
CS 744: Pseudorandomness Generators
Lecture 7: Basic Derandomization Techniques - II

January 18, 2015

1 Derandomization via Nondeterminism

We will now try to study the relationship between BPP and NP through these basic techniques of
derandomization. It is not clear whether NP can solve problems which probabilisitic polynomial-
time algorithms with bounded two-sided error can. This is a famous open question in computational
complexity theory. However, something very close to BPP ⊆ NP is known:

Sipser showed, in complexity-theoretic terms, that BPP ⊆ Σ2∩Π2. In terms of the polynomial-
time hierarchy, this states that BPP is not far more powerful than NP is. Avoiding the definition
of the Polynomial-time hierarchy, we can state the above result as follows.

Theorem 1. If P = NP, then P = BPP.

According to the current belief in complexity theory, we believe that P 6= NP, and P = BPP.
Viewed thus, the above theorem is “believed” to be a vacuous implication.

However, the theorem can be viewed in a positive light — it says that non-determinism is
almost as powerful as probabilistic computation. If we ponder this for a moment, we see that it is
consistent with what we believe the truth to be: BPP = P (NP.

Proof. Let L ∈ BPP. Without loss of generality, assume that A is a BPP algorithm for L with
error probability less than 2−n. We will show that

x ∈ L ⇔ ∃y∀zP (x, y, z), (1)

where P is some polynomial-time computable predicate. This suffices to establish the result
because of the following reason.

A language in L1 in NP can be characterized as

x ∈ L1 ⇔ ∃yQ(x, y),

where Q is some polynomial-time computable predicate. Consequently, the complement of L1 can
be characterized as

u ∈ Lc

1 ⇔ ∀vR(u, v),

1

Lecture 7 2

where R is some polynomial time predicate (e.g. ¬Q).

If P is equal to NP, then the complement of each language in NP is also in NP. Hence, we
can replace ∀zP (x, y, z) in equation (1) by a polynomial-time computable predicate R(x, y), and
equation (1) can be rewritten as

x ∈ L ⇔ ∃yP (x, y), (2)

and it follows that L ∈ NP.

We now show that L ∈ BPP can be written in the form (1). Let Yx be the set of random
sequences of length m that cause the algorithm to output “yes”. If x ∈ L, then the probability of
Yx is at least 1−2−n. The idea is to produce a few “shifts” of the set Yx which cover all the strings
in {0, 1}m. If x /∈ L, since the probability of Yx is less than 2−n, these few shifts of Yx will cover
only a very small part of {0, 1}m.

These shifts will be produced by selecting m strings s1, . . . , sm from {0, 1}m and then XOR-ing
Yx with each of them.1 Since si ⊕ y is unique for every y ∈ Yx, we know that

|Yx| = |Y ⊕ s1| = · · · = |Y ⊕ sm|.

We analyze the following cases.

§1. Suppose x ∈ L. Then we show that

∃s1, . . . , sn ∈ {0, 1}m∀y ∈ {0, 1}my ⊕ s1 ∈ Yx ∨ . . . y ⊕ sm ∈ Yx.

This is an existential claim, hence we can use the probabilistic method, as in Theorem 2 of Lecture
6. Select s1, . . . , sm uniformly at random from the set of {0, 1}m. Now, let r be any random
sequence from {0, 1}m.

Pr

[

r ∈ Σm | r /∈

m
⋃

i=1

Yx ⊕ si

]

= Πm

i=1Pr[r /∈ Yx ⊕ si]

= Πm

i=1
Pr[si /∈ Yx ⊕ r]

< (2−n)m

Now,

Pr[∃r ∈ {0, 1}m | r /∈

m
⋃

i=1

Yx ⊕ si] ≤ 2m2−mn = 2−n.

Hence there exist s1, . . . , sm such that
⋃

m

i=1
A⊕ si covers {0, 1}

m.

§2. If x /∈ L, then we can show that for any s1, . . . , sm from {0, 1}m, there will be a y ∈ {0, 1}m

such that
y /∈ ∪m

i=1
Yx ⊕ si.

This follows by a union bound since Yx has probability at most 2−n and the union above cannot
have probability greater than m2−n. Hence there will be strings in {0, 1}m which are excluded from
it.

1Algorithmically, for every y ∈ Yx, compute y ⊕ s1, . . . , y ⊕ sm and say that x ∈ L if A says yes with of these m

resulting strings as the random input, and say no if A says no on all of them.

2

Lecture 7 3

2 The Method of Conditional Expectations

This is an elegant probabilistic argument. It leads to polynomial-time algorithms unlike the methods
we have seen so far. Unfortunately, however, this does not seem to efficiently derandomize all
randomized algorithms. Thus it may not derandomize BPP as a whole, only some specific problems.
We will describe the general method, skipping how this yields polynomial-time solutions for specific
problems.

(To be completed)

3

