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1 Randomness of individual infinite sequences

One of the surprising consequences of the theory of random finite strings is that it leads to a
consistent theory of the randomness of individual infinite sequences. For example, it is possible
to say that a sequence of zeroes is non-random, and the Chaitin’s Omega which we defined in
Homework 1 is random.

This definition is moreover mathematically robust - multiple, very different approaches, agree
on which sequences are random and which are not. We will see two approaches in this class. The
various approaches which lead to equivalent definitions are:

1. Computational: we can define a sequence to be random if, all its long enough prefixes are
Kolmogorov incompressible. This is the incompressibility definition.

2. Measure-theoretic: Random sequences are those which “pass” every effective probability 1
property. This was the definition which was originally studied by Martin-Löf.

3. Unpredictability: Given some prefix of the sequence, no algorithm should be able to predict
the next bit of the sequence.

In this course, we will study the computational and the unpredictability approaches, and show
their equivalence.

As a historical note: the notion of a martingale is a very important modern tool in mathematical
finance and stochastic processes. It was in the context of algorithmic randomness that Ville first
defined the modern notion of martingales in 1939. Later, the American mathematician Doob
developed the modern theory of stochastic processes based on martingales.

In this chapter, we establish that the random sequences obey the usual “randomness notions”.
We include van Lambalgen’s theorem which establishes the symmetry of relative randomness of one
sequence with respect to another (this is an effective version of Fubini’s theorem in analysis). In the
end, we will discuss a very counterintuitive result which emerges when we study which sequences
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can be computed from a random sequence. (Intuitively, what patterns may emerge when we look
at a random sequence?)

2 The incompressibility approach

This definition of a random sequence is immediately accessible based on what we have so far used
for finite strings - basically, the definition says that an infinite sequence is random if all its prefixes
are incompressible. We do allow for a slight relaxation: we allow finitely many prefixes to be
compressible. But after a point, all further prefixes must be incompressible.

Notation: Throughout this chapter, we will use capital letters like X and Y to denote infinite
binary sequences. If m is a positive integer, then Xm denotes the mth bit of X. If m and n are
natural numbers, then X[m : n] will denote the finite substring Xm . . . Xn if m ≤ n and the empty
string if m < n. Even though it is possible to use X[1 : n] to denote the n-length prefix of X, we
adopt a shorter notation for this particular case - X � n.

We would like to say that if all prefixes of an infinite sequence are incompressible, then the
sequence is random. There are two things to note.

1. Suppose we start by saying that an infinite sequence X is random if C(X � 1), C(X � 2), . . .
are the maximum possible values for those lengths. However, Martin-Löf in 1969 showed that no
sequence satisfies this - every sequence has infinitely many compressible prefixes, if we use C. So
this approach fails.

2. We now show that K works for the above idea. However, we will relax the condition slightly
- finitely many prefixes of a random sequence X may be compressible. However, for all sufficiently
large n, K(X � n) must be maximal.

Definition 2.1 (Levin, Chaitin). An infinite binary sequence A is random if for all n, K(A � n) ≥
n−O(1).

Note that, because of the constant, the above definition is equivalent to saying that for all
sufficiently large n, K(A � n) ≥ n−O(1).

What we need to show is that with probability 1, a binary sequence selected at random has this
property. But before we do this, we show one particular example of a random sequence. Let

ω =
∑
i∈N

Mi(i)↓

1

2i
. (1)

Theorem 2.2 (Chaitin). ω defined in (1) is random.

Proof. We know that ω is lower semicomputable, and that it is irrational. Let f : N → Q be a
total computable function such that for all m, f(m) < f(m+ 1) < ω and limm→∞ f(m) = ω.
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We define a program P that given this m, prints the first string s whose complexity is greater
than n, i.e. K(s) > n. Since f(m) is computable from m, then we have n < K(s) ≤ K(f(m)) +
O(1).

How do we find this first string? Consider the set of prefix-free programs {pk | k ≤ m}. This is
clearly computable given m.

Now the trick: Recall that given any approximation of ω to within 2−n, it is possible to decide
whether pk(λ) halts, 1 ≤ k ≤ n. Equivalently, we can determine whether U(pk, λ) is defined,
1 ≤ k ≤ n.

Now, consider Sm = {U(pk, λ) | k ≤ m, |pk| ≤ n}. This set contains all strings x such that
K(x) ≤ n. This set is decidable, given m (since from m, we can compute an approximation of ω
to within 2−n.)

Hence, there is a program P such that given m, it outputs the first string s in the standard
enumeration which is outside Sm. By the definition of Sm, we have K(s) > n.

Since s is computable from f(m), we have K(s) ≤ K(f(m)) + O(1). Hence we have n <
K(f(m)) + O(1). Since the first n bits of f(m) coincide with the first n bits of ω, we have
n < K(ω � n) +O(1).

