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In this part of the course, we will be interested in the converse problem of what we had consid-
ered until now — suppose we have a distribution that is not the uniform distribution, but contains
significant randomness, can we write a procedure which takes this input distribution and returns
nearly the uniform distribution? Till now, we were concerned with “stretching” the uniform dis-
tribution on a few bits, the seed, to a pseudorandom distribution on many more bits. The current
problem can be thought of as “condensing” a non-uniform distribution to the uniform distribution
on shorter strings. These will be called randomness extractors.

Before we begin the complexity theoretic questions, we will look at a classical randomness
extractor due to von Neumann.

Example 1. (von Neumann randomness extractor)

Consider a source S ⊆ Σn which is independent and such that the bits in the strings from S
are identically distributed. Let the probability that a bit is 0 be p, where p is unknown, and not
necessarily 1/2.

Can we extract out bits which are iid and where the bits occur with equal probability?

Consider the experiment: For each pair of bits snsn+1, if they are

1. both 0, then output nothing,

2. 01, then output 0,

3. 10, then output 1,

4. both 1, then output nothing.

Then 0 and 1 occur with equal probability in the output.

Question: What is the expected length of the output string?

The complexity theoretic perspective on extraction is different in that, first, instead of assuming
an iid source, we will assume only that we have a source with “sufficiently high entropy”, and second,
in that we will be concerned with asymptotic bounds on the input and the output.
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We will look at the notion of entropy that we need.

Definition 2. The Shannon entropy of a source S ⊆ {0, 1}n with probability distribution P :
S → [0, 1] is defined by

H(S) = −
∑

s∈S

P (s) log P (s) = Es∈S [log 1/P (s)].

The min Entropy of S is
H∞(S) = mins∈S[log 1/P (s)].

Even though Shannon entropy is the most commonly encountered notion in information theory,
assuming that a source has high Shannon entropy is not enough to extract randomness in the
sense that we are interested in. Assuming that a source has high min entropy usually suffices. We
now define what it means to extract randomness - the extracted output should be “fairly close to
uniform”.

Definition 3. If X,Y ⊆ Σm are distributions with probabilities PX and PY respectively, then the
statistical distance between X and Y is defined by

||X − Y || = max
T :Σm→Σ

|PX [T = 1]− PY [T = 1]|.

We say that X is ε-close to the uniform distribution Um on Σm if

||X − Um|| < ε

.

As usual in complexity theory, we will start with a few negative results. The first says that
deterministic extraction is impossible. This is a simple combinatorial argument. We then look
at extractors which use some randomness - based on some random “seed”. The next result is an
important lower bound on the length of the seed required in order for extraction to be possible. Of
course, the second implies the first result, but it is useful to look at the first problem in isolation.

Definition 4. Let X ⊆ {0, 1}n be a source with probabilty distribution P . A single bit determin-
istic extractor for X is a function E : {0, 1}n → {0, 1} such that

||E(X) − U1|| < ε.
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Lemma 5. There is no single bit deterministic extractor.

The argument is that for every such deterministic function, we can design a random variable X
whose support is entirely on E−1(0) or entirely on E−1(1), whichever has greater probability. We
pick the larger to ensure that X has high min-entropy. Then E fails to extract a nearly uniform
distribution from X, even though X has high min-entropy.

Hence we consider a seeded extractor.

Definition 6. A function E : Σn × Σd is a (minentropy: k, bias: ε) extractor if for any distri-
bution X with minentropy
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