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Abstract

Let A and B be two finite sets of computable real numbers which denote the allowable wagers,
i.e. the additive difference of capital at any betting position, . Following the terminology in
Chalcraft et. al., an A-martingale is a martingale whose wagers are limited to elements in A,
and a B-martingale has wagers limited to elements in B. Extending the work of Chalcraft et.
al., Bavly and Peretz establish necessary and sufficient conditions for some A-martingale to
succeed betting on sequences that B-martingales can succeed betting on for arbitrary infinite
sets of reals.

In this paper, we investigate the analogous question of comparative betting power of mar-
tingales when the ratios of bets are restricted to a finite set of rationals which excludes 1. This
contrasts with the setting of simple martingales and almost simple martingales as investigated
by Ambos-Spies, Mayordomo, Wang and Zheng. We derive necessary and sufficient conditions
for deciding when a set of ratios allows greater power in betting as compared to another. Anal-
ogous to a recent work of Teutsch, we establish that success and strong success of martingales
are distinct notions in the setting of restricted ratio betting.

Keywords: Martingales, Computability.

1 Introduction

Let A and B be two finite sets of computable real numbers which denote the allowable wagers that
martingales can make. Following the terminology in Chalcraft et. al. [5], an A-martingale is a
martingale whose wagers are limited to elements in A, and a B-martingale has wagers limited to
elements in B. In Chalcraft et. al. [5], the authors establish necessary and sufficient conditions
for some A-martingale to succeed betting on sequences that B-martingales can succeed betting on.
Integer-valued martingales, where the wagers are guaranteed to be integers, and martingales with
restricted wagers have been objects of recent studies by Bienvenu, Stephan and Teutsch [4], [9], and
Peretz [8], culminating in the elegant work of Bavly and Peretz [3] giving a full characterization
of when a martingale can win over more sequences with one set of real-valued wagers than with
another possibly infinite set of real-valued wagers.

∗(Corresponding author)
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In this paper, we investigate the analogous question of comparative betting power of martingales
when the ratios of bets are restricted to a finite set. Without loss of generality, we will restrict the
ratios to rational numbers, and the general case of finite sets of computable real ratios is similar.

A very similar setting has been explored in the context of simple martingales and almost simple
martingales, in the work of Ambos-Spies, Mayordomo, Wang and Zheng [1]. A simple martingale
is one that can bet either q, 2 − q or 1 times its current capital on the next bit, and an almost
simple martingale is one that is allowed to bet from a finite set of ratios which includes 1. They
show that regardless of which finite ratios are used, the set of randoms on which the martingales
fail is exactly the same. Moreover, this class is precisely the set of Church-Stochastic sequences.

However, we show in this work that the situation is radically different when we make the
ostensibly minor change that martingales are allowed to bet from a finite set of rational betting
ratios, but they are never allowed to bet evenly. This results in behavior which depends on the
actual set of ratios used. We show a necessary and sufficient condition for a set of randoms with
respect to one set of ratios to be a proper subset of the randoms for another set of ratios, as long
as neither contain 1. We say that the ratio set with the larger success set dominates the other.
This is the first setting where restricting the ratio set leads to a separation of different degrees of
randomness. In particular, we show the following (definitions are provided in the next section).

Theorem. Let A and B be finite sets of ratios in the unit interval. Then the set of random
sequences with respect to computable A-martingales is a strict subset of the set of random sequences
with respect to computable B-martingales succeed if and only if max(B) < max(A).

We also investigate the dual notions of success where the capital of the martingale infinitely often
exceeds any given bound, and that of strong success where the capital of the martingale almost
always stays above any given bound. In the context of computable martingales, we know that
for every sequence on which some c.e. martingale succeeds, there is some other c.e. martingale
which strongly succeeds, employing what we call the savings account method (see for example,
[6]). However, Teutsch has showed that in the context of martingales with integer wagers, these
two notions lead to distinct notions of randomness [9], even though for rational wagers, they are
equivalent. We show that these two notions are distinct for valid ratio sets as well, giving more
insight into the power and limitations of the savings account method.