This completes the proof.

Chaitin’s omega is a random that is somewhat strange. Intuitively, a random does not have
any useful, extractable information. But Chaitin’s omega contains information about the Halting
problem in a way that can be easily extracted. Later, we will deal with the Kučera-Gács theorem,
which also talks about what information can be embedded into a random.

These, however are not the norm: a random, intuitively, should not contain easily extractable
information, just as, looking at grainy black and white spots on a television should not suggest
any cogent image. There are more advanced notions of randomness than what we cover in this
course, where information cannot usefully be embedded, appealing more to our intuition of what
randomness looks like.

We have thus shown that there is a random. What we have not shown is that the set of randoms
has probability 1.

Going from C to K is what made ω well-defined. K also has the following nice property -
we need not check for the incompressibility of all prefixes. It is sufficient to check an infinite,
computable set of prefix lengths.

Lemma 2.3 (Fortnow, and Nies, Stephan, Terwijn). If there is an infinite computable set S ⊆ N
such that for every n ∈ S, K(X � n) ≥ n+O(1), then X is random.

Proof. Suppose X is not random. Consider a computable set M = {m0 < m1 < . . . }. Fix c ∈ N.
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We need to show a prefix X � mi, mi ∈M , which is compressible.

Since X is not random, there is a length n such that K(X � n) ≤ n − c − d, where d is the
constant in the invariance theorem.

The issue is that n itself need not be in M .

But, consider K(X � mn). Without loss of generality, let mn > n. Then X � mn = (X � n)z
for some string z. If we have a prefix code for X � n, then its concatenation with z will form a
prefix-free code for X � mn. 1

Hence

K(X � mn) ≤ K(X � n) + |z|+ d

≤ (n− c− d) + (mn − n) + d

= mn − c,

as required.

The next result characterizes random sequences using a criterion related to the sum of expo-
nentials of randomness deficiencies.

Theorem 2.4. X is Martin-Löf random if and only if

∞∑
n=1

2n−K(X[0...n−1]) <∞. (2)

Proof. If X is non-random, then there are infinitely many n such that K(X[0 . . . n−1]) < n, hence
n−K(X[0 . . . n− 1]) > 0, implying

∞∑
n=1

2n−K(X[0...n−1]) =∞.

Conversely, suppose that for some X, we have

∞∑
n=1

2n−K(X[0...n−1]) =∞.

We form a Martin-Löf test containing X. For any c ∈ N, define

Uc =

{
A ∈ Σ∞ |

∞∑
n=1

2n−K(A[0...n−1]) ≥ 2c

}
.

1This follows since z has length equal to mn −n, and there is a unique string of that length which forms the suffix
of X.
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Clearly, X ∈ ∩c∈NUc, and Ucs are uniformly computably enumerable in c. It suffices to show that
µ(Uc) < 2−c.

Let m ∈ N. ∑
w∈Σm

m∑
n=1

2n−K(X[0...n−1]) =
∑
w∈Σm

∑
vvw

2|v|−K(v).

We see that2 a string of length m− k will appear 2k times in the sum (since that string will have
2k extensions of length m). Hence, we the above sum is equal to∑

v∈Σ≤m

2m−|v| ×−|v|−K(v) =
∑

v∈Σ≤m

2m2−K(v)

= 2m
∑

v∈Σ≤m

2−K(v)

< 2m,

by Kraft’s inequality.

3 The unpredictability approach

The following theorem says that a martingale cannot succeed very much with very high probability.
This is a version of Markov inequality for martingales.

Theorem 3.1 (Kolmogorov inequality, Ville). Let d be a martingale.

1. For any string w and any prefix-free set S of extensions of w, we have∑
v∈S

d(v)

2|v|
≤ d(w)

2|w|
.

2.

P ({w : d(w) ≥ k}) ≤ d(λ)

k
.

Proof. (1) Suppose S is finite. We prove this by induction on the number of elements in S. Suppose
n = 1. Then d(v)2−|v| ≤ d(w)2−|w| follows from the definition of the martingale.

Now suppose the inequality holds for every set with at most n elements. Now, consider a set S
with n+ 1 elements. Let y be the longest string such that every element of S extends y (y may be
distinct from w).

2Thanks to Aditi Goyal for pointing out an error in the earlier presentation.
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Then the extensions of y0 and y1 in S have both fewer than n elements. Let the set of extensions
of y0 be S0 and y1 be S1. By the inductive hypothesis, for i ∈ {0, 1}, we have∑

z∈Si

d(z)

2|z|
=
d(yi)

2|yi|
.

Hence, ∑
y∈S

d(y)

2|y|
≤ d(y0) + d(y1)

2|y|+1
≤ d(y)

2|y|
≤ d(w)

2|w|
.

