CS687 2023 HW1

Due: February 17, 2024

Notation. $M(i) \downarrow$ means that the Turing machine M halts on input i.

1. Prove that every infinite computably enumerable language contains an infinite decidable subset.
2. Let x be an arbitrary finite binary string. Do all permutations of x have the same plain Kolmogorov complexity of x ? If so, prove your claim. Otherwise, construct a counterexample, and prove that your string has some permutation which has a significantly different Kolmogorov complexity.
3. Let χ_{H} be the infinite binary sequence defined as follows. For any number i, the $i^{\text {th }}$ bit of χ_{H} is 1 if the $i^{\text {th }}$ Turing machine halts, and 0 otherwise. Since the Halting problem is uncomputable, χ_{H} is uncomputable. However, show that prefixes of χ_{H} are compressible: for all sufficiently large n, show that $C\left(\chi_{H}[0 \ldots n-1]\right) \leq \log n+O(1)$, where $\chi[0 \ldots n-1]$ denotes the n-length prefix of χ_{H}. (This shows that even when a string is uncomputable, it may be highly compressible.)
4. Let ω be an infinite binary sequence defined by

$$
\omega=\sum_{\substack{i \in \mathbb{N} \\ M(i) \downarrow}} \frac{1}{2^{i}}
$$

Show that prefixes of ω are incompressible: for all sufficiently large $n, C(\omega[0 \ldots n-1]) \geq$ $n-O(1)$. (The purpose of this question is to show that there are uncomputable strings which are also incompressible, in contrast to the previous question.)
5. Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a total computable function. Then show that for every string x, we have $C(f(x)) \leq C(x)+O(1)$. (The purpose of this question is to show that you can never substantially increase the information in any string through computation: you can only destroy the information.)
6. Show, using an argument using plain Kolmogorov complexity, that for all sufficiently large n, most strings of length n will not have a contiguous stretch of more than $\log ^{2} n$ zeroes anywhere in the string. (This shows how you can prove that some event happens with very high probability, using the theory of plain Kolmogorov complexity.)
[10]
7. Show that $C(x y) \nsubseteq C(x)+C(y)+O(1)$. Also explain why it is not possible to have a prefix encoding e such that there is a positive constant c such that for all $x,|e(x)| \leq|x|+c$. $\quad[10]$

