
A weakly-2-generic which bounds a minimal degree

Rodney G. Downey Satyadev Nandakumar

December 27, 2015

Abstract

Jockusch showed that 2-generic degrees are downward dense be-
low a 2-generic degree, but in the case of 1-generic degrees Kumabe,
and independently Chong and Downey constructed a minimal degree
computable from a 1-generic degree. We explore the tightness of these
results.

We solve a question of Barmpalias and Lewis-Pye by constructing
a minimal degree computable from a weakly 2-generic one. The proof
is rather novel since it is a computable full approximation construction
where both the generic and the minimal degrees are ∆0

3
−∆0

2
.

1 Introduction

Two of the fundamental construction techniques in set theory and com-
putability theory are Cohen and Sacks/Spector forcing. The first uses finite
strings as conditions and the second perfect trees. Computability theory
allows us to look at fine grained restricted versions of these notions. Cohen
forcing gives us various forms of genericity and Sacks/Spector allows for
various forms of minimality and computable domination.

This paper follows a tradition asking “How can these two notions inter-
act?”. In their unrestricted forms the notions are incompatible, but in their
restricted forms sometimes that can interact via Turing reducibility.

The reader should recall the following definitions (which are really theo-
rems due to Jockusch and Posner, but have become standard in the literature
as definitions.).

Definition 1. Let n ≥ 1.

1

1. A set A is called n-generic iff A meets or avoids all Σ0
n sets of strings.

That is, if S is a Σ0
n set of strings, then either ∃σ ∈ S(σ ≺ A) (σ is an

initial segment of A) or ∃τ ≺ A∀σ ∈ S(τ 6� σ).

2. A set B is called dense if for all ν ∈ 2<ω, there is a ρ ∈ B such that
ν � ρ. We say that a set C is weakly n-generic iff for all dense Σ0

n sets
of strings S, C meets S.

3. We say a degree a is (weakly) n-generic is it contains a (weakly) n-
generic set.

The natural relationship is that weak n+1-genericity is implied by n+1-
genericity and implies n-genericity, and these implications cannot be re-
versed. (For example, Kurtz [12].) Jockusch [10] was the first person to
give a detailed analysis of notions of (weak) n-genericity and their relation-
ship with Turing reducibility. In particular, showed that if a is a nonzero
degree below a 2-generic degree, then a bounds a 2-generic degree. As a
consequence, no 2-generic degree can bound a minimal degree.

This result was extended by Chong and Jockusch [5] who proved that if
g is 1-generic and 0 < a < g < 0′ then a bounds a 1-generic degree. Later
Haught [9] extended this result to prove the very attractive result that if g
is 1-generic and 0 < a < g < 0′ then in fact a is 1-generic.

At the time, it seemed reasonable to conjecture that the restriction that
g < 0′ could be removed. Independently, Kumabe [11] and Chong and
Downey [4] proved that this restriction cannot be removed, both papers
constructing a 1-generic degree g < 0′′ bounding a minimal degree m < 0′.
Indeed, Chong and Downey [4] gave a local iff condition (now called “having
no tight cover”) which characterized when a set B could be computed from
a 1-generic set. In [3], they used this to construct a minimal degree below
0′ not computable from a 1-generic, and Downey and Hirschfeldt [8] (page
387) also used this characterization to show that almost every set is not
computable from a 1-generic, although this was known earlier by the work
of Kurtz [12]. Finally, Downey and Yu [6] used this characterization to con-
struct a hyperimmune-free (minimal) degree computable from a 1-generic,
this being of interest since the construction of a hyperimmune-free degree
is a much “purer” form of perfect set forcing than is the construction of a
minimal degree which can use various approximation techniques.

Thus, we know no 2-generic degree can bound a minimal degree, and
a 1-generic degree can bound a minimal degree. In this paper, we give an

2

affirmative answer the natural question of Barmpalias and Lewis-Pye [2] (see
also [1]) who asked whether a weakly 2-generic degree can bound a minimal
degree.

Theorem 2. There exist M <T G <T ∅′′ with M of minimal Turing degree
and G weakly 2-generic.

On general grounds, we point out that this theorem is unlikely to be
proven by forcing, and hence some kind of limit/approximation construction
will be needed. Moreover, as we first prove, if G is weakly 2-generic then
the degree of G forms a minimal pair with 0′ (something that might have
been already known, but we could not find in the literature). Thus we
will need a computable construction to construct both G and M , neither
of which is ∆0

2 and hence at no stage will initial segments come to limits.
Full approximation constructions of ∆0

3 sets have occurred in the literature
such as Downey [7], but they are rare and complex. Moreover, no full
approximation construction of a weakly 2-generic has previously occurred.
Thus the proof here is also of some technical interest as it involves techniques
which may have wider applications.

The proof consists of two interacting full approximation arguments one of
a weakly 2-generic and the other of a minimal degree, where the interactions
are controlled by a priority tree of strategies.