(2) Let P ≤ Rk be a prefix-free such that the set of extensions of P be Rk. Then by part (1),
with w = λ,

P ([[P ]]) =
∑
w∈P

1

2|w|
≤

∑
w∈P

d(w)

k

1

2|w|
≤ d(λ)

k
.

This implies that the success set of a martingale has probability 0.

Theorem 3.2. Let d : Σ∗ → [0,∞) be a martingale. Then P (S∞[d]) = 0.

Proof. We know that

S∞[d] =
⋂
N

⋃
n

{X ∈ Σ∞ : d(X[0 . . . n− 1]) > N}.

By the Kolmogorov inequality,

P

[⋃
n

{X ∈ Σ∞ : d(X[0 . . . n− 1]) > N}

]
≤ 1

N
.

Hence,

P

[⋂
N

⋃
n

{X ∈ Σ∞ : d(X[0 . . . n− 1]) > N}

]
≤ lim

N→∞

1

N
= 0.

Definition 3.3. The set of sequences X ∈ Σ∞ on which the universal martingale fails is called
Martin-Löf random.

Since every martingale succeeds only on a probability 0 set, the set of Martin-Löf randoms has
probability 1.
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4 Equivalence between the two approaches

5 Van Lambalgen’s theorem

6 the Kučera-Gács Theorem

6.1 Languages and infinite binary sequences

Every language L is a subset of Σ∗. An equivalent representation of languages is using the “char-
acteristic sequence”, which can be seen as a “bit-map” representation of the language.

Definition 6.1 (Characteristic Sequence). The characteristic sequence of a language L ⊆ Σ∗ is
the infinite binary sequence χL where for each i ∈ N, χL = 1 if si ∈ L and χL = 0 otherwise.

What is the advantage of this representation? This helps us to use the tools in the theory
of languages, e.g. reducibility, to the study of infinite binary sequences. This is what we will do
now. (It also allows the use of tools related to infinite binary sequences, e.g. real analysis to study
languages, but this is beyond the scope of this course.)

6.2 The Kučera-Gács theorem

The following is a deep and unexpected connection between Martin-Löf randomness and Turing
reducibility. We show a result that is counterintuitive at first: every infinite sequence can be
computed from some random sequence. In order to make it precise, we need to define what is
means when we say “computed from”. This is done using the notion of reducibility between
languages, equivalently, between infinite binary sequences.

6.3 Reducibility between languages

In computability theory, we usually use the notion of reducibility in the following sense: Suppose
we have to show that a language A is undecidable. To do this, we find a B which we already know
to be undecidable. Then we show that B is Turing-reducible to A, denoted B ≤T A. If B is Turing
reducible to A and B is undecidable, then A is undecidable as well. We recall the definition of
Turing-reducibility.

(The notation ≤T is a mnemonic to remember the direction of the implication: B is less hard
than A. So if B is undecidable, then A is undecidable as well.)

Definition 6.2 (Turing reducibility). A language B is said to be Turing reducible to A, denoted
B ≤T A, if there is an oracle Turing machine M such that B = MA.

7



The operation of the oracle Turing machine can be visualized as follows. Imagine that the
machine M in addition to its work-tapes, is provided with an infinite read-only tape which is
provided with the characteristic sequence of A. This is given for free, and M can query bits of χA
while computing membership of x in B. These answers may be used to determine the final answer

for x
?
∈ B.

In this section, we use another notion of reducibility. Instead of Turing reducibility, we use a
weaker form of reducibility, called weak truth-table reducibility.

Note: When the reducibility becomes weaker (less general), then the relationship between the
languages becomes stronger.

Definition 6.3 (weak truth-table reducibility). A language B is weak truth-table reducible to A,
denoted B ≤wtt A, if there is a total computable function f : Σ∗ → Σ∗ and an oracle Turing
machine M such that B = MA and for every x, the use φ(x) ≤ f(x).

To understand wtt-reducibility, contrast with Turing reducibility: In Turing reducibility, on
input x, at some point M has to stop asking queries to the oracle, and do the final computation
and halt. But in general, it may be impossible to predict or precompute how many queries M
makes to A for a given input x.

In contrast, in wtt-reducibility, we can precompute the bound on index of the furthest query to
A that M makes on x: it will be at most f(x).

6.4 The Theorem

The presentation follows Section 8.3 from Downey and Hirschfeldt. We first show a technical
lemma.

Lemma 6.4 (Space Lemma, see Merkle and Mihalović). Given a rational q and a positive integer
k, we can compute a length `(q, k) such that for any martingale d and any σ ∈ Σ∗,

|{τ ∈ Σ2`(q,k) : d(στ) ≤ qd(σ)}| ≥ k.

This is not surprising, since it is a consequence of Kolmogorov’s inequality saying that all
martingales will fail to make a lot of money on most extensions of σ. So there are many extensions
where the martingale’s success is limited. We now prove the lemma.

Proof. IOU.

