the input instance. These results provide a systematic way
of proving both positive and negative results about the suc-
cess of the Metropolis algorithm. In this section we provide
alternative proofs of certain known results making use of our
characterizations of success.

4.1 Minimum Spanning Tree Problem on Con-
nected Triangles



To illustrate the applicability of our success characteri-
zations, we consider the Minimum Spanning Tree problem.
The instances and the heuristic are the same as those con-
sidered in [6] except for a self loop with probability at least 1

2
added to each state to ensure strong aperiodicity. The prob-
lem is, given an undirected weighted graph G = (V,E,w), w
being the weight function, to compute the minimum span-
ning tree of G. The instances we consider are connected
triangles as shown in figure 1.
The state space here is the set of all connected subgraphs of

�� �� �� �� ��@@ @@ @@ @@ @@. . . . �
�@@

Figure 1: Connected triangles

the input graph. The cost c of a subgraph is the sum of the
weights of its edges. Clearly, the state corresponding to the
minimum cost is the minimum spanning tree which we de-
note by MST . We call two states s1 and s2 neighbors of each
other iff s2 can be obtained from s1 either by including an
edge not present in s1, or by removing an edge in s1 (ı.e. by
flipping an edge as we call it). Thus the relation defined by
neighborhood is symmetric. We denote the set of all neigh-
bors of a state s by N(s), the number of edges by m, and the
current state by s. We take the number of triangles as the
size of an instance. The maximum of the degrees of nodes of
the graph which underlies the Markov chain the Metropo-
lis algorithm simulates, is clearly m. At any given instant,
the Metropolis algorithm stays at its current state s with
probability 1

2
. With probability 1

2
it flips an edge selected

uniformly at random and, if the resultant graph t is con-

nected, accept the flip with probability min{1, e−
c(t)−c(s)

τ },
τ being the temperature.

4.1.1 Example where the Metropolis Algorithm Fails
at Every Temperature

We here consider the same set of instances as considered
by Wegener in [6] where the Metropolis algorithm fails to
efficiently compute the minimum spanning tree. The set of
instances I1 is the set of all connected triangles consisting
of 2n triangles, so that the number of vertices is 4n+ 1 and
number of edges is m = 6n, for each n > 0. There are n light
triangles, the edge weights of each of which are 1, 1 and m.
The edge weights of each of the remaining n triangles (heavy
triangles) are m2,m2 and m3. The unique MST consists of
all the edges with weight 1 or m2. Let T be a function
mapping each instance i ∈ I1 to a temperature T (i). For
each i ∈ I1, the algorithm runs an ergodic Markov chain

Y
(i)

T (i) with state space S(i)(which is the set of all connected

sub-graphs of i), and transition probability matrix P
(i)

T (i) =

(p
(i,T (i))
j,k : j, k ∈ S(i)) where

p
(i,T (i))
s,t =



0
(if s /∈ N(t) and s 6= t)
1

2m
min

{
1, e
− c(t)−c(s)

T (i)

}
(if s ∈ N(t))

1−
∑
t′∈S(i)−{s}(1− p

(i,T (i))

s,t′ )

(if s = t)

Each Y
(i)

T (i) is time-reversible, with Gibb’s distribution as its
stationary distribution. It is easy to verify that each node
has stationary probability at least some inverse exponential

in n, so that we can use Conductance Theorem. Let π
(i)

T (i) =

(π
(i,T (i))
j : j ∈ S(i)) be the stationary distribution of Y

(i)

(T (i))
.

Let YT = (Y
(i)

T (i) : i ∈ I1).

Theorem 3. For no T is the family YT successful.