2 Preliminaries and Notation

We denote the set of natural numbers by N, rationals by Q and reals by R. For any set of numbers
S, the notation S+ denotes the set of positive numbers in S. For functions f, g : N → N, we say
that f is o(g) if limn→∞ f(n)/g(n) = 0, and f = Θ(g) if there are positive constants c and C such
that for all large enough n, cg(n) ≤ f(n) ≤ Cg(n).

Let Σ denote the binary alphabet. We denote finite binary strings by Σ∗ and infinite binary
sequences by Σω. For positions m < n, finite strings w and infinite sequences X, w[m. . . n] and
X[m. . . n] are the respective substrings consisting of all characters from the mth and nth position
(both ends inclusive). For brevity, we write X � n for X[0 . . . n].

Definition 1. A martingale M : Σ∗ → [0,∞) is a function such that the following hold.

1. M(λ) = 1.

2. For every string w, M(w) = M(w0) +M(w1).
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We can interpret such a function as the capital of a player betting on the outcomes of a betting
game on the bits of an infinite sequence. If we interpret M(w) as the capital at the string w, then
martingale represents a fair betting scenario where the expected capital after a bet is the same as
the capital before the bet.

Definition 2. A martingale M : Σ∗ → [0,∞) is said to succeed on a sequence X if

lim sup
n→∞

M(X � n) =∞, (1)

and is said to strongly succeed on X if

lim inf
n→∞

M(X � n) =∞. (2)

The success set of the martingale M is defined as

S∞[M ] = {X |M succeeds on X} (3)

and the strong success set of the martingale is defined as

S∞str[M ] = {X |M strongly succeeds on X}. (4)

Sequences in Σω − S∞[M ] are said to be random with respect to M .

A real number r is said to be computable if there is a computable function r̂ : N→ Q such that
for every n, |r̂(n)− r| < 2−n. A martingale M : Σ∗ → [0,∞) is said to be computable if M(w) is a
computable real number, uniformly in w.

Definition 3. A finite set A of computable real numbers in (0, 1) is called a ratio set. The closure
of A, denoted A is A ∪ {s | 2− s ∈ A}.

For a ratio set A, an A-martingale is a martingale M such that for every string w and bit b, we
have M(wb)/M(w) ∈ A.

Note that this notion allows us to retain M(λ) = 1. We shall usually be concerned with
computable A-martingales; if A is finite then this is equivalent to saying that (w, b) 7→M(wb)/M(w)
is a total computable function.

Extending the notion of success sets of a martingale, we introduce the following.

Definition 4. For a ratio set A, the success set of A is defined by

S∞[A] = {X | ∃ a computable A-martingale M such that X ∈ S∞[M ]} (5)

and the strong success set is defined by

S∞[A] = {X | ∃ a computable A-martingale M such that X ∈ S∞str[M ]}. (6)

The set of sequences Σω − S∞[A] are called A-randoms.
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3 Ratio Sets versus Restricted Wagers

Given a martingale M : Σ∗ → [0,∞), a wager at a string w on the bit b is the difference M(wb)−
M(w). In Chalcraft et al.[5], the authors observe that if there is a computable real k such that the
wagers in B is a subset of the wagers in kA, then for every sequence X on which some B-martingale
succeeds, there is an A-martingale which succeeds on X as well.

Given two finite sets of betting ratios, we want to find necessary and sufficient conditions for
the success set of a B-martingale to be subsumed in the success set of some A-martingale. We
begin by arguing that the methods for dealing with finite sets of wagers fail when we consider finite
sets of betting ratios.

We first show that A ⊆ kB may be insufficient to guarantee that S∞[B] ⊆ S∞[A].
Let M be a B-martingale. Then the strategy in Chalcraft et. al. for the additive wagers is to

bet k times the amount that M bets at each position. However, if we try to imitate this strategy
for restricted ratios using an A martingale which bets k times what M bets, it is easy to check that
does not define a martingale, since

N(w0) +N(w1) = N(w)k
M(w0) +M(w1)

M(w)
= 2kN(w),

and this is equal to N(w) only when k = 1. Hence even if B ⊆ kA is a sufficient condition, the
construction may not be a straightforward adaptation of the technique in Chalcraft et. al. [5].