2 Notation

The set of finite binary strings is denoted by 2<ω and the set of infinite
binary sequences by 2ω. If σ is a finite string, then [σ] denotes the cylinder
σ, i.e. the set of infinite binary sequences with prefix σ. If S is a set of
finite strings, then [S] is the set of all infinite sequences with some prefix in
S. We say that σ � τ if the finite string σ is a prefix of the finite string or
infinite sequence τ . We also use the relation <L to denote the lexicographic
ordering of strings.

3 Minimal Pair

In this section we prove the following easy result.

3

Theorem 3. Suppose that X ≤T G, ∅′ and G is weakly 2-generic. Then X
is computable.

Proof. Suppose that ΦG = X with X ≤T ∅′, X = limsXs, and G weakly
2-generic.

Let S = {σ | [∃s0∀s > s0(Φ
σ ↓ [s] 6≺ Xs) ∨ (∀τ∀s)(σ � τ → Φτ ↑ [s])]}.

If S is dense then G meets S which is a contradiction. Thus S is not
dense.

Therefore there is some σ0 such that for all σ ∈ S, σ0 6� σ.

Then for all σ extending σ0 there is some τ , σ � τ and Φτ ↓ . But also
for such a τ , Φτ ≺ X, so that X is computable.

4 The Proof of Theorem 2

We build a weakly 2-generic G and a set M of minimal degree and a proce-
dure Γ with ΓG = M . The reader should think of Γ as a partial computable
function from strings to strings with the usual continuity conditions for a
Turing procedure. Namely, if ν � τ and Γν ↓,Γτ ↓, then Γν � Γτ . As re-
marked earlier Theorem 3 imposes some restrictions on the constructions of
both G and M . While the initial segments of both G and M do not come to
limits in the construction, we will be able to read them off the true path of
the construction and the construction will ensure that there are arbitrarily
long initial segments ρ ≺ G,σ ≺ M with Γρ ↓= σ.

It is most convenient to build M in Cantor Space and G in Baire space.
We will think of G as being the “left” construction and M the “right”
construction with Γ the partial computable mapping of strings in the left
construction to strings in the right construction.

As usual, Φe denoted the e-th Turing procedure, and we will let S0, S1, . . .
be a standard enumeration of the Σ0

2 sets of strings in Baire space. For ex-
ample, if Qi denotes the i-th partial computable binary relation, we can
let σ ∈ Si iff ∃s∀tQi(σ, s, t). As is well known, we can choose Qi here to
be the i-th primitive recursive 3-place relation, so not worry about halting
considerations.

Hat convention It is most convenient to use certain conventions about

4

the approximation to Si. We will adopt a kind of “hat” convention. That
is, if σ appears in Si at stage s, with witness s0, meaning that

• Qi(σ, s0, t) holds for all t ≤ s.

• s0 is least with this property.

Then if Qi(σ, s0, s+1) fails to hold, we will regard σ to not appear to be
in Si at stage s+1, even if there is some s1 with Qi(σ, s1, t) for all t ≤ s+1.

Conventions When we write τ ∈ Si,s we mean that τ appears to be in
Si,s in the sense above. Moreover, if τ app rears to be in Si,s with witness
s0, then we will ask that s0 > |τ |. So long strings must have large witnesses.
This last convention helps when it comes to choosing strings appearing to
be in Si,s during the priority construction.

These conventions is more or less standard.

The requirements we must meet are the following.

Re : Se dense ⇒ G meets Se [Weak-2-Genericity]

Ne : Φ
M
e total ⇒ (ΦM

e ≡T ∅) ∨ (M ≤T ΦM
e) [minimality]

Additionally, we will need to make M noncomputable. This could be
added as an explicit feature of the construction, but in fact, noncomputabil-
ity of M will be a consequence of the construction method and the Recursion
Theorem, in a way we will later discuss.

We will discuss the meeting of the requirements in isolation and then
later analyze the interactions of the requirements. We begin with Re.

5 Weakly-2 generic construction - Basic module

for Re

Now, in isolation the idea is the following. We will assume Re has at its
disposal an initial segment ρ(e, s) of G. Of course. in the real construction,
there will be several versions of such ρ which depend upon what seems
correct at the current stage. However, for the present discussion, we assume
that is a true initial segment of G, and moreover Γρ(e,s) ↓ [s].

5

Now, the idea is to set aside ρ(e, s)̂ 1 as the part of ω<ω where we try to
meet Re, should Se be dense, and ρ(e, s)̂ 0 is where we will meet Re if we
are in the lucky case that Se is not dense.

It will be convenient in the construction to also make sure that Γρ(e,s)̂ 0 ↓
[s] and Γρ(e,s)̂ 1 ↓ [s] are incompatible extensions of Γρ(e,s). As we see, this
will necessitate certain complexities in the construction, but will be discussed
later.

The strategy is pretty simple. If we see some τ(e, s) ≻ ρ(e, s)̂ 1 and
τ(e, s) ∈ Se,s, then we would like to route Gs+1 ≻ τ(e, s). Should it be the
case that τ(e, s) ∈ Se,t for all t ≥ s, we will be done as now G meets Se.
This is outcome f on the priority tree.