Proof. We consider an instance i ∈ I1 having 2n con-
nected triangles, and m = 6n edges.
case 1: T (i) ≥ m
We show that, when T (i) is at least m, the stationary proba-
bility of MST is less than any inverse polynomial in n. From
Theorem 2, it implies that the family YT is not successful if,
for arbitrarily large instances i, T (i) ≥ m.
In each connected subgraph of the input, there may be 2
or 3 edges of each triangle. 2 edges can be chosen out of 3
in 3 ways. Thus each triangle can be in one of four differ-
ent configurations. Thus the search space S(i) contains 42n

states. We partition S(i) into 4n classes of 4n states each.
In a class, the configuration of each light triangle is fixed.
We can fix the configurations of all light triangles in 4n ways
and thus we have 4n classes. Each class has 4n states for 4n

different combinations of configurations of the heavy trian-
gles. We show that the sum of the stationary probabilities
of the states in the class containing the optimal point is not

more than inverse exponential in n. Let C(i)H and C(i)L de-
note the sets of all possible combinations of configurations

of heavy and light triangles respectively . ∀u ∈ C(i)H
⋃
C(i)L ,

let W(u)

T (i) denote the ratio of the sum of the weights of all

edges present in u, to T (i). Let Sum(i)

T (i) =
∑
u∈C(i)

H

e
−W(u)

T (i) .

The sum of the stationary probabilities is minimum for the

class corresponding to g ∈ C(i)L where all the edges of all
light triangles are present, and maximum for the class cor-

responding to b ∈ C(i)L where only the edges of light triangles
with weight 1 are present. The ratio of these two sums is

Sum(i)

T (i) .e
−W(g)

T (i) /
∑
t∈S(i)

T (i)

e
− c(t)

T (i)

Sum(i)

T (i) .e
−W(b)

T (i) /
∑
t∈S(i)

T (i)

e
− c(t)

T (i)

= e
− 2n−n(m+2)

T (i)

≤ en (as T (i) ≥ m)

Observing that there are 4n classes, we can conclude that
the maximum sum of the stationary probabilities of all states
in a class cannot be more than 1

4n
en ≤ 1.2−n < n−k for all

constant k for all large enough n, which is also an upper
bound on the stationary probability of the MST.



case 2: T (i) < m
For i ∈ I1 we define a set A ⊆ S(i) − {MST}, such that
Φ(A) is not more than inverse exponential in n. We take
A to be the set of all states where each heavy triangle have
one edge of weight m2 missing. Clearly A does not contain
the goal state which is the MST. If s1 ∈ A and s2 ∈ A are
neighbors, then

p(i,T
(i))

s1,s2 =
1

2m
e
−m2

T (i) <
1

2m
e−m (as T (i) < m) =

1

12n
e−6n

(because we have to include the missing edge of weight m2

of some triangle to come out of A)
Thus we have

Φ(A) =

∑
j∈A,k∈A π

(i,T (i))
j p

(i,T (i))
j,k∑

j∈A π
(i,T (i))
j

<
1

12n
e−6n < n−k

for all constant k for large enough n. From Theorem 2 it
follows that for YT to be successful, T (i) cannot be less than
m for arbitrarily large instances i ∈ I.
Thus for all temperatures, the Metropolis algorithm fails
to efficiently compute the minimum spanning tree for the
instances in I1.

4.1.2 Example where the Metropolis Algorithm Suc-
ceeds at Some Temperature

Now we consider a set of instances considered by Wegener
in [6] for which the Metropolis algorithm provably computes
the minimum spanning tree efficiently at some temperature.
Each instance of our next instance set I2 consists of n con-
nected triangles, for each n > 0. The weights of the sides of
each of them are m2,m2 and m3, where m = 3n is the num-

ber of edges. We take the temperature T (i) to be m
5
2 for

the instance i with m edges. ∀i ∈ I2, in each connected sub-
graph of i, each triangle is in one of the three configurations:
good(two edges each of weight m2 are present), bad(one edge
of weight m2 and one edge of weight m3 are present), com-
plete(all three edges are present). We here view the algo-

rithm, when run on i ∈ I2 at temperature m
5
2 , to simulate

the ergodic Markov chain Z(i), with state space S
(i)
1 and

transition probability matrix Q(i) = (q
(i)
j,k : j, k ∈ S(i)

1 ).

