CS687 2023 HW2

Due: April 21, 2024

1. A probability measure μ on Σ^{*} is defined by the following rules.
2. $\mu(\lambda)=1$ and
3. For every string $w, \mu(w)=\mu(w 0)+\mu(w 1)$.
(The way to understand this is that $\mu(w)$ is the probability of all infinite sequences with w as a prefix. Then the second rule is finite additivity over disjoint unions.)

Note the correction.

If μ and ν are probabilities on Σ^{*}, such that $\nu(w) \neq 0$ for any string w, then show that μ / ν is a ν-martingale.

A ν martingale is a function $m: \Sigma^{*} \rightarrow[0, \infty)$ such that $m(\lambda) \leq 1$ and for any string $w \in \Sigma^{*}$, we have

$$
m(w 0) \nu(w 0)+m(w 1) \nu(w 1)=m(w) \nu(w) .
$$

2. Prove or disprove: if $d: \Sigma^{*} \rightarrow[0, \infty)$ is a martingale which does not assign 0 to any string, then d is the ratio of two probabilities on strings.
3. Show that if there is a lower semicomputable martingale $m: \Sigma^{*} \rightarrow[0, \infty)$ such that it succeeds on $X \in \Sigma^{\infty}$ - i.e.,

$$
\limsup _{n \rightarrow \infty} m(X[0 \ldots n-1])=\infty
$$

then there is another lower semicomputable martingale $m^{\prime}: \Sigma^{*} \rightarrow \infty$ such that

$$
\liminf _{n \rightarrow \infty} m(X[0 \ldots(n-1)]=\infty .
$$

Hint: Use the "savings account" idea discussed in class. m^{\prime} simulates m and every time m doubles its capital, m^{\prime} adds an amount to the savings account and only uses the remaining capital to bet.

