
CS 744: Pseudorandomness Generators
Lecture 15: Pseudorandom Generators

February 8, 2015

Definition 1. A deterministic polynomial-time algorithm G : Σ∗ × Σ∗ → Σ∗ is called a pseudo-
random generator if there is a stretch function ℓ : N → N such that the two probability families
{Gn}n∈N and {Uℓ(n)}n∈N are computationally indistinguishable, where Gn is the output of G on
a seed uniformly selected from Σn.

Thus pseudorandom generators are a specific form of a derandomization technique, charac-
terized by three factors [1] - 1. efficiency of construction, 2. the stretch function describing the
relationship of the pseudorandom output length to the length of the seed, and 3. the output should
be pseudorandom. The stretch function in particular, distinguishes the approach of derandomiza-
tion via pseudorandom generators from the basic approaches we considered in the initial part of
the course.

If we have a pseudorandom generator, then we can use its output on seeds of appropriate length
instead of the uniform distribution as the source of randomness for a probabilistic polynomial-time
algorithm.

1 Stretching by one bit

First, we give the construction of a pseudorandom generator which can stretch its input by one
bit. The construction relies on the existence of one-way permutations and hard-core predicates for
these permutations.

Definition 2. A predicate B : Σn → Σ is an (S, ε)-hardcore for a permutation f : Σn → Σn if
for every circuit C of size at most S,

Un[x ∈ Σn : C(f(x)) = B(x)] ≤
1

2
+ ε.

A polynomial-computable family B = 〈Bn〉n∈N of predicates is a hard-core for a family of
polynomial-time computable permutations f = 〈fn〉n∈N if for all polynomials p and q and all large
enough n, Bn is a (p(n), 1

qn
) hardcore for fn.

1



Lecture 15 2

We have seen that the Goldreich-Levin theorem constructs such hard-core predicates for one-way
permutations.

Theorem 3. [Goldreich, Levin] Let f : Σn → Σn be a one-way permutation and g : Σn × Σn →
Σn ×Σn be defined by g(x, r) = (f(x), r). Then if B(x, r) is the inner product of x and r modulo
2, then g is a one-way permutation and B a hard-core predicate for g.

Now we see how to use a hard-core predicate for a one-way permutation to construct a pseudo-
random generator.

Theorem 4. [Blum, Micali, Yao] If B is an (S, ǫ) hard-core predicate for a one-way permutation
f : Σn → Σn, then F : Σn → Σn+1 defined by F (x) = p(x)⌢B(x) is (S, ε)-pseudorandom.

We will prove a slightly weaker theorem where we conclude that the output is (S/2, ε) pseudo-
random.

Proof. Let D be a circuit of size S such that

Un[x ∈ Σn : D(p(x), B(x)) = 1]− Un+1[x ∈ Σn, b ∈ Σ : D(p(x), b) = 1] ≥ ε. (1)

It suffices to construct a circuit C of size 2S which satisfies

Un[x ∈ Σn : C(x) = B(x)] ≥ 1/2 + ε. (2)

By assumption, D has a greater tendency to output 1 when B(x) is used in place of a pure
random bit.

Consider the following algorithm which predicts B(x). Run D(p(x), 0) and D(p(x), 1). There
are four cases depending on the outputs.

If both outputs are the same, then D(p(x), .) does not depend on the random bit. Since we
have no useful information to exploit, we output B(x) by flipping a fair coin.

If D(p(x), 0) is 1 and D(p(x), 1) is 0, then B(x) is likelier to be 0. So we guess 0 as the value
of B(x).

If D(p(x), 0) is 1 and D(p(x), 1) is 1, then we output B(x) is 1.

Clearly this algorithm can be implemented by a circuit using two copies of D (and a constant
number of gates to implement the case analysis on the outputs, but we will ignore this). Observe
that when the outputs are different, C(x) matches the output D(p(x), 1) in both cases. To show
that inequality (2) holds, we can equivalently show

Un[x ∈ Σn : C(x) = B(x)]− U [x ∈ Σn : C(x) 6= B(x)] ≥ 2ε. (3)

Let E00 denote the event that both D(p(x), 0) = 00 and D(p(x), 1) = 0, and E11 the probabilty
that both are 1. Observe that when the outputs are different, always C(x) = D(p(x), 1). The case

2



Lecture 15 3

when D(p(x), 1) = B(x) (hence C guesses correctly) is denoted t C1 (for “input 1 is correct”) and
when it does not as W1 (for “input 1 is wrong”).

To handle the first term in inequality (1), observe that

(1) when both D(p(x), 0) and D(p(x), 1) are 1, then D(p(x), B(x)) = 1 and

(2) when both are different and D(p(x), 1) = B(x), then D(p(x), B(x)) = 1 always — i.e. When
D(p(x), 1) = 1 = B(x), then D(p(x), B(x)) = D(p(x), 1) = 1 and when D(p(x), 1) = 0 = B(x),
then D(p(x), B(x)) = D(p(x), 0) = 1.

Thus, we can write the first term as (!)

P (E00) + P (C1). (4)

The second term is P (E11) + 1/2P (C1) + 1/2P (W1), and substituting in inequality (1), we
obtain 1/2(Pr(C1)− Pr(W1)) ≥ ε, which is equivalent to (3). (Why?)

We will be interested in optimal pseudorandom generators. Optimal pseudorandom generators
are those which can derandomize BPP. In the following three lectures, we will cover the conditional
construction of a pseudorandom generator capable of derandomizing BPP.

2 The Nisan-Wigderson Pseudorandom Generator

The motivating question we consider in the course is the derandomization of BPP algorithms, show-
ing that randomness gives no additional power over deterministic polynomial-time computation.
Even though an unconditional full derandomization is the ideal, we may obtain a partial answer to
the question by seeing whether a widely believed conjecture about complexity classes leads to the
construction of a pseudorandom generator.

2.1 Sketch of construction

Nisan and Wigderson construct a pseudorandom generator under the assumption that certain
functions in E which are ill-predicted on average by sub-exponential size circuits. We first define
what sense we measure the hardness of a function for a circuit.

Definition 5. A function f : Σn → Σ is (s, ε)-hard if for all circuits of size s,

U2n⊗2r [r | C(x; r) = f(x)] <
1

2
+ ε.

Note that this is a stronger assumption than worst-case complexity, which only says that there
are instances x ∈ Σn on which C(x) and f(x) disagree. This assumption says that on average over
the inputs and the random choices made, C(x) 6= f(x) with very high probability.

This was later improved by Impagliazzo and Wigderson, who construct optimal pseudorandom
generators under the weaker assumption that there ate languges in E which cannot be solved in

3



REFERENCES Lecture 15 4

the worst case by subexponential size circuits (they may be doing well on average, but there are
some worst case instances which they are unable to decide.)

We now prove the Nisan-Wigderson theorem. 1

Theorem 6. (Nisan, Wigderson) Suppose there is a language L ∈ E and a positive δ such that
L ∩Σn is (size:2δn, tolerance:2−δn)-hard, then optimal pseudorandom generators exist.

Proof. First,

References

[1] O. Goldreich. Foundations of Cryptography, volume 1. Springer, 2001.

1The material in this section is adapted from Luca Trevisan’s notes, Chapter 11, and Salil Vadhan’s book.

4