S
(i)
1 = {(g, b, c) : 0 ≤ g, b, c ≤ n, g + b+ c = n}

where (g, b, c) stands for the state in which number of good,
bad and complete triangles are g, b and c respectively. Clearly
the goal state is (n, 0, 0).

Of course q
(i)
s,t = 0 if s 6= t and s /∈ N(t). The remaining

transition probabilities are as follows2:

q
(i)

(g,b,c),(g,b−1,c+1) =
b

2m
e

(
−m2

m
5
2

)
=

b

2m
e−m

− 1
2

(b 6= 0)

q
(i)

(g,b,c),(g,b+1,c−1) =
2c

2m
=

c

m
(c 6= 0)

q
(i)

(g,b,c),(g−1,b,c+1) =
g

2m
e

(
−m3

m
5
2

)
=

g

2m
e−m

1
2

(g 6= 0)

2The transition probabilities are well defined because

q
(i)

(g,b,c),(g′,b′,c′) depends only on g, b, c, g′, b′, c′ and not on

which of the n triangles are good, bad or complete.

q
(i)

(g,b,c),(g+1,b,c−1) =
c

2m
(c 6= 0)

q
(i)

(g,b,c),(g,b,c) = 1−
∑

t∈S(i)
1 −{(g,b,c)}

q
(i)

(g,b,c),t ≥
1

2

By detailed balance equations we observe that Z(i) is a time
reversible Markov chain with stationary distribution σ(i) =

(σ
(i)
j : j ∈ S(i)

1 ) of Z(i) is the following:

σ
(i)

(g,b,c) =

∑
t∈S(i)

(g,b,c)

e

(
− c(t)

m
5
2

)

∑
t∈S(i) e

(
− c(t)

m
5
2

)

where S
(i)

(g,b,c) is set of all connected subgraphs of i with g,b

and c good, bad and complete triangles respectively, and
S(i), as in last subsection, is the set of all connected sub-
graphs of i. Here again we see that all stationary probabili-
ties are at least some inverse exponential of n.
We now consider another Markov chain W (i) with state
space S

(i)
1 and transition matrix R(i) = (r

(i)
j,k : j, k ∈ S(i)

1 ) =(
Q(i)

)2
. Thus each pair of steps of Z(i) simulates a single

step of W (i). W (i) is easily seen to be an ergodic time-
reversible Markov chain with the same stationary distribu-
tion σ(i) as Z(i). If some eigenvalue of W (i) happens to
be negative, we can modify the chain by replacing R(i) by
1
2
(IN + R(i)), where N is the cardinality of S

(i)
1 and IN is

the N cross N identity matrix, without changing its station-
ary distribution or slowing down its convergence too much.
Clearly to establish that the Metropolis algorithm performs

well on instances from I2 at temperature m
5
2 , it is sufficient

to show that the family W = (W (i) : i ∈ I2) is successful.

Definition 5. ∀i ∈ I2,∀(g, b, c) ∈ S(i)
1 such that (g, b, c) 6=

(n, 0, 0), next(s) is the state in S
(i)
1 defined as follows:

next((g, b, c)) =

{
(g + 1, b− 1, c) (if b 6= 0)
(g + 1, b, c− 1) (otherwise)

Intuitively next(s) is one step closer to MST than s. In one
iteration of our algorithm, a bad triangle cannot become
good. But a bad triangle can become good in a single move
of W (i), as each move of W (i) represents a pair of iterations

of the algorithm. Thus ∀s ∈ S
(i)
1 − {MST}, r(i)s,next(s) >

0, r
(i)

next(s),s > 0.

