
CS 744: Pseudorandomness Generators
Lecture 6: Basic Derandomization Techniques

January 16, 2015

Our theme is that randomized algorithms are easy to design, and we hope to systematically
derandomize such algorithms to get deterministic polynomial-time solutions to problems. For any
given problem, such an approach may not yield the optimal algorithm, but we aim only to show
that the problem can be solved in P. What we stand to gain is simplicity in the design of the
algorithm.

We will look at some elementary, general-purpose derandomization techniques. 1 These tech-
niques are too coarse to yield the best practical derandomizations for specific problems - indeed,
some of these are not polynomial-time algorithms or even deterministic. However, these tech-
niques, besides being elementary and hence a first step in derandomization, also serve to show the
connections between randomized computation and other forms of resource bounds in computation.

1 Enumeration

Suppose we have a polynomial-time randomized algorithm A(x; r) which on input x and a given
random sequence of coin-tosses r outputs an answer. Let m(n) be the polynomial in n which upper
bounds the running time of A on any input of length n.

Then we can simulate all possible runs of A(x;) by enumerating all the possible random coin
tosses of length m(n) - there are at most 2m(n) of these, and collecting the outputs.

Now, there may be various acceptance criteria for x ∈ L - e.g x ∈ L if and only if there is an
ǫ > 0 with more than 1/2 + 1

|x|ǫ of the coin tosses, A outputs “yes”. If we have all the possible

answers of A(x;), then we can compute the probability of acceptance and simulate any acceptance
criterion.

The complexity class BPP is defined in terms of one such acceptance criterion.

Definition 1. A language L is in BPP if there is a randomized polynomial-time algorithm A

1Material for this chapter is taken from Salil Vadhan’s monograph, “Pseudorandomness”, Chapter 3.

1

Lecture 6 2

with time bound m(n) such that for some c > 0,

x ∈ L ⇒

∣

∣{r ∈ {0, 1}m(|x|) | A(x, r) = “yes”}
∣

∣

2m(|x|)
≥

1

2
+

1

|x|c

x /∈ L ⇒

∣

∣{r ∈ {0, 1}m(|x|) | A(x, r) = “no”}
∣

∣

2m(|x|)
≥

1

2
+

1

|x|c

Recall that EXP is the class of problems solvable in 2poly(n) where n is the length of the input.
The argument above essentially proves the following fact.

Theorem 2. BPP ⊆ EXP.

This derandomization is impractical since you need exponential time to derandomize a poly-
nomial time probabilistic algorithm, hence the overall approach is not better than brute force for
many problems.

2 Nonconstructive derandomization

In the probabilistic method [1], in order to demonstrate that there is an object x with property
P , we establish that P (x) is satisfied with positive probability. In finite probability spaces, this
is sufficient to show that an x with property P has to exist. Often, we prove that ¬P (x) has
probability strictly less than 1.

We now show that there are “uniformly applicable” random sequences which work for any input
of a particular length n. The proof will use the probabilistic method, and we will not mention how
to find this nice random sequence in polynomial-time. However, the mere existence of such nice
sequences proves something stronger 2 than Theorem 2.

Theorem 3. Let A(x; r) be a randomized algorithm for deciding a language L, with the probability
of error, i.e. A(x; r) 6= L(x), < 2−|x| for any x.

Then for every length n, there is a random string rn such that for all strings w of length n,
A(w; rn) = L(w).

The power of the theorem is that instead of different random strings working for different inputs,
you have a limited notion of a uniformly good random string - there is one random string which
gives the correct answer on all 2n inputs of length n. For different lengths, however, you may need
to use different random strings.

2according to the current beliefs of computational complexity theorists

2

REFERENCES Lecture 6 3

Proof. Let n be fixed. Let r be drawn uniformly from {0, 1}m(n) where m(n) is the number of
random bits used in the worst case by the algorithm A on any input of length n. Then

Pr[∃x ∈ {0, 1}n | A(x; r) 6= L(x)] ≤
∑

x∈{0,1}n

Pr[x ∈ {0, 1}n | A(x; r) 6= L(x)]

< 2n2−n = 1.

Hence there is an r ∈ {0, 1}r(n) such that for every n-long string x, A(x; r) = L(x).

This has a complexity theoretic consequence, with respect to circuit families. We give the
following informal definition of circuits and circuit families.

Definition 4. A circuit is a directed acyclic graph where the vertices are logical gates or boolean
inputs, and the edges represent the connections between the logical gates. Each logical gate has at
most 2 inputs. The size of the circuit is the number of gates in the circuit.

A circuit family 〈Cn〉
∞
n=0 for deciding a language L is a sequence of circuits such that for every

length n, the circuit Cn decides the membership of all n-long strings in L.

Definition 5. The class P/Poly is the class of languages L decided by some circuit family 〈Cn〉
∞
n=0

deciding L with a polynomial p(n) which upper bounds size(Cn) for all n.

By Theorem 3, there is one random string which works on all inputs of length n if an algorithm
has probability of error < 2−n on all inputs of length n. Informally, we can “hard-code” this
random string into a circuit Cn, where Cn emulates the execution of A on n-long strings. If A is
polynomial-time, then it is possible to make Cn polynomial-sized. For a detailed argument, see [2].
This argument justifies the following corollary.

Corollary 6. BPP ⊆ P/Poly.

References

[1] N. Alon and J. Spencer. The Probabilistic Method. Wiley and Sons, 3 edition, 2008.

[2] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2009.

3

