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1 Pairwise Independent Hash Functions

Theorem 1. Let F be a finite field. Then the family of functions

H = {ha,b : F → F | a, b ∈ F},

where ha,b = ax+ b, is an explicit family of pairwise independent hash functions.

Proof. Given (x1, y1) and (x2, y2) in F
2, there is exactly one line passing through them - the one

with slope a = (y2 − y1)/(x2 − x1) and y-intercept b = y1 − ax1. There are |F|2 distinct lines, and
the probability of picking this line ax+ b as the hash function is precisely 1

|F|2
. Thus H is pairwise

independent.

Homework: Show that H is explicit.

2 Randomness-efficient error reduction and sampling

For a BPP algorithm, we can reduce the error probability to 2−k by using k repetitions, as we
can prove using the Chernoff bound. Suppose we have an algorithm that works with pairwise
independent random sources. Can we reduce its error by repeating it independently many times?
The following tail inequality answers this question.

Lemma 2. Pairwise Independence Tail Inequality Let X1, . . . ,Xn be a sequence of pairwise in-

dependent random variables with values in [0, 1]. If we denote by S, their average,
∑

Xi/n, then

Pr[|X − EX| ≥ ǫ] ≤
1

nǫ2
.

Proof. The variance of
∑

iXi is the sum of the variances of the individual Xis, by pairwise inde-
pendence. Hence V ar(S) is equal to 1

n2

∑

i V ar(Xi), which is at most 1/n since Xis are bounded
above in value by 1. The inequality follows by the Chebyshev inequality.

1



2.1 Sampling Lecture 9 2

Discussion

2.1 Sampling

We consider the following problem of sampling a function: Given a black-box access to a function
f : {0, 1}m → [0, 1], is it possible to efficiently approximate Ef to within an additive error of
ǫ > 0? One general strategy is to sample f at a few inputs, and output the sample average as an
approximation to Ef .

It is possible to sample a set of size O(log(1/δ)/ǫ2) to solve the problem with probability greater
than 1− δ. We can prove using Chernoff bounds, that this strategy works. This sampling involves
truly random bits.

We now try to replace the truly random bits by pairwise independent bits. We will need a sample
of t = 1/(ǫ2δ) pairwise independent samples from {0, 1}m. To generate t pairwise independent
samples of m bits each, we require O(m+ log t) = O(m+ log(1/ǫ) + log(1/δ)) pure random bits.

The following sampling technique will be nonadaptive — that is, the sequence of questions asked
depend only on the random coin tosses, and in particular, questions asked will not depend on the
answers to previous questions. Moreover, the answer will simply be the average of the outputs. No
further postprocessing is done.

Definition 3. A sampler is a function σ : [N ] → [M ]tfor a set [M ] maps a sequence of coin-tosses

x drawn independently at random from [N ] to a sequence of samples z1, . . . , zt ∈ [M ].

We say that a sampler σ : [N ] → [M ]t is called an averaging sampler if for every function

f : [M ] → [0, 1], the following holds.

Probz1,...,ztσ̃(U[N ])

[

∑t
i=1 f(zi)

t
> Ef + ǫ

]

≤ δ.

Note that we require only a one-sided error guarantee - the sample average may be lesser than
Ef − ǫ with a significant probability.
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