
RAM Simulation of BGS model of Abstract
State Machines?

Comandur Seshadhri1, Anil Seth2, and Somenath Biswas2 ??

1 Department of Computer Science
Princeton University, Princeton NJ 08544, USA,

2 Department of Computer Science and Engineering
IIT Kanpur, Kanpur 208016, India

Abstract. We show in this paper that the BGS model of abstract state
machines can be simulated by random access machines with at most a
polynomial time overhead. This result is already stated in [BGS99] with
a very brief proof sketch. The present paper gives a detailed proof of the
result. We represent hereditarily finite sets, which are the typical BGS
ASM objects, by membership graphs of the transitive closure of the sets.
Testing for equality between BGS objects can be done in linear time in
our representation.

1 Introduction

Blass, Gurevich, and Shelah defined in [BGS99] a version of abstract state ma-
chines, now known as BGS ASMs. BGS ASMs provide us with a rich model
of computation that can deal directly with a structure as input (rather than its
string encoding, as would be the case with a Turing machine), and can work with
the universe of hereditarily finite sets over the domain of the input structure.
The computation model, BGS ASM, when viewed as a logic, is one where order
is not given as a logical primitive, therefore this model defines generic, i.e., iso-
morphism closed, properties of arbitrary unordered first order structures. BGS
ASMs are of further interest because a natural polynomial restriction on com-
putational resources of BGS ASMs defines a subclass of generic polynomial time
properties, or equivalently queries, which includes many queries not expressible
in known logics for fragments of P. At the same time, due to their rich syntax,
BGS ASMs are arguably more natural to use. As in [BGS99], we use the term
PTime BGS ASMs to denote the class of BGS ASMs with restricted computa-
tional resources referred above. For more on comparison of queries expressed by
PTime BGS ASMs with other common logics for fragments of P, see [BGS99].

We provide in this paper a step-by-step method of how to implement al-
gorithms expressed in BGS ASMs by random access machines (RAMs). Our

? This work was partially supported by a grant from Microsoft Research to the Com-
puter Science and Engineering Department, IIT Kanpur.

?? E-mail address for correspondence on this work: sb@cse.iitk.ac.in

implementation shows that BGS ASM programs can be simulated by RAM pro-
grams with at most a polynomial time overhead. As it is well known that all
RAM programs can be simulated by Turing machines, again with at most a
polynomial time overhead [AHU74], we conclude that PTime BGS ASMs can
be simulated by polynomial time Turing machines.

We should mention that the above conclusion will not be unexpected to the
ASM community. Indeed, [BGS99] states this conclusion as Theorem 3, and also
provides a brief proof sketch. What may be seen as our contribution is that we
make all the details explicit which make the above conclusion possible.

We refer to [BGS99] for the definition of the BGS version of ASMs, and
[BS03], [Gu**] for background information and the current status of ASMs.
(Chapter 9 of [BS03] provides both a history of ASM concept and a survey of
ASM research).

2 States

A state in any ASM is a first order structure, and an ASM program is a recipe
which defines what the next state will be, given what the present state is. The
base set of every state in a given BGS ASM is the same, and it consists of two
parts: a finite set of atoms, and the collection of all hereditarily finite sets built
from the atoms. The input instance to the ASM defines what the set of atoms
will be. In the BGS ASM terminology, atoms and the hereditarily finite sets of
an ASM are called its objects.

A BGS ASM that terminates on an input instance will, of course, make use
of only a finite subset of the infinite collection of hereditarily finite sets on its run
on the input instance. A natural RAM implementation of the ASM will generate
a representation of an element of this finite subset as and when its need arises
during the simulation of the run.

2.1 Representation of objects

In our simulation, we will represent an ASM object as a partially labelled rooted
directed acyclic graph that captures the transitive closure of the object.3 For an
object A, we use the term TC dag of A to denote this representation of A.

Let us assume that the set of atoms for the ASM to be simulated is X =
{a1, a2, . . . , an}, where all ais are atoms.

Definition 1 (TC dag).
Given any atom, say ai, its representative TC dag is simply a node labelled ai.
Similarly, the representative TC dag for an empty set is a single node with label
‘φ’. The root to such a single node TC dag is clearly the node it consists of.