Definition 6. For every s ∈ S(i)
1 , We define path(s) to

be a sequence u1u2 . . . up where u1 = s, up = MST, ∀j, 1 ≤
j ≤ p, uj ∈ S(i)

1 , ∀j, 1 ≤ j ≤ p − 1, uj+1 = next(uj). From
definition 5, such a path is sure to exist for every state s.

Lemma 1. For large enough n,

(a)∀j ∈ S(i)
1 − {MST}, σ(i)

j ≤ σ
(i)

next(j).

(b)∀j ∈ S(i)
1 − {MST}, r(i)j,next(j) ≥

1
4m2e

Proof. (a) Let j be (g, b, c).
case 1: b 6= 0
In the algorithm, One way to go from (g, b, c) to (g+1, b−1, c)
in two steps is via (g, b− 1, c+ 1).Thus

r
(i)

(g,b,c),(g+1,b−1,c) ≥ q
(i)

(g,b,c),(g,b−1,c+1).q
(i)

(g,b−1,c+1),(g+1,b−1,c)



=
b

2m
e−m

− 1
2
.
c+ 1

2m
=
b(c+ 1)

4m2
e−m

− 1
2

(4)

To go from (g + 1, b − 1, c) to (g, b, c), a good triangle has
to become complete. Even if the correct edge of a triangle
(the one with weight m3) is selected for flip, the probability

that the flip is accepted is e−m
1
2 . Thus

r
(i)

(g,b,c),(g+1,b−1,c) ≤ e
−m

1
2

From the time-reversibility of W (i) we have

σ
(i)

(g,b,c)
1

4m2 e
−m−

1
2

≤ σ(i)

(g,b,c)

b(c+ 1)

4m2
e−m

− 1
2

≤ σ(i)

(g,b,c)r
(i)

(g,b,c),(g+1,b−1,c)

= σ
(i)

(g+1,b−1,c)r
(i)

(g+1,b−1,c),(g,b,c)

≤ σ(i)

(g+1,b−1,c)e
−m

1
2

Thus we have σ
(i)

(g,b,c) ≤ σ
(i)

(g+1,b−1,c) for large enough m.

case 2: b=0
In the algorithm, (g+1, b, c−1) may be reached from (g, b, c)
in two steps in the following way: In the first step, a com-
plete triangle becomes good. In the next step, the state
remains unchanged. Thus,

r
(i)

(g,b,c),(g+1,b,c−1) ≥
c

2m

1

2
=

c

4m
(5)

To go from (g+ 1, b, c− 1) to (g, b, c), a good triangle has to
become complete. Thus from similar argument as in case 1,
we have

r
(i)

(g+1,b,c−1),(g,b,c) ≤ e
−m

1
2

From the time reversibility of W (i),

σ
(i)

(g,b,c)
1

4m

≤ σ(i)

(g,b,c)

c

4m
(as b = 0 and (g, b, c) 6= (n, 0, 0), c ≥ 1)

≤ σ(g,b,c)r
(i)

(g,b,c),(g+1,b,c−1)

= σ(g+1,b,c−1)r
(i)

(g+1,b,c−1),(g,b,c)

≤ σ(g+1,b,c−1)e
−m

1
2

Giving us σ
(i)

(g,b,c) ≤ σ
(i)

(g+1,b,c−1) for large enough m.

(b) Follows from (4) and (5) in the proof of part (a).

Before proving the success of the familyW , we prove another
Lemma.

Lemma 2. Let A be a non-empty subset of S
(i)
1 −{MST}.

Then are states u ∈ A, v ∈ A such that σ
(i)
u = max{σ(i)

j :

j ∈ S(i)
1 }, and r

(i)
u,v ≥ 1

4m2e
.

Proof. Let t ∈ A and σ
(i)
t = max{σ(i)

j : j ∈ S(i)
1 }. From

Lemma 1(a), path(t) is s sequence of states with non de-
creasing stationary probabilities. Let u be the first vertex on

path(t) such that v = next(u) ∈ A. Thus σ
(i)
t ≤ σ

(i)
u . Since

σ
(i)
t = max{σ(i)

j : j ∈ S(i)
1 }, we have σ

(i)
u = σ

(i)
t = max{σ(i)

j :

j ∈ S(i)
1 }. From Lemma 1(b) the claim follows.

