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1 Introduction

Let Σ be the binary alphabet, Σ∗ the set of finite binary strings, and Σ∞ be the set of infinite
sequences.

Definition 1.1. The cylinder corresponding to a finite string w is the set of infinite binary se-
quences with w as a prefix defined by

Cw = {σ ∈ Σ∞|w is a prefix of σ}.

Using the notion of cylinder sets, we can define the probability measure on Σ∞, the set of
infinite binary sequences. We will define the probability of cylinder sets.

Definition 1.2. A probability measure µ : Σ∗ → ∞ on Σ∞ is defined to be a function such that
the following conditions hold.

ν(λ) = 1

ν(w) = ν(w0) + ν(w1), w ∈ Σ∗

The intent of the above definition is that for any string w, ν(w) is the measure of the cylinder
Cw.

Example 1. For example, the function µ : Σ∗ →∞ defined by µ(w) = 2−|w| satisfies the above
conditions. This is called the uniform probability measure.

In the following discussion, we restrict ourselves to µ, the uniform probability measure on Σ∞.

Definition 1.3. A µ-martingale is a function d : Σ∗ → [0,∞) such that

d(λ) = 1

d(w) =
d(w0) + d(w1)

2
.

We say that a µ-martingale d succeeds on an infinite sequence σ ∈ Σ∞ if

lim sup
n→∞

d(σ[0
. . . n− 1]) =∞.

The success set of a µ-martingale d is

S∞[d] =

{
σ ∈ Σ∞ | lim sup

n→∞
d(σ[0

. . . n− 1] =∞.
}
.
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We refer to µ-martingales as simply martingales. Intuitively, a martingale denotes a fair betting
condition. We view d(w) as the capital in our hand after w has occurred as the set of outcomes. The
martingale condition states that the average value after the next outcome is equal to the present
capital. We now look at a few examples.

Example 2. Consider d : Σ∗ → [0,∞) defined by d(w) = 1 for all strings w. Clearly, it satisfies

the conditions for a martingale. On every infinite sequence σ, we know that lim supn→∞ d(σ[0
. . . n−

1]) = 1 <∞, so this simple martingale does not win on any sequence.
Example 3. Consider the following martingale d : Σ∗ → [0, infty) defined by d(λ) = 1, and for

any string w, d(w0) = 2d(w), and d(w1) = 0. Then lim supn→∞ d(0∞[0
. . . n−1]) = limn→infty 2n =

∞. This is a martingale that succeeds on the singleton set {0∞}. We can see that if there is any 1
in the infinite sequence, d attains 0 on that sequence, hence losing on it.

Example 3. Suppose we want to design a martingale that succeeds on all binary sequences
whose asymptotic frequency of 0s is 3/4. Consider the following martingale, d : Σ∗ → [0,∞) defined
by

d(λ) = 1

d(wb) =

{
3
2d(w) if b = 0
1
2d(w) otherwise.

We can verify that it is a martingale.
We now show that d succeeds on any infinite binary sequence σ asymptotically has 3/4 fraction

of zeroes. Let A(σ, n) denote the number of zeroes in the first n bits of σ. Then for any ε > 0, for
all sufficiently large n, we have ∣∣∣∣A(σ, n)

n
− 3

4

∣∣∣∣ < ε.

Then the value of d for sufficiently large n is

d(σ) ≥
(

3

2

) 3
4
n−εn(1

2

) 1
4
n+εn

=

(
33/4−ε

2

)n

,

For sufficiently small ε (e.g. ε = 0.025), we have 33−4ε > 24, and hence the above expression grows
exponentially in n.

It follows that

lim sup
n→∞

d(σ[0
. . . n− 1]) =∞,

thus succeeding on σ. (End of Example 3.)

2 Constructive martingales, and random sequences

In the classical mathematical setting, we know that sets with probability 0 can be characterized
as the succcess set of martingales. Our goal now is to define constructive probability zero sets,
and to show that there is a largest such set. By definition, there will be a martingale computable
in a certain sense, which succeeds on every element in this set. So every element in this set is
non-random

The complement of this set will be called the set of Martin-Löf random sequences.
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Definition 2.1. A martingale d : Σ∗ → [0,∞) is called constructive or lower semicomputable if
there is a total computable function d̂ : Σ∗ × N→ Q ∩ [0,∞) such that the following hold.

1. (Monotonicity) ∀w ∈ Σ∗, ∀n, d̂(w, n) ≤ d̂(w, n+ 1) ≤ d(w).

2. (Convergence) ∀w ∈ Σ∗, lim supn→∞ d̂(w, n) = d(w).

A set A ⊆ Σ∞ is called constructive null if there is a constructive martingale d : Σ∗ → [0,∞)
such that A ⊆ S∞[d] - i.e. d succeeds on every sequence in A.

Example 4. The martingale in Example 3 is constructive, with d̂(w, n) = d(w) for every w, n
as the lower semicomputation. Hence, the set of all infinite binary sequences with asymptotically
3/4 fraction of zeroes, forms a constructive null set.

Theorem 2.2. Let d1, d2,
. . . : Σ∗ → [0,∞) be a computable enumeration of constructive martin-

gales. Then d =
∑∞

i=1 2−idi is a constructive martingale such that

S∞[d] ⊇
∞⋃
i=1

S∞[di].

Proof. It can be verified by direct calculation that d(λ) = 1 and d(w) = (d(w0) + d(w1))/2. Hence
d is a martingale.

Consider the function d̂ : Σ∗ × N → Q ∩ [0,∞) defined by d̂(w, n) =
∑n

i=1 2−id̂i(w, n), we can

see that d̂ is a lower semicomputation of d. Thus d is a constructive martingale.
Suppose σ ∈ S∞[dj ] for some j ∈ N. Then

lim sup
n→∞

∞∑
i=1

2−idi(σ[0
. . . n− 1]) ≥ 2−j lim sup

n→∞
dj(σ[0

. . . n− 1]) =∞,

hence σ ∈ S∞[d].

Note. For the above proof to work, it is necessary that d̂i(w, n) is defined for all i, w, and n.
Otherwise the convex combination is undefined.

We also show that there is a computable enumeration of all the constructive martingales. To-
gether with the above theorem, this enables us to establish that there is a universal c.e. martingale.

Theorem 2.3. There is a computable enumeration of constructive martingales.

Proof. TBD.
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