
Protein Folding Challenge and Theoretical Computer Science

Somenath Biswas
Department of Computer Science and Engineering,

Indian Institute of Technology Kanpur.
(Extended Abstract)

September 2011

Almost all functions of a living organism at its cellular level are carried out through various
classes of proteins. Our body consists of many kinds of cells, and each cell carries a copy of
the genome– which is the program which a cell executes for its functioning. The genome is a
polymer, or a chain; for us, it is a sequence of four kinds of molecules, known as nucleotides,
and these four kinds are denoted as A,C, T, and G. Thus, a genome or DNA is a string
over the alphabet {A,C, T,G} (the human genome has about 3 × 109 symbols). Certain
subsequences of the genome sequence are genes. A gene is translated into a protein. Each
triplet of nucleotides is a code of one of twenty amino acids. For example, TTT TAC TGC
GGC is translated as the sequence of four amino acids: Phe Tyr Cys Gly. Thus, from a
gene, the cell makes a sequence of amino acids; such a sequence of amino acids is a protein.

Each protein, which forms as a chain, folds up into a unique shape, unique for that sequence
of amino acids. By structure of a protein, we mean this unique 3D shape of the protein.
The functionality of a protein is due to its 3D shape, that is, its structure. By knowing the
structure of a protein, we understand its function.

It is relatively easy to find out the chain of amino acids that defines a protein. The protein
folding problem is: given a sequence of amino acids, determine the 3D shape that this
sequence will give rise to. What we are asking for is an algorithm, and as computer scientists
we want an efficient, that is, a polynomial time algorithm.

In a living cell, many many chains of amino acids are getting formed all the time. Such a
chain folds into its unique 3D shape usually within a few miliseconds, and then it functions
as it should. Thus, nature seems to use an efficient algorithm to carry out protein folding.

The atoms in a protein molecule attract each other. As they come closer, there will be
torsions and compressions of the chemical bonds which will limit this coming closer. Given
a configuration, that is, a positioning of various atoms in the 3D space, we can compute
the potential energy of the configuration. Any natural system tends to go towards its min-

1

imum energy configuration. Protein folds as it goes to its minimum energy configuration.
Therefore, to find folding, we need to find out that configuration amongst all possible con-
figurations, which has the minimum energy. Thus, the protein folding problem is essentially
an optimization problem.

The general computational problem is:
Given a set of atoms, and their connectivity, and a potential function, find that configuration
which has the globally minimum energy. It has been shown that this problem is NP-hard.
Therefore, it is extremely unlikely that there is an efficient algorithm to solve this problem.
And yet, nature seems to have an efficient algorithm!

It has been observed beyond any doubt that all proteins fold very rapidly, that is, nature
obtains the minimum energy configuration very efficiently. When first studied, biochemists
found this to be paradoxical, because there is an astronomically huge number of configu-
rations, and taking such configurations to be metastable, they computed the time required
to come to the folded configuration. This computed time was found to be many orders of
magnitude more than the observed time for protein folding. This paradoxical situation is
called the Levinthal’s paradox.

Just because the search space is huge, say, exponential, a search problem in that space need
not be hard. There are, in general, exponentially many paths in a graph between s and t,
and yet we have polynomial time shortest path algorithms. A restatement, however, does
appear paradoxical.

Seemingly, nature has an efficient algorithm for protein folding. How costly is it if we
simulate it? (Here, we follow the argument given in [NMK94]. There are two issues. Let N
be the instance size:

• In simulation of a system’s dynamics on a computer, we use discrete steps. Let F (N)
be the frequency at which system states (that is, velocities and accelarations) are
recalculated.

• Let S(N) be the number of steps used by the simulating algorithm to compute one
single discrete time step.

If nature’s algorithm takes T (N) units of time on the instance, then the simulation will
require F (N)S(N)T (N) steps. Thus, if F (N) and S(N) are polynomials in N , then the
simulation algorithm will work in polynomial time. For protein folding, it has been shown
F (N) is actually a constant, though of a small value, about 10−15. And S(N) is O(N2),
thus both F (N) and S(N) are bounded by a polynomial in N . We therefore conclude that
if nature has a polynomial time algorithm, then the simulation also works in polynomial
time. On the other hand, if P 6= NP, as the protein folding problem is shown to be NP
hard, nature does not have an efficient algorithm to carry out protein folding. How then do
we account for the observed rapid folding of natural proteins?

2

A plausible resolution of the paradox can be:

1. Nature uses an algorithm which is NOT a polynomial time algorithm.

2. An algorithm which is exponential time in the worst case, may be efficient for a subset
of the input domain.

3. Natural proteins come about precisely from those amino acid sequences for which,
when they are given as inputs, the algorithm employed by nature will work efficiently.

If we are able to say eficiently, given a sequence of amino acids, whether or not it will fold
rapidly into a unique 3D structure, and if it does, what is that unique 3D structure, it will
be of immense value. If we find out nature’s algorithm, then we are done. However, till
today no one has any clue about nature’s algorithm. We in CS can take a guess and check
approach: Try out your favourite search algorithm and see if works efficiently on natural
proteins.

It is more likely than not that nature’s algorithm is a randomized algorithm. Some bio-
chemists have argued pursuasively that the algorithm used is what we call the Metropolis
algorithm [SK91].

We recall that in a general combinatorial optimization problem, every instance I of the
problem has an associated, usually implicitly, search space, say SI . We also have a function
f which maps SI to numbers. Given any element a ∈ SI , we can efficiently compute the
value of f(a). The optimization problem is to find that element p of SI , at which the
function f is minimized.

