CS 687 Homework 1

- 1. What is the cardinality of the set of continuous functions from (0,1) to (0,1)? Prove your claim.
- 2. Show that the intersection of finitely many computably enumerable languages is computably enumerable.
- 3. Show that the computably enumerable union of computably enumerable languages is computably enumerable.
- 4. If $f : \mathbf{N} \to \mathbf{N}$ is a partial computable function, then show that the range of f, defined below, is Turing acceptable.

$$\{y \mid \exists x \in \mathbf{N}f(x) = y\}.$$

- 5. If $b_0 b_1 \dots b_n$ is a finite string, then is it true that all its "circular left shifts" $b_i \dots b_{n-1} b_0 \dots b_{i-1}$, where 0 < i < n have the same complexity, up to an additive constant? Prove your claim.
- 6. (Data Processing Inequality) Suppose $\phi : \Sigma^* \to \Sigma^*$ is a total computable function. Then show that there is a constant, c_{ϕ} depending on ϕ , such that for all $x \in \Sigma^*$,

$$K(\phi(x)) \le K(x) + c_{\phi}, \qquad C(\phi(x)) \le C(x) + c_{\phi}.$$

This inequality shows that no computable process can increase the complexity of a string, even though it can decrease the complexity.

7. Consider finite prefixes of the characteristic sequence of the Halting problem, *i.e.* for all $n \in \mathbf{N}$,

$$h_n = b_0 b_1 \dots b_{n-1}$$

where the $b_i = 1$ if $s_i \in H$, and $b_i = 0$ if $s_i \notin H$. Show that for all large $n, C(h_n) \leq \log_2 n + O(1)$. This shows that there are uncomputable languages which have very low complexity.

- 8. Show that for any injective function $f: \Sigma^* \to \Sigma^*$, the proportion of strings of length n which have images of length n c or shorter, is at most 2^{-c} .
- 9. Show that there is no prefix-free encoding $p: \Sigma^* \times \Sigma^* \to \Sigma^*$ such that for every x and y, $|p(x,y)| \le |x| + |y| + O(1)$.