While we are waiting for such a τ(e, s) to occur, we route Gt through
ρ(e, s)̂ 0. That is, until we see such a τ , we have ρ(e, s)̂ 0 ≺ Gt. We regard
this as outcome ∞.

Now should we think we have found τ(e, s) and the τ(e, s) /∈ Se,t at
t ≥ s + 1, our action would be to re-route Gt through ρ(e, s)̂ 0 again. At
stage t+ 1 we would again seek a τ(e, t) ∈ Se,t extending ρ(e, s)̂ 1.

Consider a stage u ≥ t+1. Now the question is “Which τ(e, u) to pick?”,
since there could be many possible choices of strings appearing in Se,u. As
with most Σ2 arguments, we would pick the τ(e, u) which has been there the
longest time. That is, if we think τi ∈ Se,u with witnesses si for i ∈ {1, 2},
then choose the one with the least si, and then if both have the same si,
choose the lexicographically least one1.

Note that if Se is really dense, eventually we would find τ = lims τ(e, s)
to get stuck on extending ρ(e, s)̂ 1. This is the Σ0

2 outcome f . If no such τ is
found, then we would either switch to ρ̂ 0 infinitely often (outcome ∞, the
Π0

2 outcome) or get stuck from some point on, outcome w. On the priority
tree, we have ∞ <L f <L w.

Of course, as mentioned earlier, the above is a simplification for the
Basic Module, as there will be several versions of ρ on the guesses as per the
behaviour of higher priority requirements, but the reader should keep this
in mind.

Note also, in the background, we will also be mapping ΓG
s → Ms in con-

1The reader here should pay attention to the second convention concerning Se, in that
long strings cannot have small witnesses.

6

junction with the above. For example, in the basic module, we would nat-
urally map Γτ(e,s) = Γρ(e,s)̂ 1 and potentially Γ maps extensions of ρ(e, s)̂ 0
to Γρ(e,s)̂ 0. Plainly there are problems with this since we need to make Γ
total. Problems are revealed when we consider the strategy in combination
with others.

Remark 4. Moreover, as we discuss later, we cannot allow Re to move us
off a higher priority “state” for M . The point is, if at some stage we define
Γη = σ and we see some τ ∈ Se,s with τ � η, then we would be forced
to make Ms+1 � σ if Gs+1 � τ . This will generate the key tension in the
construction.

6 Minimal degree construction: Basic Module for

Ne

The standard minimal degree construction using e-splitting trees and full
trees is well-known to computability theorists. Less well known is the full
approximation construction, and this is particularly true in the setting where
M 6≤T ∅′. Thus we will take the liberty of describing in detail how this will
work.

The reader should recall that a function T : 2<ω → 2<ω is called a
(function) tree if for every finite binary string σ, T (σ0) and T (σ1) are in-
compatible extensions of T (σ). A string σ is said to be on T if it is an
element of the range of T . The set of paths in T are denoted by [T]. A set
M is said to be on T if infinitely many prefixes of M are on T . Recall the
following standard definition.

Definition 5. A string σ on a function tree T is said to e-split if there are
incompatible extensions τ and ρ of σ, and an input n such that Φτ

e(n) ↓6=
Φρ
e(n) ↓. A string σ on T is said to be non-e-splittable if for every pair of

extensions τ , ρ of σ and every n ∈ N, if both Φτ
e(n) ↓ and Φρ

e(n) ↓, then
Φτ
e(n) = Φρ

e(n).

A set M is said to be e-splittable on T if every prefix of M on the tree
T , is e-splittable. M is said to be non-e-splittable on T if M has a non-e-
splittable prefix on T .

The notion of e-splitting trees is useful for the construction of sets of
minimal degrees because of the following fundamental property.

7

Lemma 6 (Essentially, Spector [13]). Let T be e-splitting and M ∈ [T]. If
ΦM
e is total, then M ≤T ΦM

e .

The basic module for N0 is to build a tree T0,s as follows. For any stage s,
we set T−1,s = 2<ω. At stage s, Ms will be a length s path on T0,s. Initially,
T0,0 = T−1,0, so that T0,0(ν) = ν. At each stage s, we will associate with
each node ν a 0-state which is one of ∞ or f . This will indicate whether we
think that T0,s(ν) 0-splits or not.

This is done in a somewhat obvious way. We will begin with ν = λ, the
empty string. Now initially we have no computations. We give T0,s(λ) the
0-state f. As the construction proceeds, we monitor Φν(n) for all n such
that for all m < n, for all ν ∈ T0,s of length ≤ s. At the first stage s, if
any we see ΦMs(n) ↓ [s] we would like to issue a description of ΦM

0 (n), and
argue that this is correct, so that ΦM

0 is computable.

The only time we would be wrong would be that we saw some n where
Φν0
0 (n) and Φν2

0 (n) 0-split for some ν0, ν1 on T0,s
2. If at some stage we

observe this, then, supposing wlog ν0 <L ν1, we would raise the 0-state of
λ = T0,s(λ) to ∞, refining the tree T0,s+1 so that we define, for all ξ ∈ 2<ω,
T0,s+1(1̂ ξ) = T0,s(η0 ξ̂) where T0,s(η0) is the use of Φν0

0 (n) on T0,s, and
T0,s+1(0̂ ξ) = T0,s(η1 ξ̂) T0,s(η1) is the use of Φν1

0 (n).

