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In probability theory, we have various theorems which hold “with probability 1”, and capture
some properties of random sequences - for example, the strong law of large numbers, which has the
consequence that almost every binary sequence is normal, and the law of iterated logarithm, which
upper bounds the speed of convergence of a random binary sequence to its expected behaviour,
implying that if a binary sequence has approximately n/2 zeroes from very small n, then it is not
random.

However, in computational complexity, we abstract away from this notion and define the notion
of an (algorithmic) statistical test, which allows the existence of pseudorandom distributions.

A statistical test on {0, 1}N is any algorithm A which outputs 0 or 1. An N -source is a
probability distribution on {0, 1}N . We denote the uniform distribution on {0, 1}N by UN . For a
statistical test A and an N -source S, we define P (A;S) by

P (A;S) = Probability(B ∼ S | A(B) = 1) = S(B | A(B) = 1).

Definition 1. We say that an N -source S passes the statistical test A with tolerance ǫ > 0 if

|P (A;S) − P (A;UN )| ≤ ǫ.

Instead of arbitrary statistical test, we could reformulate the notion of being computationally
indistinguishable from the uniform distribution using the notion of predictors.

Definition 2. For k ∈ {0, . . . , N − 1}, a predictor Ak : {0, 1}N → {0, 1} is an algorithm that

depends only on the first k bits of the input. i.e. for any B ∈ {0, 1}N and C,D ∈ {0, 1}N−k,

A(B1 . . . Bk · C) = A(B1 . . . Bk ·D).

A prediction test AP

k
is defined as

AP

k = Ak(B)⊕Bk+1 ⊕ 1 =

{

1 if Ak(B) = Bk+1

0 otherwise.
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These two notions lead to almost equivalent notions of computational indistinguishability.
Clearly, every a prediction test which distinguishes S from UN with tolerance ǫ is a statistical
test which distinguishes it from UN with the same tolerance. We have the following by way of the
converse.

Lemma 3. Let S be an N -source which fails test A with tolerance ǫ > 0. Then there is a

k ∈ [0, N − 1] and a prediction test AP

k+1
on which S fails with tolerance ǫ/N .

The proof proceeds by a widely applicable technique called the “hybrid argument”, so called
because it constructs “hybrids” of S and UN to establish the result.

Proof. By complementing the output of A if necessary, we can assume that

P (A;S) − P (A;UN ) ≥ ǫ.

Consider the algorithms F1, . . . , FN where Fk works as follows. Given B ∈ {0, 1}N , it flips N − k
coins to produce a bit string B′

k+1
. . . B′

N
. Then it outputs A(B1 . . . Bk B′

k+1
. . . B′

N
). Clearly,

P (F0;S) = P (A;UN ) and P (FN ;S) = P (A;S). Then, by assumption, P (FN ;S)− P (F0;S) ≥ ǫ.

Now, writing the above as a telescoping sum, we have

N−1
∑

k=0

P (Fk+1;S)− P (Fk;S) ≥ ǫ,

whence it follows that there is a k ∈ [0, N − 1] where

P (Fk+1;S)− P (Fk;S) ≥
ǫ

N
.

Now, we need to find a prediction test AP

k
with

P (AP

k ;S)− P (AP

k ;UN ) ≥
ǫ

N
.

Define the predictor Ak(B) = Fk(B). The corresponding predictor test A1P
k
(B) = Fk(B) ⊕

B′

k+1
⊕ 1 can be written equivalently as

A2Pk (B) = Fk(B)⊕B′

k+1 ⊕Bk+1?

It is certainly true that
P (A1Pk (B);S) = P (A2Pk (B);S).
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