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We recall a few facts in linear algebra related to spectral graph theory. If x = a+ib is a complex
number, where a and b are reals, then we denote its complex conjugate by x∗ = a− ib.1

If M is an n× n complex matrix, λ ∈ C, v ∈ C
n −{0} is a vector, such that Mv = λv, then we

say that λ is an eigenvalue and v is an eigenvector corresponding to the eigenvalue λ of M .

Mv = λv iff (M − λI)v = 0 iff det(M − λI) = 0. Since this determinant is a univariate (in
λ) polynomial of degree n, it has at most n distinct roots. Hence an n× n matrix has precisely n

eigenvalues, counting multiplicities.

We will be interested in the connection between undirected graphs and their adjacency matrices.
If G is a graph with n vertices labelled 1 through n, then the n×n adjacency matrix has its (i, j)th

element equal to 1 precisely when (i, j) is an edge in G.

0.1 Undirected Graphs

When G is undirected, (i, j) is an edge precisely when (j, i) is. Hence the adjacency matrix of an
undirected graph is symmetric. The eigenvalues of a symmetric matrix are real, as we now show.

Definition 1. A matrix M ∈ C
n×n is Hermetian if Mij = M∗

ji for every i, j.

Lemma 2. If M is Hermetian, then all its eigenvalues are real.

Proof. If Mv = λv, then we need to show that λ = λ∗. Define the inner product over vectors in
C
n by

〈v,w〉 =

n∑

i=1

v∗i · wi.

1The material in this lecture is taken from Lecture 2 of Luca Trevisan’s course CS359G: Expander Graphs and

their Applications.
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Now,

〈Mx,x〉 =

n∑

i=1

n∑

j=1

Mij ∗ xj ∗ ·xi =

n∑

j=1

n∑

i=1

Mjixi · x∗j = 〈x,Mx〉,

since M is Hermetian. Now, if x is an eigenvector corresponding to the eigenvalue λ, then 〈Mx,x〉
= 〈λx, x〉. We have

〈Mx,x〉 = 〈λx, x〉 = λ∗〈x, x〉 = 〈x,Mx〉 = λ〈x, x〉

Since x is non-zero, it follows that λ is real.

Definition 3. If M is a real symmetric matrix and λ its eigenvalue (hence real), then λ admits
a real eigenvector. 2 The set of real eigenvectors is a vector subspace of Rn, called the eigenspace

0.2 Some properties of eigenvalues and eigenvectors

We will look at the relation between the eigenvalues of the adjacency matrix of a graph and the
combinatorial properties of the graph.

Lemma 4. The eigenspaces of distinct eigenvalues of a real symmetric matrix M are orthogonal.

Proof. Let λ be an eigenvalue with a real eigenvector x and λ′ be an eigenvalue distinct from λ

with a real eigenvector y. Then 〈Mx, y〉 is λ〈x, y〉 and 〈x,My〉 is λ′〈x, y〉. Since all the quantities
involved in λMx, y〉 and 〈x,My〉 are real, we can verify that these two quantities are equal. Thus,
(λ− λ′)〈x, y〉 is zero, hence 〈x, y〉 is zero.

Definition 5. The algebraic multiplicity of an eigenvalue λ of M is the multiplicity of λ as a
root of M .

Its geometric multiplicity is the dimension of its eigenspace.

For a real symmetric matrix M , the algebraic and geometric multiplicities coincide for every
eigenvalue. Thus if λ1, . . . , λn are its eigenvalues, then M has an orthonormal basis of real
eigenvectors v1, . . . , vn.

Now we build connections between spectral and combinatorial properties of graphs.
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Lemma 6. Let M be a symmetric (not necessarily real) matrix. Then its largest eigenvalue λ1

is
λ1 = sup

x∈Rn, ||x||=1

xTMx. (1)

Proof. Since {x ∈ R
n, ||x|| = 1} is a compact space, there is a vector y ∈ R

n which attains the
supremum. We will show that the supremum in (??) is upper bounded and lower bounded by λ1,
which yields the conclusion.

To show that the supremum in (??) is lower bounded by λ1, we note that v1, the eigenbasisvector
corresponding to λ1 satisfies

vT1 Mv1 = vT1 (λ1v1) = λ1v
T
1 v1 = λ1. (2)

Since there is one vector in the compact space which attains value λ1, it follows that λ1 bounds
the supremum in (??) from below.

To establish the upper bound, expand y in the basis as

y = α1v1 + . . . αnvn, (3)

whence the supremum is at least yTMy =
∑n

i=1
α2

i λi. Since
∑n

i=1
α2

i = 1 and λi ≤ λ1 for 1 ≤ i ≤ n,
we have that the supremum is at most λ1.

0.3 Undirected d-regular graphs
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