Clearly, the strategies for T0,s+1 will now inductively try to raise the
0-state of the nodes T0,s+1(0) and T0,s+1(1) independently, refining the tree
when splits are found, as above, and working on each of the successors of
these nodes if splits are found.

In the actual construction, the N0 strategy asks that M be on the in-
ductive tree with the high 0-state, ∞, if possible. In the construction above,
when we raise the state of λ we would ask that T0,s(ηi) ≺ Ms+1 for some
i ∈ {0, 1}.

As far as the Basic Module is concerned, this will mean that for each s,
Ms is a length s path on T0,s in the sense that at each stage s we will have
a shortest σ where T0,s(σ) ≺ Ms and T0,s(σ) has 0-state f .

More generally, at each stage s, we now build a sequence of total com-
putable function trees with the following property : for any stage s and any
e, we have a total computable tree Te,s which represents the s-stage approx-

2And, in particular, Φ
Ms1

0
(n) and Φ

Ms2

0
(n) 0-split Φν0

0
(n) and Φν1

0
(n) 0-split, after we

issued a description of Φ
Ms1

0
, say.

8

imation to a tree Te. Further, we will ensure that (paths in) the trees form
a nested sequence as follows.

[T−1,s] ⊇ [T0,s] ⊇ · · · ⊇ [Ts,s].

For any index e, we will consider the following tree constructed in the limit.

Te = lim
s→∞

Te,s,

where the limit is defined pointwise — i.e., for every string σ, Te(σ) =
lims→∞ Te,s(σ). This has the consequence that the limit tree Te may not be
computable. 3

At each stage we will associate with nodes Te,s(σ) a certain e-state which
will be a string consisting of symbols from {∞, f} of length e+1. These are
changed as above according to observations about whether Te,s(σ) e-splits
on Te,s (i.e. the splitting nodes must be on Te,s). We then raise e-states by
replacing the last symbol f by ∞ if splits are observed and refining the tree
Te,s.

On the priority tree, if a node ν represents Ne and we see a new split at
a stage where ν looks correct, we would say that the stage is a ν̂∞ stage,
else a ν f̂ stage.

The reader should note that in the construction, we might see that
Te,s(σ) raises its state to α̂ ∞ as we see a split, but later it might be that
this split is removed from the tree Te,t (t > s). If this happens then it will
be the case that the state increases to α′ f̂ for some α′ <L α where ∞ <L f ,
meaning that some tree Te′,t becomes refined.

We can visualize this using the notion of “boundaries” on the various
trees. 4 On tree T0,s, there is a boundary below which every string σ is
0-splittable, and above which T0,s is the full tree. For the tree T1,s, there
are four boundaries. The nodes below the bottom-most boundary consists
of nodes which have 1-splits above 0-splits. Above that, is a layer of nodes
which have 0-splits, but no 1-splits. The third layer from the bottom consists
of nodes which have no 0-splits but have 1-splits. The topmost layer consists
of nodes which are neither 0-splittable nor 1-splittable.

As with any of these constructions, the details are very messy but the
idea is straightforward.

3However, we will argue that Te will contain a partial computable function tree T
∗

e

satisfying Ne.
4Note: Here we refer to the nodes in the domain of the trees.

9

Remark 7. The above is not quite correct when the inductive strategies are
considered, in the situation that we have a requirement Ne of lower priority
than a Rj , and the latter might force certain nodes to remain on Te−1,s for
the sake of keeping a witness ρ(j, s) (for instance) on the left tree because
Γρ(j,s) has an image in Tj,s and hence Te−1,s which cannot be removed with
priority j. This feature will be implemented by the “indicator nodes” where
we are allowed to raise e states on Te−1,s. (The point is that we make e-states
a finite string, and only initially raise e states on Te−1 for nodes Te−1,s(σ)
with |σ| > e. Higher priority strategies might lengthen the places we are
allowed to raise e-states. More on this later.

7 α-module and the inductive strategies

We now examine the interactions of the various requirements amongst them-
selves and describe the inductive strategy in the construction.

First, consider how a single Re requirement copes with a single Nj of
higher priority. We begin by looking at N0 being of highest overall priority
and consider R0.

The driver for N0 is to build M in a high 0-state tree. It is natural for
R0 to guess the eventual state of N0. Initially, R0 must guess state f , and
R0 would have erected a genericity location ρf with two extensions ρf 0̂ and
ρf 1̂.

These would have been mapped by Γ two incompatible strings in T0,s as
the construction has proceeded. That is, Γ(ρf) = σ, (actually, here σ = λ
as this is the first split) Γ(ρf î) = σi with σ1|σ0.

Now, what the version of R0 guessing ∞ is waiting for is to see some
0-split in T0,s before defining Γ. If we see an n where Φν0

0 (n) and Φν1
0 (n)

0-split for some ν1, ν2 o n T0,s, as in the discussion of the basic N0 module,
we would now be free to define Γ(ρ∞i) = νi, where ρ∞ is a new node chosen
in ω<ω. ρf and all of its extensions are now abandoned (forever), as the
guess they were predicated on (we will see no more 0-splits) is wrong.