3 We are indebted to Yuri Gurevich and Andreas Blass for suggesting to us this rep-
resentation.

If X is a non-empty hereditarily finite set then TC(X) denotes the transitive
closure of X.4 The representative TC dag GX for X has exactly one node
corresponding to the each element of TC(X), and there is an edge from u to v
in GX iff the set or the atom that corresponds to v is an element of the set that
corresponds to u. All nodes in GX that correspond to atoms or to the empty set
φ are labelled– for an atom ai the label is ai, and for the empty set, the label is
‘φ’. The root of GX is the node that corresponds to X. 5

Access to a representative TC dag:
For an object X, if GX is the TC dag representing X, then our RAM simulation
will use a pointer to the root of GX to access this representation of X.

As can be seen subsequently, in our implementation we may have the rep-
resentative TC dag of one object sharing in part substructures of one or more
representative TC dags. To avoid any confusion about which dag we mean in a
context, we will use the following convention.

A convention: Suppose x is a vertex. Whenever we say the dag subtended
at x, or simply, the dag at x, we mean the largest, downward closed dag that is
there with x as its root vertex.

A crucial property of the representation is that it allows equality checking of
ASM objects to be carried out in polynomial time, as a matter of fact, in linear
time.

Proposition 1. Two ASM objects X and Y are equal iff their TC dags are
isomorphic. Further, the isomorphism testing problem of TC dag representations
of a BGS ASM objects admits a RAM algorithm that runs in time linear in the
size of the two TC dag representations being tested for isomorphism.

The first statement of the above proposition is, more or less, obvious. We
defer the proof of the second statement to the Appendix. 6

4 We recall that TC(X) is the least set Y such that X ∈ TC(X), and for all x, y, if
y ∈ x ∈ Y then y ∈ Y .

5 Hereditarily finite sets are nested entities, and a natural representation for any nested
entity is a tree. However, as pointed out by Blass and Gurevich [BG04], a RAM
simulation of BGS ASMs that uses trees to represent hereditarily finite sets cannot
carry out the simulation with only polynomial time overhead: it is easy to see that
the von Neumann encoding of a natural number n can be constructed by a BGS ASM
in time polynomial in n, but the tree representation of the encoding is exponential
in n.

6 That our isomorphism problem is linear time solvable is of interest because of the fact
that the dag isomorphism testing, (even when the dags are rooted, with the added
constraint that every path in a dag is of length at most two) can easily be shown to
be as hard as the general graph isomorphism problem. Why is our problem simpler?
The rooted dags that we use to represent BGS objects can be seen to be essentially
compacted versions of rooted trees, and two of our rooted dags are isomorphic iff the
two rooted trees they came from are isomorphic. Therefore, our isomorphism testing
problem is really a variant of the tree isomorphism problem, which is known to be
solvable in linear time.

2.2 Compacting rooted dags to TC dags

Clearly, not all dags with lebelled out-degree zero vertices will be TC dags,
although we can naturally associate a hereditarily finite set (over the set of
labels of zero out-degree vertices) with each non-labelled vertex of the graph,
by treating each edge (u, v) to capture that the hereditarily finite set (or atom)
associated with v is an element of the set associated with u. We shall see that in
our simulation we do create such dags as above, and we will need to obtain the
TC dag for the set associated with some vertex in the graph. The result below
states that this can be done efficiently.

Definition 2. Let G be a dag whose leaves, i.e., nodes with zero out-degree, are
labelled with atoms or the empty set φ. We associate with each non-leaf node u
of G a hereditarily finite set, H(u), over atoms and φ. This is done by induction
on the rank of a node in G, as follows.

H(u) = label of n, if u is a leaf.
H(u) = {H(u1), · · · ,H(uk)}, if u is a non-leaf node with children u1, · · · , uk.