We now derive the necessary and sufficient conditions on the set of betting ratio sets A and B
to ensure that S∞[B] ( S∞[A].

4 Unique betting ratios against other unique ratios - Sufficient
conditions for domination

In this section, we examine the simplest scenario, namely, the one where the sets of ratios A and B
are both singletons (since neither can be {1}, their respective closures contain exactly two elements).
We establish the sufficient condition for S∞[B] ( S∞[A] that the ratio in A is greater than the
ratio in B.

Observe that for any x ∈ (0, 1), we have g(x) = x(2−x) < 1. Moreover, g is monotone increasing
in (0, 1). We can refine this observation, as in the following lemma. We utilize a threshold function
in the proof, which we first define.

Definition 5. Let x ∈ (0, 1). Then the threshold function of x, hx : N× R→ N is defined by

hx(j, r) = min{i | xj(2− x)j+i > r}. (7)

To show that hx is well-defined and total, we observe by taking logarithms that xj(2− x)i+j is
greater r precisely when

i > −j
(

1 +
log x

log(2− x)

)
+

log r

log(2− x)
.

This can always be achieved by making i large enough, hence there must be a minimal such i. In
particular, if r > 1 then hx(j, r) > 0.

Lemma 6. Suppose a > b. There is a positive constant c such that for sufficiently large r > 0, and
every positive i, j, if bj(2− b)i+j > r, then aj(2− a)i+j > rc. 1

1r need not be greater than 1, but i has to be positive.
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Proof. By assumption, we know that

i > −j
[
1 +

log b

log(2− b)

]
+

log r

log(2− b)
.

Fix c = log(2− a)/ log(2− b) > 0. It suffices to show that

−j
[
1 +

log b

log(2− b)

]
+

log r

log(2− b)
> −j

[
1 +

log a

log(2− a)

]
+

c log r

log(2− a)

= −j
[
1 +

log a

log(2− a)

]
+

log r

log(2− b)
,

since the above implies that aj(2 − a)i+j > rc. Since log x/ log(2 − x) is monotone increasing in
(0, 1), the inequality above follows easily.

Lemma 7. Suppose A = {a} and B = {b}, where 0 < b < a < 1. Then S∞[B] ⊆ S∞[A].

Proof. Let N be a computable B-martingale which succeeds on X, and r be a number sufficiently
large so that rc > 1, where c = log(2−b)(2 − a) > 0. Then for every m, there is some n > m such
that N(X � n)/N(X � m) > r. Equivalently,

N(X � n)

N(X � m)
= bj(2− b)i+j , where i > fb(j, r).

Then the A-martingale M which bets (2 − a) of its current capital when N bets (2 − b) on a bit,
and a when N bets b, satisfies

M(X � n)

M(X � m)
= aj(2− a)i+j > rc > 1,

by Lemma 6. Since N is computable and division over computable non-zero reals is computable,
it follows that M is computable as well. Since c does not depend on r, hence, X ∈ S∞[M ].

We now show that A strictly dominates B in the sense that there are sequences on which some
computable A-martingale succeeds, but no computable B-martingale does. We construct such a
sequence X by a finite extension, permitting some specific A-martingale to succeed on X, but
defeating all B-martingales. The proof relies on a combinatorial estimate which shows that at any
stage in the construction, we can always extend our current finite prefix of X in a manner so as to
defeat all B-martingales.

Lemma 8. For x ∈ (0, 1), let cx = 1
1−log(2−x)(x)

. If 0 < b < a < 1, then we have 0 < cb < ca < 0.5.

Proof. This follows from the observation that if x ∈ (0, 1), then −∞ < log(2−x)(x) < −1, hence
0 < cx < 0.5. Since log(2−x)(x) is monotone increasing for x ∈ (0, 1), it follows that for 0 < b <
a < 1, we have cb < ca.

Theorem 9. Let 0 < b < a < 1, A = {a} and B = {b}. Then S∞[A]− S∞[B] is non-empty.

