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1 Introduction

Let ¥ be the binary alphabet, ¥* the set of finite binary strings, and > be the set of infinite
sequences.

Definition 1.1. The cylinder corresponding to a finite string w is the set of infinite binary se-
quences with w as a prefix defined by

Cy = {0 € ¥*°|w is a prefix of o}.

Using the notion of cylinder sets, we can define the probability measure on ¥°°, the set of
infinite binary sequences. We will define the probability of cylinder sets.

Definition 1.2. A probability measure p : 3* — 0o on 3 is defined to be a function such that
the following conditions hold.

v(A) =1

v(w) = v(wo) + v(wl), wex*

The intent of the above definition is that for any string w, v(w) is the measure of the cylinder
Cy.
Example 1. For example, the function p : ¥* — oo defined by p(w) = 271" satisfies the above
conditions. This is called the uniform probability measure.

In the following discussion, we restrict ourselves to u, the uniform probability measure on X°°.

Definition 1.3. A p-martingale is a function d : ¥* — [0, 00) such that
da) =1

d(w0) + d(w1) '

d(w) = 5

We say that a u-martingale d succeeds on an infinite sequence o € % if

limsupd(o[0 - n —1]) = co.
n—oo
The success set of a u-martingale d is

S®d] = {a € ¥ | limsupd(o]0 . n — 1] = oo.}.

n—o0



We refer to p-martingales as simply martingales. Intuitively, a martingale denotes a fair betting
condition. We view d(w) as the capital in our hand after w has occurred as the set of outcomes. The
martingale condition states that the average value after the next outcome is equal to the present
capital. We now look at a few examples.

Example 2. Consider d : ¥* — [0, 00) defined by d(w) = 1 for all strings w. Clearly, it satisfies

the conditions for a martingale. On every infinite sequence o, we know that lim sup,,_, . d(¢[0 - n—
1]) = 1 < oo, so this simple martingale does not win on any sequence.
Example 3. Consider the following martingale d : ¥* — [0, in fty) defined by d(\) = 1, and for

any string w, d(w0) = 2d(w), and d(wl) = 0. Then limsup,,_,o, d(0>°[0 - n—1]) = limy_in 1, 2" =
oo. This is a martingale that succeeds on the singleton set {0°°}. We can see that if there is any 1
in the infinite sequence, d attains 0 on that sequence, hence losing on it.

Example 3. Suppose we want to design a martingale that succeeds on all binary sequences
whose asymptotic frequency of Os is 3/4. Consider the following martingale, d : ¥* — [0, c0) defined
by

d(\) =1

§ 1 pr—
d(wh) = sd(w) ifb=0
Ld(w) otherwise.
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We can verify that it is a martingale.
We now show that d succeeds on any infinite binary sequence o asymptotically has 3/4 fraction
of zeroes. Let A(c,n) denote the number of zeroes in the first n bits of . Then for any £ > 0, for

all sufficiently large n, we have

‘A(O’,Tl,) 3’
— — | <&
n 4

Then the value of d for sufficiently large n is
3 1
3 qn—en 1 Fnten
dlo)> | = —
2=()" ()
33/4—e\ "

For sufficiently small ¢ (e.g. ¢ = 0.025), we have 327%¢ > 24 and hence the above expression grows
exponentially in n.
It follows that

limsupd(a[0 - n —1]) = oo,

n—o0

thus succeeding on o. (End of Example 3.)

2 Constructive martingales, and random sequences

In the classical mathematical setting, we know that sets with probability 0 can be characterized
as the succcess set of martingales. Our goal now is to define constructive probability zero sets,
and to show that there is a largest such set. By definition, there will be a martingale computable
in a certain sense, which succeeds on every element in this set. So every element in this set is
non-random

The complement of this set will be called the set of Martin-Ldéf random sequences.



Definition 2.1. A martingale d : ¥* — [0,00) is called constructive or lower semicomputable if
there is a total computable function d : ¥* x N — QN [0, 00) such that the following hold.

1. (Monotonicity) Yw € ¥*, ¥n, d(w,n) < d(w,n+ 1) < d(w).
2. (Convergence) Yw € X*, limsup,, ., d(w,n) = d(w).

A set A C 3% is called constructive null if there is a constructive martingale d : ¥* — [0, 00)
such that A C S®|[d] - i.e. d succeeds on every sequence in A.

Example 4. The martingale in Example 3 is constructive, with d(w, n) = d(w) for every w, n
as the lower semicomputation. Hence, the set of all infinite binary sequences with asymptotically
3/4 fraction of zeroes, forms a constructive null set.

Theorem 2.2. Let dy, do, " : X* — [0,00) be a computable enumeration of constructive martin-
gales. Then d =32, 27"d; is a constructive martingale such that

S%d] 2 G S%d;].
i=1

Proof. 1t can be verified by direct calculation that d(A) = 1 and d(w) = (d(w0) + d(w1))/2. Hence
d is a martingale.

Consider the function d : ©* x N — QN [0, 00) defined by d(w,n) = Yoy 27id;(w,n), we can
see that d is a lower semicomputation of d. Thus d is a constructive martingale.

Suppose o € S°[d;] for some j € N. Then

thUPZQ_idi(U[O “.on—1]) > 277 limsupd; (a0 - n —1]) = o0,

n—oo n—00
1=1

hence o € S>|[d]. O

Note. For the above proof to work, it is necessary that cfi(w, n) is defined for all ¢, w, and n.
Otherwise the convex combination is undefined.

We also show that there is a computable enumeration of all the constructive martingales. To-
gether with the above theorem, this enables us to establish that there is a universal c.e. martingale.

Theorem 2.3. There is a computable enumeration of constructive martingales.

Proof. TBD. O