Proposition 2. Given a labelled dag G = (V,E) whose zero out-degree vertices
are labelled with atoms or the empty set φ, and u a vertex of G, there is an
efficient algorithm for creating a dag G = (V,E′), such that all v ∈ V denote
the same hereditarily finite set as in G, dag at u in G′ is a TC dag and for
all v ∈ V if dag at v is a TC dag in G then dag at v is also a TC dag in G′.
G′ arises by manipulating the edges only in the dag at u in G and the algorithm
works in time O(|Vu|4), where Vu is the set of vertices in dag at u in G.

We defer the proof to the Appendix.

3 Basic Structure and Operations

In this section, the RAM implementation of each ASM component is given.

Logical attributes

– Logical values are directly implemented through the set definition of the
empty set φ as false and {φ} as true.

– Boolean operations can be easily implemented directly in a RAM machine.
– The equality sign (a boolean predicate) which compares two objects is im-

plemented through testing for isomorphism of the two corresponding TC
dag representations. In other words, to evaluate X = Y , where X and Y are
objects, we check if the two rooted TC dags GX and GY , representing X
and Y respectively, are isomorphic. If they are, then we conclude X = Y ,
otherwise, we conclude X 6= Y . From Proposition 1, we know that equality
predicate can be evaluated in linear time.

Set theoretic functions

– The binary predicate ∈ can be implemented through the rooted TC dag
isomorphism that we use to test the equality predicate. For example, to
evaluate a ∈ S, where both a and S are objects, we simply compare the
representative TC dag of a with the TC dags at x1, x2, . . . xk, where the
root vertex of representation of S has edges to the k vertices x1, x2, . . . , xk.
Since the dag at each xi represents an element of S, we conclude a ∈ S if
the representation of a is equal to one of these k rooted TC dags.

– Unary
⋃

is defined as :
If a1, . . . , aj are atoms and b1, . . . , bk are sets, then⋃
{a1, . . . , aj , b1, . . . , bk} = b1 ∪ · · · ∪ bk.

The TC dag representation clearly tells us whether an object is an atom or
a set (an atom is simply a single node dag). Once one detects all the bis, the
representation of the union is created by first creating a new vertex v and
then creating edges from v to the root vertex of the representation of each bi.
At this point H(v) = b1∪ · · ·∪ bk (as per Definition 2) but the dag at v need
not be a TC dag, as there may be nodes in different bi’s representing same
hereditarily finite sets. We therefore invoke the algorithm of Proposition 2
to modify the dag at v (in the big graph which has represenentations for all
the objects of asm at this point in computation) so that it becomes a TC
dag.
The resulting dag at the new vertex v is the RAM representation of⋃
{a1, . . . , aj , b1, . . . , bk}

It is easy to see that essentially we make polynomially many calls to TC dag
isomorphism testing, and to the algorithm of Proposition 2. Therefore,

⋃
can be implemented in polynomial time.

– TheUnique(a) is defined as the unique element of a if a is a singleton set,
otherwise it is the null set. The number of children of the root of (the TC
dag representing) a tells us the cardinality of a. Once this is determined, we
can evaluate TheUnique(a).

– Pair(a,b) = {a, b}. Suppose the TC dag for a is rooted at va and that of b
is rooted at vb. We create a new vertex v, add edges from v to va and to vb

and invoke the algorithm of Proposition 2 to make the dag at v to be a TC
dag. The dag at v represents Pair(a, b).

Dynamic Functions: Associated with each dynamic function f , we define
the extent of f as the set:

{(x0, . . . , xj) : f(x0, . . . , xj−1) = xj 6= 0}

The extent for any dynamic function is always finite. This is stored as a linear
list of blocks. Each block is simply an ordered list of pointers to x0, . . . , xj (in
that order). We have a block for each element in the extent. Given some values
x0, . . . , xj−1, we can find the value of f(x0, . . . , xj−1) by scanning the list of
blocks.

Term Formation: Suppose v is a variable, t(v) is a term, r is a term without
free occurrences of v and g(v) is a Boolean term, then {t(v) : v ∈ r : g(v)} is a
term. To implement this, we first create a new node, say w. We consider each
child vertex u of the root of the TC dag for r, check if the (object corresponding
to the) dag at u satisfies the predicate g. If it does, we create the TC dag for t(v)
where v is the object represented by the dag at u. We add an edge from the new
node w to the root of the dag for this t(v). Clearly, H(w) = {t(v) : v ∈ r : g(v)},
we now invoke the algorithm of Proposition 2 to get a TC dag at w. The dag at
w represents {t(v) : v ∈ r : g(v)}.