For the protein folding problem, I is a given chain of amino acids, SI is the set of configu-
rations of the chain, and for a configuration x, f(x) is the energy of the configuration.

The Metropolis algorithm [MRR53] is a randomized search heuristic which can be seen
as a biased random walk in the search space, the bias being such that the algorithm will
generally favour going from a search point to a search point with less cost; however, it can
also go to a neighbouring point where the cost increases, but such transitions will happen
with less probability. Such transitions ensure that the search will not get trapped in local
minima.

The key question, therefore, is: will the Metropolis algorithm find efficiently minimum
energy configurations efficiently, i.e., in time polynomial in the size of the amino acid chain?
Answering this question may need going deep into certain biochemistry issues: instead, what
we can certainly do is to characterize the set of instances on which the Metropolis algorithm
is guaranteed to work efficiently, and then leave it to the biochemists to figure out if the
instances generated by protein sequences form a subset of this set or not.

What the Metropolis algorithm does on an input instance is to run a Markov chain. At the
tth step, the chain can be in any of the configurations with a certain probability; in other

3

words, there is a probability distribution σt on the space of configurations, the chain at time
t will be in a configuration as per the distribution σt. Our question can then be framed
as: after fixing a polynomial p, which are the instances I such that at a time t ≤ p(|I|),
the minimum energy configuration of I has a large probabilty as per σt? If we term the
minimum energy configurations as goal states, the question in Markov chain phraseology
will be to characterize the set of instances for each of which the Markov chain defined by
the Metropolis algorithm has an expected first passage time to the goal state bounded by
a polynomial in the instance size.

One conjecture came from the biochemists Sali, Shakhnovich and Karplus [SSK94a], [SSK94b].
They had used the Metropolis algorithm to search for the minimum energy conformations
of chains of beads in the lattice model of protein folding. Based on their computational
experiments, they concluded that the Metropolis algorithm would find the minimum en-
ergy conformation of a chain of beads within an acceptable time scale if and only if there
is a large gap between the energies of the minimum energy conformation and that of the
second minimum. Clote [Cl99] attempted to support this conclusion by a proof that the
mixing time of the underlying Markov chain would decrease as the gap in the energies of
the minimum energy conformation and that of the second minimum increased. He was able
to show that an upper bound on the mixing time does indeed decrease as the energy gap
increases. We state a recent result [NB10] which shows that the mixing time itself, however,
is a nondecreasing function of the value of the energy gap. Therefore, our result contradicts
what Clote had attempted to prove. It is clear that we need more work in this direction.

However, there has been some progress at another level. A fundamental result in the the
theory of Markov chains is that if we have a family of ergodic Markov chains, then for each
chain in the family, there is a stationary distribution such that if we run the chain for a
sufficiently long time, starting from any initial distribution, the chain will come close to its
stationary distribution. Therefore, a sufficient condition for the Metropolis algorithm to be
successful for the protein folding problem is: each chain in the family of chains defined by
the algorithm comes very close to its stationary distribution in time polynomial on instances
of interest (in other words, the family is rapidly mixing) and the probability of the goal
state is high in the stationary distribution. However, for the protein folding problem, what
we require is that the expected first passage time is small for every chain on instances of
interest. It has been shown [SRB10] that this necessary condition is actually equivalent to
the sufficient condition mentioned above for families of chains defined by the Metropolis
algorithm. Rapid mixing of Markov chains has been an area of active research in recent
years; several powerful techniques like coupling, canonical paths, etc. are available for
arguing about rapid mixing. The result we have cited above makes all these techniques
now available for studying the performance of the Metropolis algorithm for combinatorial
optimization problems, in particular, for the protein folding problem.

4

References

[Cl99] Peter Clote, Protein folding, the Levinthal paradox and rapidly mixing Markov
Chains, Proceedings of 26th International Colloqium on Automata, Languages and
Programming , LNCS 1644 pp 240–249, 1999.

[NMK94] J Thomas Ngo, Joe Marks, and Martin Karplus, Computational Complexity,
Protein Structure Prediction, and Levinthal Paradox, in Protein Folding Problem and
Tertiary Structure Prediction, Kenneth Merz, Jr. and Scott Legrand (eds.) 1994.

[MRR53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equations
of state calculations by fast computing machines Jl. of Chemical Physics, 21:1087–
1092, 1953.

[NB10] Apurv Nakade and Somenath Biswas, Effect of increasing the energy gap between
the two lowest energy states on the mixing time of the Metropolis algorithm, 2010.
(Communicated)

[SSK94a] Andrej S̆ali,Eugene Shakhnovich and Martin Karplus, How does a protein fold?
Nature, Vol. 369, pp 249–252, 1994.

[SSK94b] Andrej S̆ali,Eugene Shakhnovich and Martin Karplus, Kinetics of protein folding:
A lattice model study of the requirement for folding to the native state, Jl. Molecular
Biology, Vol. 235, pp 1614–1636, 1994.

[SK91] J. Skolnick and A. Kolinski, Dynamic Monte Carlo simulation of a new lattice model
of globular protein folding, structure and dynamics, Jl. Molecular Biology, Vol. 221,
pp 499–531, 1991.

[SRB10] Swagato Sanyal, Raja S. and Somenath Biswas, Necessary and Sufficient Con-
ditions for Success of the Metropolis Algorithm for Optimization Proc.of 12th ACM
GECCO Conf., 1417–1424, 2010.

5

