
Normal Numbers

Contents

1 Motivation 1

2 Definitions 1

3 Finite-State Compressors and Normal Sequences 3
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Normal implies finite-state incompressible . . . . . . . . . . . 4
3.3 Non-normal implies finite-state compressible . . . . . . . . . . 4

4 Champernowne-like Sequences 5

1 Motivation

2 Definitions

Fix the alphabet Σ = {0, 1, . . . , b− 1}, b ≥ 2.

Definition 2.0.1. An sequence X ∈ Σ∞ is said to be simply normal to the
base b if

lim
n→∞

N(X[0 . . . n− 1], k)

n
=

1

b
,

for any k ∈ Σ.

That is, any digit occurs in X with limiting frequency 1
b .

Definition 2.0.2 (Hardy, Niven-Zuckerman). A sequence X ∈ Σ∞ is said
to be normal to the base b if for any finite string w ∈ Σ∗, we have

lim
n→∞

N(X[0 . . . n− 1], w)

n− |w|+ 1
=

1

b|w|
.
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That is, any pattern w occurs with the right frequency in X.
We now show an equivalence theorem due to Pillai. The proof is a

simplification of Pillai’s original proof, due to John Maxfield.

Theorem 2.0.3. A sequence is normal to base b if and only if it is simply
normal to bases bk, k ∈ N+.

Proof. It is easy to see that if X is normal to the base b, then it is simply
normal to bases b, b2, . . . .

We now show the converse. Let X ∈ Σ∞ be simply normal in bases b,
b2, . . . .

Let w be an n-long pattern, where n = kb− r, with k ≥ 0 and 0 ≤ r ≤
b− 1. We now consider the frequency of occurrences of w in X.

First, consider the number of occurrences of w in the collection of se-
quences of length kb. After w is fixed, there are r free positions in the
sequence. w itself can occur in positions 0, 1, . . . , r. Hence there are
(r + 1)br different occurrences of w in Σkb.

First, parse the infinite sequence X into disjoint blocks of length 2kb.
Consider occurrences of w which occur properly inside each blocks, and
ignoring for now, the occurrences which span across 2 blocks. The frequency
is

N(w, 1) =
(r + 1)br

kb bkb
,

since there are kb digits of X to the base b to correspond to each digit of
the base bkb, and X is simply normal to the base bkb.

Now, consider the occurrences which span 2 blocks. (i.e. the block
length is now 4kb.) To count these occurrences, imagine that a single block
is extended by n− r bits. Then the spanning occurrences will occur in the
positions kb − s to kb − s + n. This leaves kb + n − s = 2kb + s positions
free. Thus the number of patterns is (n− 1)b2kb+s. The proportion of these
occurrences with respect to the total number of patterns is

(n− 1)b2kb+s

kb bkb
=

n− 1

2kbn+1
.

Thus the total number of occurrences is

N(w, 2) =
1

bn
− n− 1

kbn+1
+

n− 1

2kbn+1

In general,
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N(w,m) =
1

bn
− n− 1

kbn+1
+
n− 1

kbn+1

[
m−1∑
k=1

1

2k

]
(1)

Thus

lim
m→∞

N(w,m) =
1

bn
, where |w| = n.

Now, N(w,X) is limm→∞N(w,m) (why?). Hence X is normal to the
base b.

3 Finite-State Compressors and Normal Sequences

In his 1948 Ph.D. thesis under the supervision of D. H. Lehmer, D. D.
Wall showed that if X is a normal sequence, and L is an infinite arithmetic
progression, then the subsequence 〈Xk〉k∈L is a normal sequence as well.
The proof uses a characterization of normality based on exponential sums,
called Weil’s criterion.

In 1966, Agofanov showed a remarkable result, generalizing the result of
Wall, that if X is a normal sequence, and L is a regular subset of natural
numbers (i.e. L can be decided by a finite-state automaton), then the
subsequence 〈Xk〉k∈L is also normal. Unfortunately, the proof is not clear
from his paper, where he claims that the result follows from the ergodic
theorem for stationary Markov chains.

In an attempt to reproduce Agofanov’s result, in 1972, Schnorr and
Stimm formally established the connections between finite-state automata
and normality. They showed that a sequence is normal if and only if it is
incompressible by lossless finite-state compressors. This is a useful tool in
the study of normality - to establish that a sequence is normal, it is sufficient
to show that no finite-state compressor can compress it. In the next section,
we take this approach to show that a specific construction is normal. We
now prove the result of Schnorr and Stimm, following the treatment in a
2014 paper by Becher and Heiber.

