Martingales

Satyadev Nandakumar

April 23, 2019

1 Introduction

Let Σ be the binary alphabet, Σ^* the set of finite binary strings, and Σ^{∞} be the set of infinite sequences.

Definition 1.1. The *cylinder* corresponding to a finite string w is the set of infinite binary sequences with w as a prefix defined by

$$C_w = \{ \sigma \in \Sigma^\infty | w \text{ is a prefix of } \sigma \}.$$

Using the notion of cylinder sets, we can define the probability measure on Σ^{∞} , the set of *infinite* binary sequences. We will define the probability of cylinder sets.

Definition 1.2. A probability measure $\mu : \Sigma^* \to \infty$ on Σ^{∞} is defined to be a function such that the following conditions hold.

$$\begin{split} \nu(\lambda) &= 1 \\ \nu(w) &= \nu(w0) + \nu(w1), \qquad w \in \Sigma^* \end{split}$$

The intent of the above definition is that for any string w, $\nu(w)$ is the measure of the cylinder C_w .

Example 1. For example, the function $\mu : \Sigma^* \to \infty$ defined by $\mu(w) = 2^{-|w|}$ satisfies the above conditions. This is called the *uniform probability measure*.

In the following discussion, we restrict ourselves to μ , the uniform probability measure on Σ^{∞} .

Definition 1.3. A μ -martingale is a function $d: \Sigma^* \to [0, \infty)$ such that

$$d(\lambda) = 1$$

$$d(w) = \frac{d(w0) + d(w1)}{2}.$$

We say that a μ -martingale *d* succeeds on an infinite sequence $\sigma \in \Sigma^{\infty}$ if

$$\limsup_{n \to \infty} d(\sigma[0 \cdot \cdot n - 1]) = \infty.$$

The success set of a μ -martingale d is

$$S^{\infty}[d] = \left\{ \sigma \in \Sigma^{\infty} \mid \limsup_{n \to \infty} d(\sigma[0 \cdot \cdot n - 1] = \infty) \right\}$$

We refer to μ -martingales as simply martingales. Intuitively, a martingale denotes a fair betting condition. We view d(w) as the capital in our hand after w has occurred as the set of outcomes. The martingale condition states that the average value after the next outcome is equal to the present capital. We now look at a few examples.

Example 2. Consider $d: \Sigma^* \to [0, \infty)$ defined by d(w) = 1 for all strings w. Clearly, it satisfies the conditions for a martingale. On every infinite sequence σ , we know that $\limsup_{n\to\infty} d(\sigma[0 \cdot n - 1]) = 1 < \infty$, so this simple martingale does not win on any sequence.

Example 3. Consider the following martingale $d: \Sigma^* \to [0, infty)$ defined by $d(\lambda) = 1$, and for any string w, d(w0) = 2d(w), and d(w1) = 0. Then $\limsup_{n\to\infty} d(0^{\infty}[0 \cdot n-1]) = \lim_{n\to infty} 2^n = \infty$. This is a martingale that succeeds on the singleton set $\{0^{\infty}\}$. We can see that if there is any 1 in the infinite sequence, d attains 0 on that sequence, hence losing on it.

Example 3. Suppose we want to design a martingale that succeeds on all binary sequences whose asymptotic frequency of 0s is 3/4. Consider the following martingale, $d: \Sigma^* \to [0, \infty)$ defined by

$$d(\lambda) = 1$$

$$d(wb) = \begin{cases} \frac{3}{2}d(w) & \text{if } b = 0\\ \frac{1}{2}d(w) & \text{otherwise.} \end{cases}$$

We can verify that it is a martingale.