We now want to code a given language L into a Martin-Löf random R. Of course, we will not
be able to do too much: it is impossible to, for example, encode a decidable language L into the
even bits of R - if we do so, we can simply bet on the even bits of R and succeed on R. This would
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contradict the assumption that R is Martin-Löf random. However, we can use the space lemma to
encode L into R in a wtt-reducible manner.

What we accomplish is the following: for each bit in L we have a rough idea of the stretch in
R to embed it. But we cannot precompute the precise position, since that would contradict the
randomness of R.

Theorem 6.5 (Kučera-Gács Theorem). For every L ⊆ Σ∗, there is a Martin-Löf random R such
that χL ≤T R.

Proof. Suppose d is the universal c.e. martinagle. We assume that we have done the savings trick,
so that if lim infn→∞ d(R[0 . . . n− 1]) <∞, then R is non-Martin-Löf random.

Now we prepare the stretches to embed χL: Let q0 > q1 > . . . be a collection of positive
rationals such that their partial product sequence

∏n
i=1 qi converges.

Let `(qs, 2) be as in the space lemma (Lemma ??) so that for any σ, there are at least two
extensions τ at length |σ|+ `(qs, 2) where d(στ) ≤ qsd(σ).

Partition N into consecutive intervals {Is}∞s=1 such that |Is| = `(qs, 2).

Now we embed χL into a specific R which is Martin-Löf random. This R will wtt-compute χL.
At stage s, we specify the bits of R in the interval Is. Assume that the prefix of R we determine
before stage s by σs−1. If s > 0, then assume by induction that d(σs−1) ≤

∏s−1
i=1 qs.

7 Ville’s Theorem

Recall from our discussion of the history of the subject that von Mises wanted to define a Kollektiv
as a sequence whose asymptotic frequency of 1s is 1/2. Moreover, the asymptotic frequency of 1s
in any admissible subsequence is also 1/2.

The following theorem by Ville shows that a sequence can be in some sense non-random even
when the above properties are satisfied. Thus von Mises’ approach cannot work as stated (even
though there may be modifications which work).

A selection function is a function f : Σ∗ → {Y,N}. It makes sense in the context of selecting
on prefixes of an infinite sequence. When we input a finite prefix α � n of an infinite sequence α, it
outputs whether to select the next position - Y indicates that we must select the next position, and
N indicates that we must not select the next position. The selected positions define a subsequence
of α.

Let S(α, n) be the number of ones in α � n and Sf (α, n) be the number of ones in the subsequence
of α � n which are selected by f .
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Theorem 7.1. Let E be any finite collection of selection functions. Then there is a sequence α
such that the following hold.

1. limn→∞
S(α,n)
n = 1

2 .

2. For every f ∈ E that selects infinitely many indices, limn→∞
Sf (α,n)

n = 1
2 .

3. For all n, we have S(α,n)
n ≤ 1

2 .

What is counterintuitive about the theorem is item (3) - if a sequence is truly random, then
the averages must converge to 1/2 in a two-sided manner - at some times, the average should be
greater than 1/2. But Ville’s theorem says that there is a sequence where the oscillation about 1/2
is one sided. A clever betting algorithm can utilize (3) to bet and succeed on α - for example, if
at some prefix length, the number of zeroes and ones are equal, then it is certain that the next bit
will be a 0, so the algorithm can put its entire money on 0. In general, it can always bet more on
0 than on 1.

Note. Ville’s theorem was more general. It works against countably infinitely many selection
functions. However, the central probabilistic idea of the proof is contained in the above theorem.

We now prove the result.

Proof. Without loss of generality, we consider that the function which always outputs Y is in E.
Thus, it suffices to construct α to satisfy (2) and (3).

Suppose we have constructed α[0 . . . n− 1].

Let
C(n) = {f ∈ E | f(α � n) = Y }.

This is the subcollection of all functions which select the (n + 1)st position. By our additional
assumption, C(n) is non-empty.

We now extend α by one bit. We let α[n] to be 1 if the same set of functions C(n) has appeared
an even number of times among C(0), C(1), . . . , C(n). Otherwise, set α[n] to be 0.

It is clear that the construction of α satisfies property (3). This is because for every 1 in α,
there is a unique 0 in α that has appeared before. Thus the number of ones in α on any prefix is
at most the number of zeroes in the prefix.

Suppose that for any f ∈ E the selected indices are n0 < n1 < . . . . We now analyze the
situation considering the different subsets of E that f can be part of.

For any C containing f , let ni0 < ni1 < . . . be the (possibly finite) subsequence of n0 < n1 < . . . ,
where C(ni) = C, we have α[nij ] = 0 for every even j and 1 for every odd j. So for all n, the
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number of 1s among the first n many bits of a selected by f differs from the number of 0s by at
most 1. Taking limits as n→∞, we get (3).
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