To make this ρ∞ location stable, we will now ask that we would not
improve the 1-states of νi, and hence ρ∞ would be the location where we
would meet the genericity requirements should ∞ be the correct 0-state.

Now ∞ being the correct 0-state will only be revealed slowly. So whilst

10

we wait for this we would begin a new strategy for R0 on the assumption it
would be imprudent for us to define Γ on extensions of (particularly) ρ∞ 1̂
based on whether τ ∈ S0,s extends ρ∞ 1̂ in such a way that Γ(τ) does not
have state ∞.

Carelessness would allow that this occurs. The way we avoid this is as
follows. In the α-module where we have interactions, we will have additional
extensions of ρ∞ î, namely ρ∞ î̂ 0 and ρ∞ î̂ 1 (to begin) for i ∈ {0, 1}.

The two nodes ρ∞ î̂ 0 put in the construction of G the explicit guess
that there are infinitely many ∞-stages for extensions of νi. (i.e. where the
outcome ∞ looks correct for N0.)

We would begin at ν0. First we would route the construction through
ρ∞ 0̂̂ 1 = τf,0,s, indicating it is a “testing” or “pressing” node for the guess
∞ in T0,s for the node ν0. It has guess f , as indicated.

The idea would be that we route the construction in the cone [τf,0,s]
(on the left construction) and consequentially in the cone [ν0] in the right
construction, pressing Φ0 to prove that it is 0-splitting in this cone. Note
that if there is no stage s1 > s such that we see a 0-split above ν0 in T0,s we
have forced N0 to have the f outcome.

Whilst we are awaiting this, we would continue a construction in [τf,0,s]
all nodes having the f guess for the outcome of N0. In particular, a new
version of R0 will be spawned in this cone. For example, we would take the
two extensions of τ(f, 0, s) as the new ρf î, taking ρf = τ(f, 0, s).

Now either this is correct or at some stage s1 > s we might see a 0-split
of ν0 in T0,s1 , say ξ0, ξ1. The construction would refine the tree T0,s1 by
redefining T0,s1+1(00) = ξ0, T0,s1+1(00) = ξ1, and we would raise the 0-state
of ν0 to be ∞ in T0,s1+1.

At this stage we would allow ourselves one step in the construction
routing Gs1+1 through ρ∞ 0̂̂ 0. We would initialize the construction that
went through τ(f, 0, s) by cancelling it forever and pick a new τ(f, 0, s1+1)
to the right of τ(f, 0, s) in ω<ω ∩ ρ∞ 0̂.

At this stage we would look to see if there is some ν appearing to be in
S0,s1 extending ρ∞ 1̂̂ 0. If there is such a ν, then we would prefer to route
the construction through ρ∞ 1̂̂ 0. However, we won’t do this unless we can
do so in the high 0-state.

Thus what we do at stage s1 + 2 is to route the construction through

11

ρ∞ 1̂̂ 1 = τ(f, 1, s2 + 2) The game is similar. We seek a 0-split of ν1 in T0,t

for t ≥ s2 + 2.

Now whilst we are waiting for N0 to produce extensions of ν1 in the
high 0-state, we will be making the construction in the cone [τ(f, 1, s2+2)],
guessing the low 0-state f for N0 for extensions of ν1 in T0,t Again we can
spawn a version of R0 in this cone.

Now again we are pressing N0. We can remain in this pressing situation
until we see a 0-split in T0,t above ν1.

Should this happen, we would initialize τ(f, 1, t + 1)] picking a new ex-
tension of ρ∞ 1̂ to the right of ρ∞ 1̂̂ 1. Now we would be free to have a
single stage in the cone [ρ∞ 1̂̂ 0̂] provided that ν has remained in Se,u for
all stages u between s2 + 2 and t.

Now, if this is not true for ν then we would go back to trying to play
ρ∞ 0̂ by moving into the new cone [τ(f, 0, s1 + 1)] picked earlier.

We would repeat the sequence above for the new τ(f, 0, s1 + 1) until we
had another 0-split(s) as determined by the construction. (For example, if ν0
had two extensions ξ0 <L ξ1, and they were corresponding to some genericity
location for R1, say, then we would ask that both were “confirmed” to have
0-split extensions before we believed ρ∞ 0̂̂ 0 again.)

The cycle would then repeat as above.

Now, this is not quite correct as we now see. Let’s consider the situation
where R1 has a genericity location ρ with two extensions mapped by Γ to
ξi for i ∈ {0, 1}.

In point of fact we would guess that since R1 has lower priority than N1,
we would need to look also at the 1-state of ρ = ρ∞ 0̂̂ 0. So this ρ should
be ρα where α ∈ {f,∞}2.

This will entail there being several versions of R1 genericity locations on
the left side.

One version is only spawned when ∞ looks correct for N0. This ver-
sion would have guess state ∞∞ and there would indeed be two versions
according to the outcome of R0 guessing ∞ for N0.

