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January 11, 14, 2015

1 Linear Algebra: Mixing Times of Random Walks on undirected

graphs

First, we will define a notion called the hitting time of a random walk. Following Vadhan 12, we
will adopt a slightly different notion from the common one.

Definition 1. The hitting time of a random walk on a directed multigraph G is defined as

hit(G) = max
i,j∈G

min{t | Pr [a random walk from i hits j in at most t steps] >
1

2
}.

It is customary to define the quantity below as the hitting time.

ehit(G) = max
i,j∈G

E{t | i reaches j in t steps. }.

Let us denote by E[i, j], the quantity

E{t | i reaches j in t steps. }

By Markov inequality, it follows that

Pr{i does not reach j in 2E[i, j] steps. } ≤
1

2
.

That is, the minimum number of steps before the probability that you hit j starting from i is at
least 1/2, is at most 2E[i, j]. Thus, hit(G) is at most 2 ehit(G).

We will prove the following theorem.

Theorem 2. For every connected undirected multigraph G with n vertices and maximum degree

G, hit(G) = O(d2n3 log n).
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Lecture 3 2

Let us define an initial probability vector π = (π1, . . . , πn) on the graph G. Let the transition
probability matrix for each step be Mn×n. Since we are assuming that G is a d-regular undirected
graph, then M can be described as

M(i, j) =

{

1

d
if (i, j) ∈ E

0 otherwise.

After taking one step according to the transition matrix M , the distribution on the vertices
becomes πM , and inductively, after t steps, the probability on the matrix becomes πM t. We
will show that πM t converges to the uniform distribution on n vertices. Whenever we talk of
convergence, we have to talk about what notion of distance we are using. We will use the ℓ2 norm
— the norm of a vector x is ||x||2 =

√

〈x, x〉, where 〈x, y〉 is the inner product of the vectors x and
y.

We will now show that ||πM t − u||2 decreases with t.

Definition 3.

λ(G) = max
π∈P

||πM − u||2
||π − u||2

.

Lemma 4. For an undirected d-regular graph G, 0 ≤ λ(G) ≤ 1.

We will prove this later in the course.

We want to calculate hit(G), the hitting time. Now we will slightly change course, and talk
about the mixing time of the random walk, that is, the time by which the random walk reaches
the probability distribution in the limit, in the following lemma. Of course, in the normal course
of events, the existence of a limit distribution is often in question. In this case, however, we will
establish not only that such a distribution exists, but also that we know what it is - the uniform
distribution on n vertices.

If the limit distribution is the uniform distribution on n vertices, then there is a significant
probability (1/Θ(n)) that you can start from u and reach any vertex after a sufficiently large
number of steps t. In particular, there is a significant probability that you reach v after t steps.

Thus the connection between the mixing time and the hitting time goes through the convenient
fact that the limit distribution is u.

The connection between λ(G) and the mixing time is as follows.

Lemma 5. For any undirected d-regular graph G and its random walk matrix M , for any prob-

ability distribution π on the set of vertices of G, we have, for any t,

||πM t − u||2 ≤ λ(G)t||π − u||2 ≤ λ(G)t.
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If λ(G) is strictly less than 1, then the random walk mixes to the uniform distribution. The
smaller λ(G) is, the faster the convergence.

Proof. First, we show λ(G)t||π − u||2 ≤ λ(G)t. It suffices to show ||π − u||2 ≤ 1. We have

||π − u||22 =

n
∑

i=1

(

πi −
1

n

)2

=

n
∑

i=1

πi
2 − 2

1

n

n
∑

i=1

πi +
n

n2

=
n
∑

i=1

πi
2 −

1

n
≤ 1−

1

n
.

Now, we show that for every probability vector π, for every t ∈ N, the claim ||πM t − u||2 ≤
λ(G)t||π − u||2 holds, by induction on t. Clearly, for t = 1, the claim is true by the definition of
λ(G). Now, assume that the claim holds for t = n.

Consider ||πMn+1 − u||2. This can be written as ||(πMn)Mn − u||2. Since M is a random walk
matrix, πMn is always a probability distribution on the vertices. Let us call this distribution ν.

By the definition of λ(G), it follows that ||νM − u||2 ≤ λ(G)||ν − u||2. Since the induction
hypothesis holds for all probability distributions, we have

||ν − u||2 = ||πMn − u||2 ≤ λ(G)n||π − u||2,

hence ||πMn+1 − u||2 ≤ λ(G)n+1||π − u||2.

Addendum

The following facts may be useful.

Definition 6. A matrix Mn×n is called stochastic if for every column j in the matrix,
∑n

i=1
Mi,j = 1. A stochastic matrix is called doubly stochastic, if, in addition, the sum of

entries in any row is 1.

Proposition 7. If π1×n is a probability distribution, and M is a stochastic matrix, then πn×1 is

also a probability distribution.

This can be proved by direct computation.

Lemma 8. If π1×n is a probability distribution, then π− u is a vector in R
n which is orthogonal

to u.
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Proof. The ith co-ordinate in π − u is πi −
1

n
. Then,

〈π − u, u〉 =

n
∑

i=1

(πi − ui)ui

=
1

n

[

n
∑

i=1

πi −

n
∑

i=1

1

n

]

=
1

n
[1− 1] = 0.

Hence (π − u)⊥u.

Note the following points, though.

1. π − u is never a probability vector -
∑

i(πi − ui) is
∑

i πi −
∑

i ui, which is zero. Hence the
sum of the coordinates of π − u is not 1.

2. If we take two arbitrary probability vectors π and ν, then π − ν need not be orthogonal to
ν. For example, take the 2-dimensional vectors (1, 0) and (0, 1). Then (1,−1) is not orthogonal to
(0, 1). In general, for two arbitrary vectors x and y in R

n, x− y need not be orthogonal to y.
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