Proof. Fix N0 : Σ<ω → [0,∞) by:

N0(λ) = 1,

N0(σb) =

{
(2− a)N0(σ), if σ ∈ Σ<ω and b = 0,

aN0(σ), if σ ∈ Σ<ω and b = 1.
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That is, N0 is an A-martingale which always bets on 0. Let Ni, i ≥ 1, be an enumeration of all
computable B-martingales. Notice that our construction does not have to be effective; we merely
need to show the existence of some X ∈ S∞[A]− S∞[B].

We construct a non-empty set of sequences in S∞[N0] − ∪i≥1S∞[Ni]. For convenience, we
assume that the initial capital of the ith martingale, Ni(λ) < (2− b)−Li , where Li is the length of
the ith stage in the construction that follows.

The construction procceds in stages. At stage k, we determine prefixes τ such that N0(τ) ≥
(2− a)k, but for every 1 ≤ i ≤ k, there is a constant ci depending only on i such that

max{Ni(τ � m) | 0 ≤ m ≤ |τ |} ≤ ci,

i.e. Ni does not exceed ci on any prefix of τ .
Each stage is divided into two phases. During the first phase, we construct strings on which

every one of the finite number of martingales currently under consideration have roughly equal
number of gains and losses. Subsequently, we extend them with sufficient number of zeroes in
phase II to allow N0 to attain the required goal while restricting the gains of the B-martingales.

For the construction, we require a few preliminary results from probability theory, which we
now describe.

Define the random variables fi,m : Σω → {0, 1} for i, m ∈ N by

fi,m(X) =

{
0 if Ni(X � m) > Ni(X � m− 1)

1 otherwise.

For any martingale Ni, we can verify that fi,1, fi,2, . . . , forms a sequence of independent, identically
distributed random variables, as follows. Since the martingales cannot bet evenly, for any finite
subcollection fi,m0 , fi,m1 , . . . , fi,mj−1 of random variables, the probability that fi,m0 = b0, . . . ,
fi,mj−1 = bj−1, for any sequence (b0, . . . , bj−1) of bits is clearly 1

2j
. This shows that the sequence

of random variables is independent. Since the probability that any particular fi,j = 0 is 0 is 0.5,
they are also identically distributed. The average E[fi,0] is thus 0.5.

The Strong Law of Large Numbers [7] implies that, for any ε > 0, we have that

µ ({X ∈ Σω | ∀∞n |fi,n(X)− 0.5| < ε}) = 1, (8)

where µ is the Lebesgue measure. In the above equation, the least n after which fi,n(X) stays
within ε of 0.5 can vary, depending on X.

By Egorov’s theorem [2], there is a set with positive measure where this non-uniform almost
everywhere convergence in (8) can be made uniform - i.e. for every ε > 0, there is an N such that
the set

{X ∈ Σω | ∀n ≥ N |fi,n(X)− 0.5| < ε}

has positive measure.
We fix ε ∈ (cb, ca) where cb and ca are defined as in Corollary 8.
Stage k=1. Let `0 be a length such that

S0
0 = {X ∈ Σω | ∀n ≥ `0 |f0,n(X)− 0.5| < ε}

has positive probability. Similarly, let `1 > `0 be a length such that the set

S0
1 = {X ∈ S0

0 | ∀n ≥ `1 |f1,n(X)− 0.5| < ε}

has positive probability. By definition S0
1 ⊆ S0

0 .
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Let T be the set of prefixes of length `1 of elements in S0
1 . For all elements of T , both N0 and

N1 have roughly equal number of gains and losses. This ends Phase I.
For every τ ∈ T , N0 has at least `1(0.5 − ε) gaining positions, and N1 has at most `1(0.5 + ε)

gaining positions. Append `1(0.5 + ε − ca) many zeroes to τ . Then N0 has at least `1(1 − ca)
gains on this extension, but N1 has strictly less than `1(1 − cb) gains. Hence N0 attains 1 on this
extension, but N1 does not.

Let
T1 = {τ0`1(0.5+ε−ca) | τ ∈ T}.

Designate the lengths of the strings in T1 by L1. The ends stage 1.
Stage k > 1. Inductively, assume that we have defined a set Tk−1 of strings where N0 has

attained (2− a)k−1, but for 1 ≤ i ≤ k − 1, the capital gained by Ni anywhere along the prefixes of
strings in Tk−1 is at most

ci = (2− b)
∑i

j=1 Li .