Thus, for instance, each time ∞ looks correct for N0 we would route
the construction through one of ρ∞ î̂ j for i, j ∈ {0, 1} as above. So, for
instance, suppose that we believe that we should route G through ρ∞ 0̂̂ 0

12

because we think that the correct 0-state is ∞ and we think that there is
no apparent R0 witness (the ∞-outcome) extending ρ∞ 1̂̂ 0. We will have
mapped ρ∞ 0̂̂ 0 by Γ to some string ν0, say, in Ms, on T0,s.

Then this ν0 will be tested not just for 0-states, but additionally for
1-states. So at the least we would need extensions ρ(∞∞∞, s)̂ î j and
ρ(∞∞f, s)̂ î j, of ρ∞ 0̂̂ 0 for the possible behaviour of the 1 state of exten-
sions of ν0.

The plan is that weaker guesses will correspond to strings right and be
initialized each time things look incorrect. For example, we might for a long
time believe that ∞∞f looks correct but then see some new 1-split on the
0-splitting tree (i.e. an ∞∞-split) and hence we would have gs+1 extend
one of the strings ρ(∞∞∞, s)̂ î j depending on the behaviour of S1,s.

The idea now extends to any length of e-state.

Construction

The construction proceeds in substeps where we generate a string TPs ∈
{∞, f} the apparent true path at stage s, which gradually gets longer with
s.

In the construction associated with guesses α ∈ {∞, f}<ω there (may)
be “tests” which are defined as Test(α, s) and these will be strings in 2<ω.
If at any stage we move left of α in the construction this test is initialized
to ∅.

At stage 0 assign ρ∞ and ρf,s as two strings in Baire space of length
2 with ρ∞ <L ρf,s. Also take two extensions ξ0 < ξ1 of ρf,0. Declare the
current test string for N0 Test (∞, 0) = λ (in T0,0). Let G0 = ξ0,M0 = λ

Substage 0 At stage s + 1, we begin at λ. Let Test(∞, s) = ν. See if
there is a 0-split ν0 <L ν1 extending ν in T0,s.

Case 1. If there is, refine T0,s to T0,s+1 by taking this 0-split, changing
the current state of ν so that the leading element is ∞.

Subcase 1.1. If Test(∞, s) = λ, then this is the first time we have be-
lieved that M might lie on a 0-splitting tree. We would extend ρ∞ by
two nodes, say ρ∞0, ρ∞1, and in turn each of these by two extensions,
ρ∞ 0̂̂ 0, ρ∞ 1̂̂ 0 which will be the “high state” locations. We would set
Test(∞, s + 1) = ν0. We would define Γ(ρ∞ 0̂̂ 0) = ν0 and Γ(ρ∞ 1̂̂ 0) = ν1.
We would let Gs+1 = ρ∞ 0̂̂ 0 and Ms+1 = ν0. This would end the stage.

13

Subcase 1.2 If Test(∞, s) = ν 6= λ, then we will have already previously
defined ρ∞ � Gt for t ≤ s.

Now we need to determine what to do at ρ∞. Since ∞ looks correct for
N0, we will have Gs+1 extend one of ρ∞ î̂ 0 for i ∈ {0, 1}.

Subcase 1.2.1 If Gt has not properly extended ρ∞ 0̂̂ 0 (so that this
is the first time), then we will let Gs+1 ≻ ρ∞ 0̂̂ 0, and move to the next
substage. Declare that s+ 1 is an ∞∞-stage.

Subcase 1.2.2 If we have never had Gt extend ρ∞ 1̂̂ 0 and there appears
to be some τ ∈ S0,s extending ρ∞ 1̂̂ 0, choose the one that has been there the
longest, (as per the convention before the construction) let Gs+1 = τ , and let
Γ(τ) = Γ(ρ∞ 1̂̂ 0(= ν1). Declare that s+1 is an ∞f -stage. Test(∞, s+1) =
ν1.

Subcase 1.2.3 If we have never had Gt extend ρ∞ 1̂̂ 0 and there appears
to be no τ ∈ S0,s, then we ask thatGs+1 extends ρ∞ 0̂̂ 0. and move to the
next substage. We declare that s+ 1 is an ∞∞-stage.

Subcase 1.2.4 If we have previously hadGt extend ρ∞ 1̂̂ 0, see if there is
some τ ∈ Se,s extending ρ∞ 1̂̂ 0. If, the last time we visited ρ∞ we extended
ρ∞ 1̂̂ 0, via τ we will insist on the hat convention that τ has appeared to
be in Se,t for all intervening stages. If this is not true, then we will ask that
Gs+1 extend ρ∞ 0̂̂ 0. We declare that s + 1 is an ∞∞-stage and move to
the next substage.

Subcase 1.2.5 Else we will have that s+1 is an ∞f stage. Choose the
τ that has been there the longest. Now we claim that if we have previously
defined Γτ̂ for any τ̂ � τ at some stage t ≤ s then Γτ̂ = ǫ and ǫ will have

0-state ∞. For the longest such τ̂ (this could be ρ∞ 1̂̂ 0), we will define
Γτ = Γτ̂ = ǫ, say.

