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Often, when deterministic solutions have eluded us, there is a very efficient randomized solution
at hand.

Since it is often easier to design a simple randomized strategy, it is conceivable that a general
strategy to obtain deterministic solutions is the following — first, think of a randomized strategy,
and then derandomize the algorithm by making the random source used in the algorithm, redun-
dant. Thus in this course, we will adopt a new perspective — in addition to the time and space
required for an algorithm, we will think of the number of independent random bits used by the
algorithm as a resource bound. Derandomization is the process of eliminating, or at the very least,
reducing, the number of independent random bits used in an algorithm. This course is about one
of these methods of derandomization. Before this, we take a look at where randomness helps.

Randomized algorithms is a well-studied area in computer science. Even though it is interest-
ing to examine randomized algorithms for isolated problems, in computational complexity theory,
however, we will be judicious in our choice of problems for which we seek randomized algorithms.
The problems we examine will tend to be complete in some sense, for some complexity class.

We will illustrate the power of randomness over with two examples — in the first case, we do
not yet know of a deterministic efficient solution. In the second, the randomized solution is the
basis for a deterministic one.

1 Polynomial Identity Testing

A polynomial in n variables is a function of the form

P (x1, . . . , xn) =
∑

i1,...,in∈N

ci1,...,inx
i1
1
xi2
2
. . . xinn ,

where the coefficients come from some field, like the field Q of rationals, R of reals, Zp of integers
modulo a prime.1 The individual terms xi1

1
xi2
2
. . . xinn etc. are called monomials. The degree of a

multivariate polynomial is the sum of the exponents over its monomials with non-zero coefficients.
Suppose we are given two degree d formal polynomials in n variables, P (x1, . . . , xn) and

Q(x1, . . . , xn). We would like to know if P = Q, i.e. whether the corresponding coefficients in
P and Q of like-degree terms are identical.2 This problem is equivalent to deciding whether a given
polynomial P ′(x1, . . . , xn) of degree d is identically zero.

1The set Z with addition and multiplication is not a field, but is an integral domain.
2We are dealing with formal polynomials, hence we are not concerned with whether P evaluated at a point is

equal to Q evaluated at that point.
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The problem is trivial if all the coefficients of P and Q are explicitly given. There are however,
three interesting and realistic versions where the problem is non-trivial.

1. If P is given as a “black-box” so that we can evaluate it at any point, but we do not know
its explicit algebraic form. We can assume that we know the field F of the coefficients, the number
n of variables and the degree d of the polynomial, but nothing further.

2. We are given the polynomial as an arithmetic formula, but possibly different from the “sum
of monomials” form above. We can try expanding the given form to the “sum of monomials” form
and then compare for equality, but this expansion process may take time exponential in the length
of the original expression.

3. We may be given the polynomial as an arithmetic circuit.
We would like to have a randomized efficient technique to test whether a given multivariate poly-

nomial is identically zero. For this, we will use the following useful fact which is easily established
through induction.

Lemma 1. (Schwartz-Zippel Lemma) If f is a non-zero polynomial of degree d over a field F and
S ⊆ F, then

Pr [(a1, . . . , an) | a1, . . . , an ∈ S and f(a1, . . . , an) = 0] ≤
d

|S|
.

A univariate polynomial of degree d has at most d roots, hence the above probability is the
fraction of roots which are in S, which is clearly at most d/|S|. The Schwartz-Zippel Lemma is a
generalization of this observation to multivariate polynomials. We can prove this by induction on
n, the number of variables in the polynomial 3

Proof. The base case, that of univariate polynomials, is clear by the above discussion. Assume that
the hypothesis holds for all non-zero polynomials (of all degrees) in at most n− 1 variables.

Let
f(x1, . . . , xn) =

∑

i1,...,in∈N

ci1,...,inx
i1
1
xi2
2
. . . xinn .

Then we may rewrite f as follows.

f(x1, . . . , xn) =
d

∑

j=0

xj
1
gj(x2, . . . , xn),

where gjs are polynomials of degree d − j in n − 1 variables. Since f is non-zero, at least one of
these gjs is also non-zero. By the induction hypothesis, for each non-zero gj ,

Pr [(a2, . . . , an) | a2, . . . , an ∈ S and gj(a2, . . . , an) = 0] ≤
d− j

|S|
.

For a non-zero polynomial gj , the probability

Pr
[

(a1, a2, . . . , an) | a1, a2, . . . , an ∈ S and aj
1
gj(a2, . . . , an) = 0

]

=

Pr
[

a1 ∈ S | aj
1
= 0

]

+ Pr [(a2, . . . , an) | a2, . . . , an ∈ S and gj(a2, . . . , an) = 0] ,

and this is at most j+d−j
|S| , i.e. d

|S| by the induction hypothesis.

3The induction does not proceed on the degree d.
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A randomized algorithm for testing whether a given polynomial P with n variables and degree
at most d, with coefficients from a finite field F is as follows. Pick a set S of 2d points from the
field F. Uniformly at random, pick points a1, . . . , an from S and evaluate f(a1, . . . , an). If f is zero,
then we say that f is identically zero on F, otherwise, we say that f is not identically zero on F.

This algorithm is an efficient randomized solution for all the three non-trivial variants discussed
above. By the Schwartz-Zippel Lemma, the above algorithm will be wrong with probability at most
1/2, when f 6= 0. Is this a one-sided error or a two-sided error?

We can reduce the error by repeating the experiment independently. By independently con-
ducting the experiment k times, it is possible to reduce the error to at most 1

2k/2
. Since we are

considering feasible computations broadly, we tend to choose k to be polynomial in the size of the
input. This reduces the error to such an extent that the randomized algorithm will practically never
be wrong. Hence for all practical purposes, we have a solution to the problem at hand, once we
have a randomized algorithm with bounded error probability. We will see the formal justification
for this claim in the next class.
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