3.1 Definitions

Definition 3.1.1. A finite-state compressor C is a 6-tuple (Q,A,B, q0, δ, o)
where Q is a finite set of states, A is the finite input alphabet, B is the finite
output alphabet, q0 is the initial state, δ : Q × A → Q is the transition
function, and o : Q×A → B is the output function.
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Definition 3.1.2. We say that a finite-state compressor C is lossless if every
pair of (final state, output string) uniquely determines the input string.

Thus losslessness is a criterion which says that we can decompress the
string from the output string, and the output state.

3.2 Normal implies finite-state incompressible

3.3 Non-normal implies finite-state compressible

Let X ∈ A∞ be non-normal. We construct a lossless finite-state compressor
that compresses X.

Since X is non-normal, it is not simply normal to some base An. Hence
for some x ∈ An,

lim
n→∞

N(x,Xn[1 . . . k])

k
6= 1

|An|
. (2)

Thus, either the lim sup or the lim inf of the above ratio sequence is different
from 1

|An| .

We define a sequence of positions (ik)k∈N relative to this block-size n
such that for each y ∈ An, the limiting frequency of y,

fy = lim
n→∞

N(x,Xn[1 . . . ik])

ik

exists. The difficulty is to ensure that all alphabets simultaneously have a
well-defined limiting frequency in the subsequence of X. In the subsequence,
fx 6= 1

|An| .
We select the subsequence as follows. First, collect an infinite sequence

(i(1)k)k∈N of N such that fx is well-defined and different from 1
|An| . Since

either the lim sup or the lim inf of the ratio sequence in (2) is different from
1
|An| , such a subsequence exists. Then construct a subsequence (i(2)k)k∈N

of (i(1)k)k∈N to fix the limiting frequency of some alphabet y1 ∈ A − {x}.
Since the selection of this subsequence will not alter fx, we now have a
subsequence where both fx and fy1 are fixed. Continue in this manner until
we get a subsequence (ik)k∈N where all alphabets have a limiting frequency.

Now, we show that X is compressible, by examining it at prefixes with
lengths chosen according to the subsequence above. We compress m-length
blocks of symbols from the alphabet Am. Define Cm that maps m-length
blocks from An to compressed codewords as follows.
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Let Cm be such that for each state q ∈ (An)<m and input symbol z ∈ An,

δ(q, z) =

{
qz if |q| < m− 1

λ if |q| = m− 1.

and

o(q, z) =

{
λ if |q| < m− 1

o(qz) if |q| = m− 1,

where o : (An)m → B∗ is a Huffman code into a prefix-free subset of B∗ such
that

o(z) =

⌈
m∑
i=1

− log|B| fzi

⌉
.

Such a coding exists. Thus Cm is lossless.
Now, we have

ρCm(Xn) = lim inf
k→∞

|Cm(Xn[1 . . . k])|
k log|B|(|An|)

≤ lim
k→∞

|Cm(Xn[1 . . . ik])|
ik log|B|(|An|)

≤ lim
k→∞

(ik)/m+
∑

y∈An N(y,Xn[1 . . . ik])(− log|B| fy)

ik log|B|(|An|)

≤ 1

m log|B|(|An|)
+

∑
y∈An fy(− log|B| fy)

log|B|(|An|)

Since fx 6= |A|−n, using the fact that the uniform distribution on An is
the unique distribution with maximal entropy, we know that∑

y∈An fy(− log|B| fy)

log|B|(|An|)
< 1.

Hence for large m, ρCm(X) < 1.

4 Champernowne-like Sequences

A simple example of a normal sequence in base 2 is

S = 0.0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, . . .
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i.e. the concatenation of the binary strings in the standard enumeration
order. This is related to the Champernowne constant, which in base 10 is

.1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . .

i.e. the concatenation of the base-10 representations of the positive integers.
Champernowne showed that this constant is normal. We show that the
related sequence S is normal to the base 2.

It suffices to show that no lossless finite-state compressor with the binary
input alphabet can compress S, since this implies that S is normal to the
base 2.