Subcase 1.2.5a Now if this was not already defined at the beginning of
stage s+1, set Gs+1 = ǫ. Declare that with priority ∞f we will not improve
the 1-state of ǫ, set Test(∞, s + 1) = ǫ and go to stage s+ 2.

Subcase 1.2.5b On the other hand, it could be that τ is already defined
as a witness for N0 and has been so since the last ∞f -stage.

Claim This would necessarily entail Test(∞, s) ≻ Γτ .

If this is the case, then we declare that Gs+1 will extend τ . We move on
to the next substage.

14

Case 2 There is no 0-split of Test(∞, s) in T0,s.

Subcase 2.1 ρf,s is currently undefined, then choose a new string for
this right of ρ∞ and define it as ρ(f, s+1). Put two incomparable extensions
of this on the tree ξ0 < ξ1 of ρf,s+1. Map Γξi = νi for i ∈ {0, 1} where νi
are incompatible extensions of τ in T0,s, and declare that these strings will
currently only have a 0-state. This finishes the stage.

Subcase 2.2 If ρ(f, s) is currently defined, move on to substep 1, asking
that Gs ≻ ρ(f, s) (i.e. Gs+1,t = ρ(f, s+ 1) = ρ(f, s). We declare that s+ 1
is a is a f -stage in either case.

To be consistent, we need to consider which of the two extensions of
ρ(f, s) look correct. This is done as in the basic module. If there is a τ ≻ ξ1
in Se,s with all the relevant conventions, then the stage will be a ff -stage
and we would ask that Gs+1 extend ξ. If this is the first time, then that
would compete the stage. If it is not the first time, we would move on to
the next substep, asking that Gs+1 ≻ ξ, and move on to the next stage. We
would define Γτ = Γτ̂ = ǫ for the longest τ̂ � τ , and ask that now the 0-state
of ǫ in T0,s+1 not be improved with priority ff . The default is Γτ = ν1.

If no such τ exists or the current candidate has left Se,s then we would
have s + 1 be a f∞-stage, and move on to the next substage unless this is
the first such time. We ask that Gs+1 ≻ ξ0.

Inductively, suppose that s + 1 is an α-stage and |α| = 2e. The we will
be associating Ne with α. We will have a current approximation to Gs+1 at
this substage t. We will have Gt

s+1 mapped by Γ to some κ in Te−1,s. We
need to determine whether to believe that this is an α∞ stage or not. If the
Test(α, s) is not yet defined, set it to be κ and end the stage.

Else, we Claim Test(α, s) ≻ κ.

See if there is a α∞-split on Te−1,s extending Test(α, s). If there is then
we will play ∞ and this will be an α∞-stage. We will then either define
ρ(α∞, s)̂ î 0 for the first time, and end the stage, or as above these will have
already been defined and we will decide which of them to take according to
the behaviour of Re at this guess.

If the test fails, then we will define a new extension ρ(αf, s) of Gt
s+1 if

necessary, with two splits ξj for j ∈ {0, 1} which we use for Re for this weak
guess exactly as above. The rest follows the same plan.

End of Construction

15

Now we verify the construction.

Let TP be the true path of the construction. That is the leftmost path.
This exists by induction.

Lemma 8. TP exists.

Proof. First, we establish that the length 1 prefix of the true path TP is
well-defined. Since the priority tree is finitely branching, either there are
infinitely many ∞ stages, or all but finitely many stages are f stages. In
the first case, suppose that s is an ∞ stage. Then we will discover a 0-split
above the current Test string and the construction will properly extend ∞
at that stage. In the second case, let s0 such that all s > s0 are f stages.
Then we will not discover 0-splits above the Test string at stage s. The
construction at that stage s will properly extend the priority f .

Now, we show that the length 2 prefix of the true path TP is well-defined.
Suppose the length 1 prefix of the true path TP is α. Either there will be
infinitely many α stages with length 2 extension α∞ or all but finitely many
α stages have extension αf . Suppose at stage s, S0 appears sparse. Then we
ensure that G extends ρ∞, hence the construction at stage s extends α∞.
Otherwise, if S0 is dense, then at some stage t > s, we will find the longest
resident of S0 above the current prefix ρf î of G. From stage t onwards, the
construction will properly extend αf .

Inductively, let α be a guess of the priority where |α| = 2e. For any
α∞ stage s, we will seek e-splits of the current test string. When this split
is discovered, the construction will extend α∞. Suppose almost all stages
have priority αf . Then the construction will eventually extend the priority
αf . The case when |α| = 2e+ 1 is similar.

Moreover the leftmost path of the left construction will map to the left-
most path of the right one.

That is, define G via this leftmost path.

Lemma 9. For every e ∈ N, the Re requirements are satisfied by G and
the Ne requirements are satisfied by M . Moreover, Γ is a partial-computable
functional with ΓG = M .