Note that this upper bound on the capital attained by Ni depends only on i, and does not depend
on the stage number. Further, we assume that for every τ ∈ Tk−1 and all 1 ≤ i ≤ k − 1, Ni(τ) ≤ 1
- i.e. every B-martingale considered in stage k − 1 ends with capital at most 1.

In the kth stage, we extend strings in Tk−1 to build a set Tk. Each σ ∈ Tk satisfies the following
conditions.

1. N0(σ) ≥ (2− a)k.

2. For every ρ such that τ ≺ ρ � σ, where τ ∈ Tk−1 and σ ∈ Tk, and for every 1 ≤ i ≤ k− 1, we
have Ni(ρ) ≤ ci - i.e., during the stage k, N1, . . . , Nk−1 do not exceed capital c1, . . . , ck−1
respectively.

3. Nk(σ) ≤ ck.

Let [Tk−1] denote the set of all infinite length extensions of strings in Tk−1. Let `0 be a length
such that the set

Sk0 = {X ∈ [Tk−1] | ∀n ≥ `0 |f0,n(X)− 0.5| < ε}

has positive probability. Inductively, for 1 ≤ i ≤ k, let `i > `i−1 be a length such that the set

Ski = {X ∈ Ski−1 | ∀n ≥ `0 |fi,n(X)− 0.5| < ε}

has positive probability. Let T be the set of `k-long prefixes of the sequences in Skk . This ends
Phase I of stage k.

Extend each member of T with 0`k(0.5+0.5ε−ca)+k. Call the resulting set of strings Tk, and their
length, Lk. This ends Phase II of stage k.

By construction, for every σ ∈ Tk, N0(σ) ≥ (2− a)k.
For 1 ≤ i ≤ k − 1, we show that N1 does not gain greater capital in stage k over its maximum

gain in stage k − 1. The crucial property we maintain during the construction is that for any
martingale Ni, 1 ≤ i ≤ k− 1, the maximum length on which it can succeed during phase I remains
the same in every stage after i.

For the purpose of the following discussion, let τ ∈ Tk−1 and σ ∈ Tk. We use the letter ρ to
designate an extension of a string in Tk which is a prefix of some string in Tk.

Clearly, N1(τ) < 1 for every τ ∈ Tk−1. It has at most (2−a)
`1
2 ≤ c1 on any extension ρ in stage

k. For any ρ having length ≥ `1 + Lk−1, the number of gains that N1 has in stage k, is at most
|ρ|(0.5 + ε) in Phase I, and is at most |ρ|(1− cb) in Phase II, hence N1(ρ) < 1.
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Similarly, for any Ni, 2 ≤ i ≤ k−1, for any ρ ≺ τ , τ ∈ Tk−1, such that |ρ| > `i+Lk−1, we know
that Ni has at most |ρ|(0.5 + ε) gains on ρ, hence Ni(ρ) < Ni(τ). Thus the maximum value that

Ni attains in Phase I is Ni(τ)(2− b)
∑i

j=1 `j , which is less than ci. For any ρ longer than `i +Lk−1,
then number of gains that Ni has in stage k does not exceed |ρ|(0.5 + ε) in Phase I, and does not
exceed ρ(1− cb) in Phase II, hence Ni(ρ) < 1.

For the kth martingale, observe that Nk(τ) is at most 1, since |τ | < Lk−1, and we have set
the initial capital of Nk to ensure that Nk(τ) < 2−Lk2Lk−1 < 1. As above, for any extension ρ of
τ ∈ Tk−1, `k + Lk−1 < |ρ| ≤ Lk, the construction ensures that Nk(ρ) < 1.

5 Strong success versus success

In the setting of computably enumerable, computable, or resource-bounded martingales, it is known
[6] that the set of sequences on which martingales strongly succeed is precisely the set of sequences
on which they succeed. The proof of this fact employs the “savings account trick”, described
roughly as follows. Consider a martingale M and a sequence X on which it succeeds. We construct
another martingale N which, whenever M doubles its money, transfers 1 dollar to its “savings
account” and bets using only its remaining amount. It is easy to see that N strongly succeeds on
X. Recently, Teutsch [9] has shown that interestingly, when wagers are restricted to integers, the
notion of strong success is different from success - the savings account trick does not work in this
setting. Teutsch also shows that for rational wagers, these notions coincide.

