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We look at a well-studied problem from graph theory: given a graph G and vertices s and t
from the graph, we have to determine whether s and t are connected by a path or not.

There is a linear-time algorithm for this, by using either breadth-first search or depth-first
search. Both these algorithms also use linear space in the worst case. Is there an algorithm which
uses asymptotically lesser space?

There is a famous algorithm by Savitch, which solves reachability in space logn where n is the
number of vertices in the graph. Unfortunately, it uses nlogn time. This recursive algorithm is as
follows.

The algorithm has to determine whether there is a path in G from vertex u to vertex v in at
most t steps. If t is zero, then the answer is clearly no, unless u is the same as v. If t is one, then
the answer is yes if and only if either u is v, or u and v are adjacent to each other. Otherwise, the
answer is the same as that obtained by the recursive query of whether there is a vertex w in the
graph such that there is a path in G from u to w using ⌊t/2⌋ steps and there is a path in G from
w to v using ⌈t/2⌉ steps.

A node u is reachable in G from v if and only if the above algorithm answers yes with t = n.
Since the allowed number of steps halve in each call of the algorithm, the call tree of the algorithm
has at most logn levels.

It is possible to do the two recursive queries for each w by using only log n space to store the
w. The key observation is that the first subquery can be executed first, and all that we need to
store is the result — one bit – before executing the second subquery to compute the final result.
Thus the space required for executing the two subqueries is equal to the maximum space required
for a subquery by itself (plus one bit). Thus the space required by the algorithm is O(log2 n).

For each recursive call, the algorithm has to iterate over all the possible intermediate vertices
w. There are thus 2n recursive subqueries per call of the routine, hence the total time taken is
O(nlogn).1

Can we simultaneously reduce the time and the space complexity of the graph-reachability
problem?

We show a randomized algorithm for the reachability problem in undirected graphs. 2

The algorithm performs a random walk from s to t of length polynomial in the number of
vertices. First, we set the current vertex to the starting vertex. Then, we choose a vertex adjacent
to the current vertex uniformly at random and set it as our new “current vertex”. Iterate this

1Obtained by solving the recurrence T (n) = 2nT (n/2) + c.
2we will indicate later why undirectedness helps, even though it is not immediately clear. If time permits, we will

go into an analysis of the directed case.
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process for a number of times polynomial in n. If during this process, we arrive at t, then we say
that s and t are connected, otherwise we say that they are not.

The algorithm is fairly simple, but we now have to argue that if s and t are indeed connected,
then it will say so with very high probability.

1 Linear Algebra: Mixing Times of Random Walks on undirected

graphs
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