Let

S[1 . . . n] = S[1 . . . n1], S[n1 + 1 . . . n2], . . . , S[nc−1 + 1 . . . nc]

be a parsing of S into distinct substrings. Let blog2 nc = `. Then

c =
∑̀
j=1

2j + τ = 2`+1 − 1 + τ,

where τ ∈ [0, 2`+1) is the number of distinct substrings having length `+ 1.
We know that n may be written as

n =
∑̀
j=1

j2j + (`+ 1)τ = (`− 1)2`+1 + (`+ 1)τ,

whence we get

c log c = (2`+1 − 1 + τ) log
(

2`+1 − 1 + τ
)

(3)

≥ 2`+1(`+ 1) + (`+ 1)τ −O(`)

≥ n−O(`)

Let C = (Q,A,B, q0, δ, o) be a lossless finite-state compressor, with s
states. Note that B contains λ as a symbol. Let

Y [1 . . . n] = Y [1 . . . n1], Y [n1 + 1 . . . n2], . . . , Y [nc−1 + 1 . . . nc]

be the corresponding output substrings that C emits on S, where some
characters may be λ. Let L(Y [1 . . . n]) denote the number of non-λ charac-
ters in Y [1 . . . n]. Even though the input phrases are distinct, the output
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phrases may not be distinct. However, we know that for any output string w,
the triple (start state, end state, w) uniquely determines the input substring
from which w was produced.

Thus each output substring corresponds to at most s2 input strings.
It follows that the number of different input phrases which correspond to
j-length outputs is s22j .

We prove that
L(Y [1 . . . n]) ≥ n− o(n),

adapting a proof idea by Lempel and Ziv in their paper on universal com-
pression.

The key idea in the proof is to group together output phrases of the same
length1. Let cj denote the number of output phrases of the same length,
and k be the length of the longest output phrase (k may not be `, the length
of the longest input phrase). Then

L(Y [1 . . . n]) =
k∑

j=1

cjj. (4)

We also have
∑k

j=1 cj = c, the number of distinct input phrases.
We want a lower bound on L(Y [1 . . . n]). Hence we can assume that

all strings of shorter lengths appear, i.e. letting cj = 2j for j < k, while

ensuring that
∑k

j=1 cj = c. This adjustment can only lower L(Y [1 . . . n]),
hence suffices for the lower bound. We have

L(Y [1 . . . n]) ≥
k−1∑
j=1

2js2j +

c− k−1∑
j=1

cj

 (k + 1)s2, (5)

since cj ≤ 2js2. The last term is a lower bound on the contribution of k+ 1
length output strings.

We proceed as follows.

1. The first term is (k − 1)2k+1s2.

2. We then estimate the second term.

3. Finally, we express k in terms of n to get the estimate on L(Y [1 . . . n])
in terms of s and n.

1ignoring the λs
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To estimate the second term, let c = qs2 + r, where 0 ≤ r < s2 and
q =

∑k
j=0 2j +Rk, where 0 ≤ Rk < 2k+1. Then

c =

 k∑
j=0

2j +Rk

 s2 + r =

k∑
j=0

2js2 +Rks
2 + r. (6)

Substituting this in the second term in (5), we get the following bound.c− k−1∑
j=1

cj

 (k + 1)s2 = (Rks
2 + r)(k + 1)s2 = (k + 1)Rks

4 + (k + 1)rs2

(7)

Using this estimate in (5) yields

L(Y [1 . . . n]) ≥ (k − 1)2k+1s2 + (k + 1)Rks
4 + (k + 1)rs2, (8)

where 0 ≤ Rk < 2k+1 and 0 ≤ r < s2.
Set

t =
c−(

∑k
j=0 j2

j)

s2
= Rk − 1− (r/s2).

Substituting in (8), we get

L(Y [1 . . . n]) ≥ (k − 1)s2[2k+1 + t] + s2(k + 3 + 2t)

≥ (k − 1)s2[c+ s2] + 2s2(t+ 2).

We now try to express k in terms of s and c so that the final expression
becomes independent of the number of output phrases. From the equation
that c = s2(2k+1 + t), the following holds.

k − 1 = log
c− s2t
s2

− 2

= log
c+ s2

4s2
− log

[
1 +

(t+ 1)s2

c− s2t

]
[multiplying and dividing by c+ s2]

which when substituted in the inequality above yields

L(Y [1 . . . n]) ≥ (c+ s2)

(
log

c+ s2

4s2
+ ρ

)
. (9)
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where ρ > 0.
By the relation (3), we get

L(Y [1 . . . n]) ≥ n−O(`)− c log(4s2) ≥ n−O(`)− 2c,

assuming that s ≥ 1. Since c = O(log n), and ` = O(log n), we get
L(Y [1 . . . n− 1]) ≥ n−O(log n). This proves the result.
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