We now show that in restricted ratio betting with rational ratios, the notion of strong success
is different from success. It is difficult to adapt the savings account trick to our setting. When we
transfer the capital to the savings account, it is not clear how to define the betting ratios followed
by the new martingale. It is not obvious that the betting ratios allowed for N are identical to that
allowed for M .

Indeed, we show that strong success and success are distinct notions in our current setting.

Lemma 10. Let A be a valid ratio set. Then there is a sequence X ∈ S∞[A]− S∞str[A].

Proof. Let max(A) = a < 1. Consider an enumeration M1, M2, . . . of computable A-martingales.
Without loss of generality, let M1 be the martingale which bets 2− a of its current capital on 0, at
every position. We construct a sequence X on which M1 succeeds, but on which none of the above
martingales, including M1, succeed strongly. The construction proceeds by fixing finite prefixes of
X, in stages.

At stage s = 0, let σ0 = λ be the prefix of X.
At every stage s ≥ 1, we set a prefix σs of X to meet the following positive requirement P1,s

and negative requirements Ri,s where 1 ≤ i ≤ s.

• P1,s: There is a string γ, σs−1 � γ � σs, where M1(γ) ≥ s.

• Ri,s: There is a string τ , σs−1 � τ � σs, where Mi(τ) ≤ 1/2.

During the stage s, we maintain a candidate extension σ̂s � σs−1. The string σs is an extension
of this candidate.

Construction
At stage s, s ≥ 1, we initialize σ̂s to σs−1.
In substage 1 of stage s, we meet P1,s and R1,s.
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We know that M1 bets on all paths extending σ̂s. In particular, there is a γ � σ̂s−1 on which
M1(γ0) > M1(γ1). Take the lexicographically least such γ. We set the new value of σ̂s to γ1, and
repeat the process until M1(σ̂s) < 1/2. This process takes at most

loga
1

2M1(σs−1)

such losing branches.
This meets the requirement R1,s.
To meet P1,s, in a similar manner, take log(2−a) 2s winning branches for M1 to obtain a string

γ extending σ̂s to ensure M1(γ) ≥ s. Set the new value of σ̂s to γ.
Now, at each substage 2 ≤ k ≤ s, of stage s, extend the current prefix of X to a new prefix

where the requirement Rk,s can be met as follows.
Note that Mk bets on a dense set of paths extending σ̂s. Then there is a γ � σs−1 on which

Mk(γ0) 6= Mk(γ1). If Mk(γ0) > Mk(γ1), then we set the new value of σ̂s to γ1, else to γ0. After
at most

loga
1

2Mk(σs−1)

such losing branches, we have Mk(σ̂s) ≤ 1
2 .

This completes the construction.
To verify that the construction works, note first that in every stage s, there is some prefix of σs

where M1 attains s. Hence X ∈ S∞[M1].
For every A-martingale Mi, i ≥ 1, every prefix σ of X has some extension γ with Mi(γ0) 6=

Mi(γ1). By construction, there are infinitely many n with M(X � n) ≤ 1/2. Thus X /∈ S∞str[Mi].

6 Unique betting ratio against finitely many betting ratios

In this section, we consider finite rational ratio sets whose minimum is greater than 0 and whose
maximum, less than 1. We introduce a notion which we use to compare two sets of rational numbers,
whether finite or infinite.

Definition 11. Let A and B be possibly infinite sets of rationals in (0, 1) such that their suprema
are rationals less than 1 and infima are rationals greater than 0. We say that the ratio set A
majorizes B if sup(A) > sup(B).

Theorem 12. Let A and B be finite sets of rationals in (0, 1) such that their maxima are less than
1 and minima greater than 0. If A majorizes B, then S∞[B] ⊆ S∞[A].

