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Suppose we have n random variables, say X1, . . . , Xn, what can we conclude about their sum
S = X1 + · · ·+Xn?

This question has implications to our basic idea of boosting the correctness probability of BPP
algorithms. For simplicity, let us assume that the BPP algorithm we are interested in, outputs
either 0 or 1. One basic technique is to repeat the output on the same instance x of size n, and
output the majority.

The majority function is somewhat difficult to handle mathematically, so we will change our
viewpoint, and ask what is the sum of the outputs? If the sum is greater than n/2, then the
majority is 1, and if the sum is less than n/2, then the majority is 0. So the probabibility that the
majority is wrong by a signifant amount is the probability that S is significantly less than n/2.

Assume that the random variables are bounded, without loss of generality, let each Xi ∈ [−1, 1].
If the random variables are sufficiently independent, the sum S instead of having the maximum
magnitude of n, will typically concentrated in a range of values of size O(

√
n). Thus most of the

samples of the n random variables will lead to a sum in the range ES +O(
√
n). This phenomenon

is known as concentration of measure. The intuitive reason is that independent random variables
are unlikely to all go in one direction, which is necessary for a large magnitude sum.

Moreover, with a greater amount of independence, the concentration is sub-gaussian — Ce−cλ2

,
for some C, c > 0. With high probability, the sum is about ES+O((

√
log n)σ), where σ is the stan-

dard deviation of S. With overwhelming probability, the sum is in the range ES+O((log1/2+ε n)σ).
Assuming that the random S has mean 0 and variance 1, this is about O(log1/2+ε n).

This tighter bound has obvious consequences to error reduction of BPP algorithms - this means
that the error can be made around 1

2n in polynomially many repetitions.

1 Chernoff Bound

Lemma 1. [Hoeffding’s lemma] Let X be a random variable taking values in [a, b]. Then for any
t > 0,

E[etX ] ≤ etEX(1 +O(t2 V ar(X) eO(t(b−a)))).
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Proof. We assume that EX = 0 and b− a = 1. This implies that X = O(1). We have

etX =
∞
∑

i=0

(tX)i

i!
= 1 + tX +O(t2X2eO(t)).

Taking expectations on both sides, we have

E[etX ] = 1 + tEX +O(t2 E[X2] eO(t))

= 1 +O(t2 E[X2] eO(t))

= 1 +O(t2 Var(X) eO(t)),

proving the claim.

Corollary 2. Let X be a random variable taking values in [a, b]. Then for any t > 0,

E[etX ] ≤ etEX eO(t2(b−a)2).

Proof. By the Theorem above,

E[etX ] ≤ etEX(1 +O(t2 Var(X) eO(t(b−a)))).

Since t2 Var(X) ≤ t2(b− a)2, we have

E[etX ] ≤ etEX(1 +O(t2 (b− a)2 eO(t(b−a)))).

Since x2ex = e2 logx+x = eO(x2), we have

E[etX ] ≤ etEXeO(t2(b−a)2),

thus establishing the claim.

This can be used to establish the Chernoff bound.

Theorem 3. Let X1, . . . , Xn be independent random variables with |Xi| < K, mean µi and
variance σ2

i . Then for any λ > 0, one has, for some C, c > 0,

P (|S − µ| ≥ λσ) ≤ Cmax(e−cλ2

, e−cλσ/K),

where µ =
∑n

i=1 µi and σ2 =
∑n

i=1 σ
2
i .

Proof. Let t ∈ [0, 1]. Let Yi =
Xi−µi

K . Then EYi = 0, and |Yi| ≤ 1. Let T =
∑n

i=1 Yi. By the
symmetry of Yi around 0, it suffices to establish the following.

P (T > λσ) ≤ Cmax
(

e−cλ2

, e−cλσ
)

.
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To do this, consider the exponential moment generating function of T :

E[etT ], where t ∈ [0, 1].

We have

E[etT ] = E
[

et
∑

n

i=1
Yi

]

=
n
∏

i=1

E[etYi ],

where the last equality follows by the mutual independence of Yis. Now, we use the Hoeffding
bound on each individual Yi,

E[etYi ] ≤ eO(t2σ2

i
),

to get
E[etT ] ≤ eO(t2σ2).

Now,
etλσP (T > λσ) ≤ E[etT ],

yielding
P (T > λσ) ≤ eO(t2σ2

−tλσ).

Optimize on t ∈ [0, 1] to get the required result.
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