Proof. First, we show that N0 is met in the construction. If ∞ � TP ,
then in infinitely many stages s, we will see a 0-split above the test string

16

Test(∞, s). This will necessarily imply that every prefix µ ofM is 0-splitting.
Thus, by Lemma 6, M ≤T ΦM

0 . Otherwise, if f ≺ TP , then for almost all
stages s, the tree T0,s is the full tree above Test(f, s). In this case, M has
a non-0-splittable prefix on T0. This implies that ΦM

0 is computable. Thus,
N0 is met by the construction.

Now, to see that R0 is met in the construction, let α be the length-1
prefix of TP , and first consider the case when α∞ � TP . Then there are
infinitely many α-stages where S0 looks sparse. Hence, regardless of our
specific choice, R0 will be met. If, on the other hand, αf � TP , then for all
but finitely many stages s, S0[s] has an element extending ρf,s. There will
be a stage t ≥ s where the longest resident in S0 extending ρf,s is found.
In the construction, we also fix Γρf,t . By the induction hypothesis, since N0

is met in the construction, we conclude that for almost all stages, we will
identify an extension of ρf in the set S0. Hence, the requirement R0 is met.
Moreover, Γ maps ρf to a prefix of M .

If σ ≺ TP and |σ| = 2e then σ is devoted to solving Ne. By induction,
the Rν for ν ≺ σ and Ni for i < e with outcome f on TP have determined
an initial segment ρ of G. Each extension of ρ ≺ Gs will have the e-state of
its Γ-projection checked. If we get stuck checking one ξ then all the strings
in the cone above ξ will have e state with e+1-st element f , and ξ ≺ G. (So
there are no e-splits above ξ, and Te is a full tree above it.) Otherwise every
node that is a predecessor of G e-splits. In either case, Ne will be met, by
Lemma 6.

If |σ| = 2e + 1 then σ solves Re. Inductively it eventually gets a final
prefix ρ and since we are assuming that all the Nj of higher priority with the
low e-state have been dealt with, this ρ is immortal and is visited infinitely
often. Here we meet Re as there is no reason not to. Suppose σ f̂ � TP .
Then eventually we will find a τ in Se which extends ρ. Note that when
we define Γτ , we check only the e-state of the image. The reader should
note that at earrlier stages, before we choose τ for the last time, Γτ might
have had a higher state assigned to it, but a feature of the construction is
that when τ is chosen for the satisfaction of Re, we will automatically lower
its state to only consider the e-state for it. Hence the e-state machinery
will not move it because of the action of e′-state machinery for Ne′ for
e′ > e. It follows by induction that Γτ will have the correct e-state. This
implies that the test string will change its value only finitely often, and
further requirements are free to choose their test strings above Γτ . Also, if
σ̂∞ � TP , then there is a prefix β of G such that all extensions β′ of β

17

satisfy Γβ′

� M .

Acknowledgments

This research was initiated during a visit to André Nies’ research center
at Whiritoa. This research was supported by the Marsden Fund through
grants to Rod Downey and André Nies enabling Nandakumar’s visit to New
Zealand.

References

[1] George Barmpalias, A. R. Day, and Andrew E. M. Lewis. The typical
turing degree. Proceedings of the London Mathematical Society, 109:1–
39, 2014.

[2] George Barmpalias and Andy Lewis-Pye. The information content of
typical reals. In G. Sommaruga and T. Strahm, editors, Turing’s ideas
- their significance and impact. Basel Birkhauser/Springer Basel, 2014.

[3] C. T. Chong and R. G. Downey. Degrees bounding minimal degrees.
Proceedings of the Cambridge Philosophical Society, 105:211–222, 1989.

[4] C. T. Chong and R. G. Downey. Minimal degrees recursive in 1-generic
degrees. Annals of Pure and Applied Logic, 48:215–225, 1990.

[5] C. T. Chong and Carl Jokusch. Minimal degrees and 1-generic de-
grees below 0’. In Proceedings of the Aachen Logic Conference. Springer
Berlin, 1985.

[6] R. G. Downey and Liang Yu. Arithmetical sacks forcing. Archive for
Mathematical Logic, 45, 2006.

[7] Rod Downey. On π0
1 classes and their ranked points. Notre Dame

Journal of Formal Logic, 32:499–512, 1991.

[8] Rod Downey and D. Hirschfeldt. Algorithmic Randomness and Com-
plexity. Springer, 2010.

[9] C. A. Haught. The degrees below a 1-generic degree < 0′. Notre Dame
Journal of Formal Logic, 51:770–777, 1986.

18

[10] Carl Jokusch. Degrees of generic sets. In F. R. Drake and S. S. Wainer,
editors, Recursion Theory: Its Generalizations and Applications, pages
110–139. Cambridge University Press, 1980.

[11] Masahiro Kumabe. A 1-generic degree which bounds a minimal degree.
Journal of Symbolic Logic, 56:1075–1081, 1991.

[12] Stuart Kurtz. Randomness and genericity in the degrees of unsolvabil-
ity. PhD thesis, University of Illinois, Urbana-Champaign, 1981.

[13] Clifford Spector. On degrees of recursive unsolvability. Annals of Math-
ematics, 64:581–592, 1956.

19