We now show that d succeeds on any infinite binary sequence σ asymptotically has 3/4 fraction of zeroes. Let $A(\sigma, n)$ denote the number of zeroes in the first n bits of σ . Then for any $\varepsilon > 0$, for all sufficiently large n, we have

$$\left|\frac{A(\sigma,n)}{n} - \frac{3}{4}\right| < \varepsilon$$

Then the value of d for sufficiently large n is

$$\begin{split} d(\sigma) &\geq \left(\frac{3}{2}\right)^{\frac{3}{4}n-\varepsilon n} \left(\frac{1}{2}\right)^{\frac{1}{4}n+\varepsilon n} \\ &= \left(\frac{3^{3/4-\varepsilon}}{2}\right)^n, \end{split}$$

For sufficiently small ε (e.g. $\varepsilon = 0.025$), we have $3^{3-4\varepsilon} > 2^4$, and hence the above expression grows exponentially in n.

It follows that

$$\limsup_{n \to \infty} d(\sigma[0 \cdot \cdot n - 1]) = \infty,$$

thus succeeding on σ .

(End of Example 3.)

2 Constructive martingales, and random sequences

In the classical mathematical setting, we know that sets with probability 0 can be characterized as the success set of martingales. Our goal now is to define constructive probability zero sets, and to show that there is a largest such set. By definition, there will be a martingale computable in a certain sense, which succeeds on every element in this set. So every element in this set is *non-random*

The complement of this set will be called the set of Martin-Löf random sequences.

Definition 2.1. A martingale $d: \Sigma^* \to [0, \infty)$ is called *constructive* or *lower semicomputable* if there is a total computable function $\hat{d}: \Sigma^* \times \mathbb{N} \to \mathbb{Q} \cap [0, \infty)$ such that the following hold.

- 1. (Monotonicity) $\forall w \in \Sigma^*, \forall n, \quad \hat{d}(w,n) \leq \hat{d}(w,n+1) \leq d(w).$
- 2. (Convergence) $\forall w \in \Sigma^*$, $\limsup_{n \to \infty} \hat{d}(w, n) = d(w)$.

A set $A \subseteq \Sigma^{\infty}$ is called *constructive null* if there is a constructive martingale $d : \Sigma^* \to [0, \infty)$ such that $A \subseteq S^{\infty}[d]$ - *i.e.* d succeeds on every sequence in A.

Example 4. The martingale in Example 3 is constructive, with $\hat{d}(w,n) = d(w)$ for every w, n as the lower semicomputation. Hence, the set of all infinite binary sequences with asymptotically 3/4 fraction of zeroes, forms a constructive null set.

Theorem 2.2. Let $d_1, d_2, \cdots : \Sigma^* \to [0, \infty)$ be a computable enumeration of constructive martingales. Then $d = \sum_{i=1}^{\infty} 2^{-i} d_i$ is a constructive martingale such that

$$S^{\infty}[d] \supseteq \bigcup_{i=1}^{\infty} S^{\infty}[d_i].$$

Proof. It can be verified by direct calculation that $d(\lambda) = 1$ and d(w) = (d(w0) + d(w1))/2. Hence d is a martingale.

Consider the function $\hat{d}: \Sigma^* \times \mathbb{N} \to \mathbb{Q} \cap [0, \infty)$ defined by $\hat{d}(w, n) = \sum_{i=1}^n 2^{-i} \hat{d}_i(w, n)$, we can see that \hat{d} is a lower semicomputation of d. Thus d is a constructive martingale.

Suppose $\sigma \in S^{\infty}[d_j]$ for some $j \in \mathbb{N}$. Then

$$\limsup_{n \to \infty} \sum_{i=1}^{\infty} 2^{-i} d_i (\sigma[0 \cdot \cdot n - 1]) \ge 2^{-j} \limsup_{n \to \infty} d_j (\sigma[0 \cdot \cdot n - 1]) = \infty,$$

hence $\sigma \in S^{\infty}[d]$.

Note. For the above proof to work, it is necessary that $\hat{d}_i(w, n)$ is defined for all i, w, and n. Otherwise the convex combination is undefined.

We also show that there is a computable enumeration of all the constructive martingales. Together with the above theorem, this enables us to establish that there is a universal c.e. martingale.

Theorem 2.3. There is a computable enumeration of constructive martingales.

Proof. TBD.