Proof. Let b1 = min(B) and b2 = max(B), and let M be a B-martingale. Let a be an element of A
such that b2 < a < 1. We show that for a fixed set B, for every sequence X on which M succeeds,
there is an A-martingale which succeeds on X.

First, assume that M bets only using b1 and b2.
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Consider three A-martingales, N1, N2, and N3 defined by

N1(σβ) =

{
aN1(σ) if M(σβ) < M(σ)

(2− a)N1(σ) otherwise,

N2(σβ) =

{
aN2(σ) if M(σβ) = b1M(σ) or (2− b2)M(σ)

(2− a)N2(σ) otherwise,

N3(σβ) =

{
aN3(σ) if M(σβ) = b2M(σ) or (2− b1)M(σ)

(2− a)N3(σ) otherwise.

In other words, N1 is an A-martingale that “imitates” M . The A-martingale N2 agrees with
M wherever the latter bets b1 or (2− b1) of its capital, and disagrees elsewhere. Symmetrically, N3

agrees with M exactly where the latter bets b2 or (2− b2) of its capital.
Assume that M(X � n) > r > 1. We show that there is some constant c such that at least one

of N1(X � n), N2(X � n), N3(X � n) and N4(X � n) exceeds rc.
Suppose M(X � n) = bj11 b

j2
2 (2 − b1)i1(2 − b2)i2 > r. Note that either one of bj11 (2 − b1)i1 or

bj22 (2−b2)i2 has to be at least
√
r, in particular, greater than 1. There are the following three cases.

Case I. Suppose bj11 (2 − b1)i1 and bj22 (2 − b2)i2 are both greater than 1, and assume, without

loss of generality, that bj11 (2− b1)i1 ≥
√
r. Then we have

N1(X � n) = aj1+j2(2− a)i1+i2 > aj1(2− a)i1 .

Since bj11 (2− b1)i1 >
√
r, by Lemma 6, we have aj1(2− a)i1 >

√
r
c
, where c =

[
log(2−a)
log(2−b1)

]
> 0.

Case II. Suppose bj22 (2 − b2)i2 = θ < 1. Then it follows that bj11 (2 − b1)i1 > r
θ > r > 1. Then

we have

N2(X � n) = aj1+i2(2− a)i1+j2 > aj1(2− a)i1 .

By the argument in case I, we can conclude that

aj1(2− a)i1 > (r/θ)c,

where c = [log(2− a)/ log(2− b1)]. Hence, N2(X � n) > rc.
Case III. If bj11 (2− b1)i1 < 1, then analogous to case II, we conclude that N3(X � n) > rc.
Since for each r, one of N1, N2 or N3 attains capital rc for some fixed constant c > 0, it follows

by the pigeonhole principle that there is an i, 1 ≤ i ≤ 3 such that

lim sup
n→∞

Ni(X � n) =∞.

Next, we show that the result holds if B has more than 2 values. Inductively, assume that if B
contains n distinct values, and max(B) < max(A), then there is a finite number of A-martingales
which cover S∞[B].

Let B′ be a ratio set majorized by A, such that B′ contains n + 1 elements. Let M be a
B′-martingale, and assume that

M(X � n) =
∏
b∈B′

bjb(2− b)ib+jb > r.
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First, consider the case that there is a maximal proper subset D of B′ such that∏
b∈D

bjb(2− b)ib+jb > r,

and for each b ∈ B′ −D,
bjb(2− b)ib+jb < 1.

By the inductive hypothesis, there is an A-martingale N̂D which bets on X, such that its capital
restricted to those positions where M bets using ratios from D, is at least rc. Then the A-martingale
ND defined by

ND(σ0) =

{
N̂D(σ0) if

{
M(σ0)
M(σ) ,

M(σ1)
M(σ)

}
∈ {b, 2− b} and b ∈ D

aND(σ) if M(σ0) = (2− b)M(σ) and b ∈ B′ −D

attains more than rc on X � n, by the inductive hypothesis.
Otherwise, for every b ∈ B′, bjb(2−b)ib+jb ≥ 1. In this case, the A-martingale which bets (2−a)

of its capital when M bets more than 1 on a bit, and a elsewhere, makes at least rc on X � n,
where c = log(2− a)/ log(2−max(B)).