Theorem 4. The Markov chain family W = (W (i) : i ∈
I2) is successful.

Proof. Let A be a non-empty subset of S
(i)
1 − {MST}.

From Lemma 2, ∃u ∈ A, v ∈ A such that σ
(i)
u = max{σ(i)

j :

j ∈ S(i)
1 } and r

(i)
u,v ≥ 1

4m2e
. Thus,

Φ(A) =

∑
j∈A,k∈A σ

(i)
j r

(i)
j,k∑

j∈A σ
(i)
j

≥ σ
(i)
u r

(i)
u,v

(n+ 1)3.σ
(i)
u

(Since |S(i)
1 | < (n+ 1)3 and ∀t ∈ A, σ(i)

u ≥ σ(i)
t )

≥ 1

4m2e(n+ 1)3

=
1

36e(n+ 1)5
≥ n−6 (for large enough n)te :P

Since A is any non-empty subset of S
(i)
1 − {MST}, from

Theorem 2, the claim follows.

4.2 Relation of Success of a Family of Markov
Chains to Density of States

Our result enables us to arrive at a result which is very
similar to that of Sasaki (see Proposition 1 of [3]). For some

problem Π, for a set of instances I, let X = {X(i) : i ∈ I}
be a family of Markov chains which arise out of applying
the Metropolis algorithm on instances in I. Let d(i) be the
maximum of the degrees of all nodes of the underlying graph
of X(i). The state space of X(i), the cost function, the sta-
tionary distribution of X(i), the neighborhood and size of
instance i have usual notations. The transition probabil-

ity matrix P (i) = (p
(i)
j,k : j, k ∈ S(i)) is same as the one

given in Section 2.1. Let c
(i)
min and c

(i)
max be the minimum

and maximum costs of the states in S(i) respectively. For

each r, c
(i)
min ≤ r < c

(i)
max, let S

(i)
r = {s ∈ S(i) : c(s) > r}

and W
(i)
r = {s ∈ S

(i)
r :

∑
j∈S(i)

r

p
(i)
s,j > 0}. Let η(S

(i)
r ) be

the number of states with maximum stationary probability

π
(S

(i)
r )

max in S
(i)
r . Now,

Φ(Sr) =

∑
j∈S(i)

r ,k∈S(i)
r

π
(i)
j p

(i)
j,k∑

j∈S(i)
r
π
(i)
j

≤
π
(S

(i)
r )

max d
(i)
max|W (i)

r | 1

2d
(i)
max∑

j∈S(i)
r
π
(i)
j

(since ∀j ∈ S(i)
r , k ∈ S(i)

r , p
(i)
j,k = 1

2d
(i)
max

)

≤ π
(S

(i)
r )

max |W (i)
r |

2η(S
(i)
r )π

(S
(i)
r )

max

=
|W (i)

r |
2η(S

(i)
r )

Thus from Theorem 2 we have the following Theorem:



Theorem 5. The family X of Markov chains as defined
above is not successful if for all constants k > 0, we have
instances i ∈ I of arbitrarily large size such that for some

r, c
(i)
min ≤ r < c

(i)
max,

|W (i)
r |

2η(S
(i)
r )

< n−ki

5. CONCLUDING REMARKS
We have provided in this paper two characterizations of

the success of the Metropolis algorithm for combinatorial
optimization problems. As Section 4 shows, our results can
be used in a straightforward manner for deciding the success
of the algorithm for specific problems. One of our charac-
terizations implies that the rapid mixing of the underlying
Markov chains is a necessary condition for the success of
the Metropolis algorithm. Further, as fairly powerful tech-
niques, e.g., canonical paths, resistance, etc., are already
available to argue about rapid mixing, our results open the
possibility of making use of such techniques in the context
of the success of the Metropolis algorithm.
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APPENDIX
A. PROOF OF THEOREM 1

We provide here a proof of Theorem 1.