4 Rules

We will instantiate any variable as and when it comes, so during our imple-
mentation we will never encounter free variables (because a program is a rule
without any free variables).

Skip : This is a null instruction, so nothing is to be done.

Update Rules : Update rules are of the form f(t1, . . . , tr) := t0, where f is
a dynamic function of arity r and t0, · · · , tr are terms. Since in our implemen-
tation, all variables are instantiated, the terms will always be objects. To carry
out this rule, we search for a block in the sequence of blocks that represents f ,
such that the sequence formed by the first r− 1 objects of the block is equal7 to
t1, . . . , tr. If we find one, the last object of the block is updated to t0. If such a
block does not exist, we create a new block with t1, . . . , tr, t0.

Conditional Rules : If g is a boolean term and R1 and R2 are rules, then
a conditional rule is:
if g then R1 else R2 endif

Since we always have instantiated variables, g will not have any free variables
and can be evaluated. Accordingly, our RAM program can simulate R1 or R2

accordingly.

Do-forall Rules : If v is a variable, r is a term without v free and R0(v) is
a rule, then a Do-forall rule is -

do forall v ∈ r
R0(v)

enddo

Here, we instantiate v with all elements of r and execute R0(v). These exe-
cutions have to be done in parallel, however, we are using a serial RAM. This

7 Here, the equality is the equality of two tuples of objects, the implementation of
object tuples equality extends obviously from equality of objects.

can be done by using temporary storage. This instantiation ensures that we do
not have any free variables at any stage of the implementation. Therefore, our
initial assumption holds.

5 Complexity Analysis

Let us consider an ASM program running in polynomial time. Such a program
is denoted as (Π, p(n), q(n)) which captures the fact that the program Π has a
run of length ≤ p(n) and the total number of active objects is ≤ q(n), where
n is the size of the input, and p(·) and q(·) are two fixed polynomials.8 Let us
now consider the RAM machine implementation of Π and calculate its time and
space complexity.

New objects are fundamentally created either through the
⋃

operator, through
Pair or through term formation. That implies that new active objects are created
through already present active objects. As the TC dag for any object X will have
at most one sub-TC dag representing any element of TC(X), we conclude that
the TC dag for any object will have at most O(q(n)) nodes, which implies that
each object can be stored in O(q2(n)) space. Space is used for storing the extent
of each dynamic function, and as temporary workspace, e.g., in the simulation
of a Do-forall rule. The number of entries of each dynamic function is bounded
by q(n), and the size of each entry is O((k+1)× log q(n)), where k is the arity of
the function. (Recall that each block for the function is a list of pointers). Since
the number of functions is a constant and the arity of each is also a constant,
the space-complexity is O((log q(n))q(n)2). The temporary space required for
the Do-forall rules would also be of order O(q(n)2).

Let us try to see the amount of time that each step in the run takes. The
number of objects accessed in any step is bounded by q(n). Each

⋃
operation

and update can take at most O(q4(n)) time, taking into account the isomorphism
testings involved. Same bound holds for Pair also. Term formation and Do-forall
8 Roughly, an object is active if either it is an atom, or a constant (e.g., a truth value

representation), or an object which is created (even for a temporary reason) at any
time during the execution of the ASM program on the given input. The number of
active objects is a measure (as explained in [BGS99]) of the number of microsteps
([BG97]) in the execution of a program on an input. In our implementation, an
object is represented as a rooted TC dag. We may have two TC dags occurring in
the storage which are isomorphic. That is, several copies of the same object may
be present in the storage. Thus, the number of active objects may not, in general,
correspond to the total number of rooted dags our implementation deals with. The
correspondence is achieved, if for the purpose of this complexity analysis, we assume
that every time an object gets created, even temporarily, it is a new object. In any
case, as the total number of active objects will be polynomially related to the total
number of all copies of all objects for a PTime BGS ASM, the distinction is not
crucial for our result that such a program can be implemented by a PTime RAM.

operations can only have O(q(n)) loops. Therefore, the time complexity for one
step can be expressed as O(q(n)k), where k is some constant (this comes due to
the possible presence of nested Do-forall operations and updates, term forma-
tions, etc. present in these loops). The total time-complexity then comes out to
be O(p(n)(q(n))k), for some constant k, which is bounded by a fixed polynomial
in n.

