CS687 2023 HW2

Due: April 21, 2024

- 1. A probability measure μ on Σ^* is defined by the following rules.
 - 1. $\mu(\lambda) = 1$ and
 - 2. For every string w, $\mu(w) = \mu(w0) + \mu(w1)$.

(The way to understand this is that $\mu(w)$ is the probability of all infinite sequences with w as a prefix. Then the second rule is finite additivity over disjoint unions.)

Note the correction.

If μ and ν are probabilities on Σ^* , such that $\nu(w) \neq 0$ for any string w, then show that μ/ν is a ν -martingale.

A ν martingale is a function $m: \Sigma^* \to [0, \infty)$ such that $m(\lambda) \leq 1$ and for any string $w \in \Sigma^*$, we have

$$m(w0)\nu(w0) + m(w1)\nu(w1) = m(w)\nu(w).$$

[10]

- 2. Prove or disprove: if $d: \Sigma^* \to [0, \infty)$ is a martingale which does not assign 0 to any string, then d is the ratio of two probabilities on strings. [10]
 - 3. Show that if there is a lower semicomputable martingale $m : \Sigma^* \to [0, \infty)$ such that it succeeds on $X \in \Sigma^{\infty}$ - *i.e.*,

$$\limsup_{n \to \infty} m(X[0 \dots n-1]) = \infty,$$

then there is another lower semicomputable martingale $m':\Sigma^*\to\infty$ such that

$$\liminf_{n \to \infty} m(X[0 \dots (n-1)] = \infty.$$

Hint: Use the "savings account" idea discussed in class. m' simulates m and every time m doubles its capital, m' adds an amount to the savings account and only uses the remaining capital to bet. [10]