Theorem 1 The family X = {X(i)|i ∈ I} be S-successful
if and only if it is W-successful.

Proof. (if )Let the family X is W-successful. Thus there
exist constants k1, k2, n0 > 0 such that ∀i ∈ I with ni ≥ n0,

min
s∈S(i)

P[min{t ≥ 0|X(i)
t = s

(i)
opt} ≤ n

k1
i | X

(i)
0 = s] ≥ n−k2i

For each i such that ni ≥ n0, we see the simulation of X(i)

as a sequence of blocks, each of nk1i steps. Using the fact

that the probability that the chain encounters s
(i)
opt in some

block is at least n−k2i for any starting state of the block,

we fix a starting state s and bound Exp[l], where s
(i)
opt is

reached at for the first time at l-th block. An upper bound

on the expected number of steps before hitting s
(i)
opt is then

obtained by multiplying it by nk1 . Thus, ∀s ∈ S(i),

E[{min{t ≥ 0|X(i)
t = s

(i)
opt}} | X

(i)
0 = s]

≤ nk1
∞∑
j=1

j.(1− n−k2i )j−1.n−k2i

= nk1 .n−k2i

∞∑
j=1

j.(1− n−k2i )j−1

= nk1n−k2i .n2k2
i

= nk1+k2i

Thus, ∀i ∈ I with ni ≥ n0,

E[ max
s∈S(i)

{min{t ≥ 0|X(i)
t = s

(i)
opt}} | X

(i)
0 = s] ≤ nk1+k2i

Hence the family X is S-successful.
(only if )Let the family X is S-successful. Thus there exist
constants k, n0 > 0 such that ∀i ∈ I such that ni ≥ n0,

E[ max
s∈S(i)

{min{t ≥ 0|X(i)
t = s

(i)
opt}} | X

(i)
0 = s] ≤ nki

For each i such that ni ≥ n0, we consider a phase consist-
ing of 2cnki lgni steps, where c > 0 is a constant. We fix a
starting state s1 ∈ S(i). We imagine the phase to be com-
posed of c lgni blocks, each of 2nki steps. Now by Markov’s
inequality, ∀p, 1 ≤ p ≤ c lgni, ∀sp ∈ S, the probability that

X(i) does not reach s
(i)
opt in p-th block, given that the start-

ing state of p-th block is sp, is at most
nki
2nki

= 1
2
.

We introduce a family of indicator random variables {Yj :
1 ≤ j ≤ c lgni}, such that

Yj =

{
1, If X(i) encounters s

(i)
opt in the j-th block;

0, otherwise.

Let Bj denote the staring state of the j-th block. The prob-

ability that s
(i)
opt is not encountered in the entire run is:

P[

c lgn⋂
j=1

[Yj = 0]]

=
∑

s2,...,sc lgni
∈S(i)

P[

c lgni⋂
j=1

[Yj = 0]

c lgni⋂
j=2

[Bj = sj ]]

=
∑

s2,...,sc lgni
∈S(i)

P[

c lgni⋂
j=1

[Yj = 0 | Bj = sj ]]P[

c lgni⋂
j=2

[Bj = sj ]]

=
∑

s2,...,sc lgni
∈S(i)

Πc lgn
j=1 P[Yj = 0 | Bj = sj ]P[

c lgni⋂
j=2

[Bj = sj ]]

≤
∑

s2,...,sc lgni
∈S(i)

2−c lgniP[

c lgni⋂
j=2

[Bj = sj ]]

= n−ci

Thus for all starting state s1 ∈ S(i), with probability at least

1 − n−ci , X(i) reaches s
(i)
opt within 2cnki lgni steps. Thus X

is W-successful.