We conclude, therefore, that our implementation takes a BGS model of a
PTime bounded ASM program and converts it to a RAM, which runs in poly-
nomial time and uses polynomial space.

6 Concluding remarks

The randomized algorithm for testing tree isomorphism as given in [Ko92] pro-
vides an obvious fingerprinting scheme for trees. We can extend this scheme
easily to work for our rooted dags used for representing objects. In practice,
with every object representation, we can keep also its fingerprint. The imple-
mentation of the equality predicate testing will become more efficient when the
fingerprints are taken into account. Our implementation, in general, will have
several copies of the same non-atomic object. This is what happens also in usual
implementations of Lisp, Java, etc. However, it is possible to have an implemen-
tation that ensures only a single copy of any object will be present in the storage
at any time. The challenge then will be how best to reduce the increase in time
complexity which the decrease in space usage will entail.

As explained in [BG00], BGS model is an instance of ASMs with background
classes of structures. It is easy to see that for the other examples of ASMs with
finitary background classes as given in [BG00], the same result as ours holds: each
of such ASMs can be simulated by Turing machines with at most a polynomial
time overhead. It is not clear to us, however, if the axioms as provided in [BG00]
to formalize the notion of background classes can even guarantee that testing
for equality of two objects can be done effectively. Besides equality, one would
like to have term formation operations, as well as those operations that break a
compound term into its constituents, 9 to be effective for simulation with Turing
machines. For simulation with at most polynomial time overheads, it is neces-
sary that all these should be feasibly implementable on Turing machines. Is the
condition also sufficient? This appears to us to be a question worth investigation.

References

[AHU74] The Design and Analysis of Computer Algorithms, Alfred V. Aho, John E.
Hopcroft, and Jeffrey D. Ullman, Addison-Wesley, 1974.

[BG97] The Linear Time Hierarchy Theorems for RAMs and Abstract State Machines,
Andreas Blass and Yuri Gurevich, Springer Jl. of Universal Computer Science, Vol
3, No. 4, pp 247–278, 1997.

9 For example, cons and car, cdr as in Lisp are such operations for lists.

[BG00] Background, Reserve, and Gandy Machines, Proc. CSL 2000, LNCS Vol. 1862,
pp 1 – 17, 2000.

[BG04] Personal communication, July 2004.
[BGS02] On Polynomial Time Computation over Unordered Structures, Andreas

Blass, Yuri Gurevich, and Sahron Shelah, Journal of Symbolic Logic, 67:3, pp
1093 – 1125, 2002.

[BGS99] Choiceless Polynomial Time, Andreas Blass, Yuri Gurevich, and Sahron She-
lah, Annals of Pure and Applied Logic, 100, pp 141 – 187, 1999.

[BS03] Abstract State Machines, Egon Börger and Robert Stärk, Springer-Verlag, 2003.
[Gu**] See home page of Yuri Gurevich http://www.research.microsoft.com/~gurevich

for extensive information on ASMs.
[Ko92] The Design and Analysis of Algorithms, Dexter C. Kozen, Springer-Verlag,

1992.

Appendix

We provide here the proofs of Propositions 1 and 2.
We need a notion of rank for nodes in a dag. Let G be a dag. All nodes in G

that have zero out-degree have rank 0. The rank of any other node y is m + 1
if m is the maximum rank among the vertices to each of which there is an edge
from y.

Proposition 1. The isomorphism testing problem of rooted TC dag represen-
tations of objects of a BGS ASM admits a RAM algorithm that runs in time
linear in the size of the two representations being tested for isomorphism.

Proof. We sketch an algorithm which is an adaptation of the tree isomorphism
testing algorithm of [AHU74].

