CS 744: Pseudorandomness Generators Lecture Notes 19: Introduction to Expander Graphs

March 28, 2015

We recall a few facts in linear algebra related to spectral graph theory. If x = a + ib is a complex number, where a and b are reals, then we denote its complex conjugate by $x^* = a - ib$.¹

If M is an $n \times n$ complex matrix, $\lambda \in \mathbb{C}$, $v \in \mathbb{C}^n - \{0\}$ is a vector, such that $Mv = \lambda v$, then we say that λ is an *eigenvalue* and v is an *eigenvector* corresponding to the eigenvalue λ of M.

 $Mv = \lambda v$ iff $(M - \lambda I)v = 0$ iff $det(M - \lambda I) = 0$. Since this determinant is a univariate (in λ) polynomial of degree *n*, it has at most *n* distinct roots. Hence an $n \times n$ matrix has precisely *n* eigenvalues, counting multiplicities.

We will be interested in the connection between undirected graphs and their adjacency matrices. If G is a graph with n vertices labelled 1 through n, then the $n \times n$ adjacency matrix has its (i, j)th element equal to 1 precisely when (i, j) is an edge in G.

0.1 Undirected Graphs

When G is undirected, (i, j) is an edge precisely when (j, i) is. Hence the adjacency matrix of an undirected graph is symmetric. The eigenvalues of a symmetric matrix are real, as we now show.

Definition 1. A matrix $M \in \mathbb{C}^{n \times n}$ is Hermetian if $M_{ij} = M_{ji}^*$ for every i, j.

Lemma 2. If M is Hermetian, then all its eigenvalues are real.

Proof. If $Mv = \lambda v$, then we need to show that $\lambda = \lambda^*$. Define the inner product over vectors in \mathbb{C}^n by

$$\langle v, w \rangle = \sum_{i=1}^{n} v_i^* \cdot w_i.$$

¹The material in this lecture is taken from Lecture 2 of Luca Trevisan's course CS359G: Expander Graphs and their Applications.

Now,

$$\langle Mx,x\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} M_{ij} \ast x_{j} \ast \cdot x_{i} = \sum_{j=1}^{n} \sum_{i=1}^{n} M_{ji}x_{i} \cdot x_{j}^{*} = \langle x,Mx\rangle,$$

since M is Hermetian. Now, if x is an eigenvector corresponding to the eigenvalue λ , then $\langle Mx, x \rangle = \langle \lambda x, x \rangle$. We have

 $\langle Mx,x\rangle$ = $\langle \lambda x,x\rangle$ = $\lambda^*\langle x,x\rangle$ = $\langle x,Mx\rangle$ = $\lambda\langle x,x\rangle$

Since x is non-zero, it follows that λ is real.

Definition 3. If M is a real symmetric matrix and λ its eigenvalue (hence real), then λ admits a real eigenvector.² The set of real eigenvectors is a vector subspace of \mathbb{R}^n , called the eigenspace

0.2 Some properties of eigenvalues and eigenvectors

We will look at the relation between the eigenvalues of the adjacency matrix of a graph and the combinatorial properties of the graph.

Lemma 4. The eigenspaces of distinct eigenvalues of a real symmetric matrix M are orthogonal.

Proof. Let λ be an eigenvalue with a real eigenvector x and λ' be an eigenvalue distinct from λ with a real eigenvector y. Then $\langle Mx, y \rangle$ is $\lambda \langle x, y \rangle$ and $\langle x, My \rangle$ is $\lambda' \langle x, y \rangle$. Since all the quantities involved in $\lambda Mx, y \rangle$ and $\langle x, My \rangle$ are real, we can verify that these two quantities are equal. Thus, $(\lambda - \lambda') \langle x, y \rangle$ is zero, hence $\langle x, y \rangle$ is zero.

Definition 5. The algebraic multiplicity of an eigenvalue λ of M is the multiplicity of λ as a root of M.

Its geometric multiplicity is the dimension of its eigenspace.

For a real symmetric matrix M, the algebraic and geometric multiplicities coincide for every eigenvalue. Thus if $\lambda_1, \ldots, \lambda_n$ are its eigenvalues, then M has an orthonormal basis of real eigenvectors v_1, \ldots, v_n .

Now we build connections between spectral and combinatorial properties of graphs.

 $\mathbf{2}$

Lemma 6. Let M be a symmetric (not necessarily real) matrix. Then its largest eigenvalue λ_1 is

$$\lambda_1 = \sup_{x \in \mathbb{R}^n, \ ||x||=1} x^T M x. \tag{1}$$

Proof. Since $\{x \in \mathbb{R}^n, ||x|| = 1\}$ is a compact space, there is a vector $y \in \mathbb{R}^n$ which attains the supremum. We will show that the supremum in (??) is upper bounded and lower bounded by λ_1 , which yields the conclusion.

To show that the supremum in (??) is lower bounded by λ_1 , we note that v_1 , the eigenbasis vector corresponding to λ_1 satisfies

$$v_1^T M v_1 = v_1^T (\lambda_1 v_1) = \lambda_1 v_1^T v_1 = \lambda_1.$$
(2)

Since there is one vector in the compact space which attains value λ_1 , it follows that λ_1 bounds the supremum in (??) from below.

To establish the upper bound, expand y in the basis as

$$y = \alpha_1 v_1 + \dots \alpha_n v_n, \tag{3}$$

whence the supremum is at least $y^T M y = \sum_{i=1}^n \alpha_i^2 \lambda_i$. Since $\sum_{i=1}^n \alpha_i^2 = 1$ and $\lambda_i \leq \lambda_1$ for $1 \leq i \leq n$, we have that the supremum is at most λ_1 .

0.3 Undirected *d*-regular graphs