Thus for a fixed finite ratio set B majorized by a finite ratio set A, every sequence in S∞[B]
can be covered using finitely many A-martingales. Hence, we have S∞[B] ⊆ S∞[A].

Note that the above theorem also implies that the inclusion is strict.

Corollary 13. Let A and B be finite ratio sets such that A majorizes B. Then S∞[B] ( S∞[A].

Proof. Let b = max(B), and a = max(A). By assumption, 0 < b < a < 1. Consider the valid ratio
set C = {c} where b < c < a. By Theorem 12, we know that S∞[B] ⊆ S∞[C]. Further, by Lemma
9, we have that S∞[C] ( S∞[A], thus establishing the result.

7 Necessary Conditions for Dominance

Let A and B be finite sets of rationals. We conclude by showing that unless A majorizes B, S∞[A]
is not a superset of S∞[B]. We establish that if maxA = maxB, then S∞[A] = S∞[B].

Theorem 14. Let A and B be finite valid ratio sets which do not majorize each other. Then
S∞[A] = S∞[B].

Proof. Let b = max(B) = max(A). Define B′ = B − {b}.
Let M be a B-martingale that succeeds on an infinite binary sequence X. Suppose that

M(X � n) > r > 1.

Partition the positions in {0, . . . , n − 1} into two disjoint sets S1 and S2, where S1 is the set of
those positions where M bets using ratios from B′ and S2 is the set of those positions where M
bets ratios from {b, 2− b}. Further, assume that

M(X � S1) = r1,

and
M(X � S2) = r2.
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Then, by the proof of Theorem 12, there is an A-martingale N such that

N(X � S1) > rc1.

where 0 < c < 1. Define the martingale N̂ by

N̂(λ) = 1

N̂(wb) =


N(wb)
N(w) N̂(w) if N(wb)

N(w) ∈ B′

bN̂(w) if N(wb)
N(w) = b

(2− b)N̂(w) if N(wb)
N(w) = 2− b

It is routine to see that N̂ is a computable A-martingale which succeeds in earning at least
rc1r2 > rc on X, where c > 0.

If X ∈ S∞[M ], then it follows that X ∈ S∞[N̂ ]. Hence S∞[B] ⊆ S∞[A]. By a symmetric
argument, we see that S∞[A] ⊆ S∞[B].

8 Open Questions

The most important open question is, for an infinite set of ratios B and a finite or an infinite set
of ratios A, if A majorizes B, does it follow that S∞[B] ( S∞[A]? The proofs in our work rely on
the fact that A and B are finite.

The construction in Theorem 9 shows that if A majorizes B, then there is a sequence X ∈
S∞[A]− S∞[B]. It is interesting to consider the minimal complexity of such a sequence.

Another question which is open is whether restricted wagers, or restricted ratios can be used to
define refinements of the notion of effective Hausdorff and effective packing dimension of sequences.
It is possible that it leads to a new quantification of the information in infinite sequences.
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Appendix

Lemma 15. The function f : (0, 1)→ R defined by f(x) = log2−x(x) is monotone increasing.

Proof. Let b < a. We need to show that

log2−b(b) < log2−a(a).

Consider the function g : (0, 1)→ R defined by g(x) = log2−x(x). Then

dg(x)

dx
=

d

dx

(
lnx

ln(2− x)

)
=

ln(2−x)
x + lnx

(2−x)

(ln(2− x))2
.

If we show that this quantity is non-negative, then g is monotone increasing, and hence f is
monotone increasing.

The above quantity is non-negative if and only if the function h : (0, 1)→ R defined by

h(x) = (2− x) ln(2− x) + x lnx

is non-negative.
Now,

dh(x)

dx
= −1− ln(2− x) + 1 + lnx = lnx− ln(2− x) < 0.

Hence h is monotone decreasing in (0, 1).
We have that

lim
x→0

x lnx = lim
x→0

lnx

1/x
= lim

x→0

1/x

−1/x2
= 0.

Thus h(1−) = 1 ln 1 + 0 = 0. We can conclude that h is positive in (0, 1), hence g is monotone
increasing in (0, 1) and thus f is monotone increasing in (0, 1).
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