Let X and Y be two objects and GX and GY be their corresponding rooted
dag representations. The algorithm essentially tries to construct an isomorphic
mapping between GX and GY by extending a map that maps vertices of rank i
in GX to vertices of rank i in GY , for successive values of i starting with i equal
to 0.

We recall that the rank 0 vertices in both the dags are labelled. The algorithm
constructs a list consisting of labels of rank 0 vertices of GX , and a list of labels
of rank 0 vertices of GY , and then sorts the two lists. If the two sorted lists
are not identical, the algorithm terminates declaring that the two dags are not
isomorphic. If the sorted lists are identical, then each rank 0 vertex is given a
(new) label which is the integer j, where j is the position of the old label in the
sorted list.

Suppose the algorithm has completed assigning integer labels to each node
at rank i in both GX and GY . Next, we consider each vertex v at rank (i + 1).
Suppose there is an edge from v to each v1, v2, . . . , vk, let the ranks of these k
vertices be r1, r2, . . . , rk respectively, and the integer labels of the k vertices be
n1, n2, . . . , nk respectively. The label that we assign to v is the sorted version of

the list consisting of (r1, n1), (r2, n2), . . . (rk, nk). Then we create two lists, one
each for the vertices of rank (i+1) of GX and GY , and then sort the two lists. If
these two sorted lists are not identical then the algorithm terminates declaring
GX and GY to be non-isomorphic. Else, each rank (i + 1) vertex is relabelled
with an integer: vertex u gets the new integer label m, if its old label was at
the mth position in the sorted list of old labels of rank (i + 1) vertices of the
corresponding dag.

Iterating in the above manner, when the two root vertices get their integer
labels, (provided the algorithm has not already terminated by then), the algo-
rithm returns with the decision that the two dags are isomorphic if the two root
labels are equal, else returns a negative answer.

For sorting, we use the linear time algorithm in [AHU74] to sort lists with
variable sized tuples, where the tuple components are integers in the range 0 to
a value polynomial in the size of our instance size. We use sorting in two types of
steps: first, for sorting initial labels of all vertices of a certain rank, and second,
in obtaining the initial label of a vertex. The first type of sorting, amortized over
all vertices, will take total time proportional to the total number of vertices; and
the second type of sorting, amortized over all edges, can be seen to take time
proportional to the total number of edges. Hence, the algorithm runs in time
linear to the size of the input instance.

Proposition 2. Given a labelled dag G = (V,E) whose zero out-degree vertices
are labelled with atoms or the empty set φ, and u a vertex of G, there is an
efficient algorithm for creating a dag G = (V,E′), such that all v ∈ V denote
the same hereditarily finite set as in G, dag at u in G′ is a TC dag and for
all v ∈ V if dag at v is a TC dag in G then dag at v is also a TC dag in G′.
G′ arises by manipulating the edges only in the dag at u in G and the algorithm
works in time O(|Vu|4), where Vu is the set of vertices in dag at u in G.

Proof. Let Gu be the dag at u in G and let m be the rank of the node u in Gu.
For i = 0 to m, we repeat the following steps (in increasing order of i).
{
Let Vi be the set of nodes of rank i in Gu. Choose a subset V ′

i of Vi, s.t. for all
l ∈ Vi, there is a unique l′ ∈ V ′

i , s. t. H(l) = H(l′). This can easily be done, as
for i = 0 we have assumed that equality of atoms can be tested easily and for
i > 0 we use the fact that for all v, v′ ∈ Vi, H(v) = H(v′) iff set of their children
are the same (note that this step does not involve equality checking recursively,
by virtue of inductive step in our construction). Now for each l ∈ Vi − V ′

i and
for any v ∈ V (Gu), if there was an edge from v to l then it is replaced by an
edge from v to l′, where l′ is the unique representative of l in set V ′

i . A duplicate
edge between any pair of nodes is deleted.
}

It is clear from the construction that any node represents the same heredi-
tarily finite set in G′ as in G and any node which has a TC dag subtending at
it in G also has a TC dag subtending at it in G′.

The complexity of the above algorithm is easily seen as upper bounded by
O(|V (Gu)|4).

