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ABSTRACT
This work is a synthesis of recent advances in computable
analysis with the theory of algorithmic randomness. In this
theory, we try to strengthen probabilistic laws, i.e., laws
which hold with probability 1, to laws which hold in their
pointwise effective form - i.e., laws which hold for every in-
dividual constructively random point. In a tour-de-force,
V’yugin [13] proved an effective version of the Ergodic The-
orem which holds when the probability space, the transfor-
mation and the random variable are computable. However,
V’yugin’s Theorem cannot be directly applied to many ex-
amples, because all computable functions are continuous,
and many applications use discontinuous functions.

We prove a stronger effective ergodic theorem to include
a restriction of Braverman’s “graph-computable functions”.
We then use this to give effective ergodic proofs of the ef-
fective versions of Lévy–Kuzmin and Khinchin Theorems
relating to continued fractions.

Categories and Subject Descriptors
F.1.1 [Theory of Computation]: Models of Computa-
tion; G.3 [Mathematics of Computation]: Probability
and Statistics

1. INTRODUCTION
In the context of Kolmogorov’s program to base the theory

of probability on the theory of computing, an early achieve-
ment was Martin-Löf’s work establishing that there is a
unique smallest constructive measure 1 set whose objects are
individual random sequences [7]. In this program, we formu-
late probabilistic laws, i.e., laws of the form“Probability[{ω :
A(ω) holds }] = 1” for some property A, in their effective
form, “If ω is random, then A(ω) holds.”

It is not known whether all such laws can be converted
into this form: early work by Vovk on the Law of Iterated
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Logarithm [11] and van Lambalgen on the Strong Law of
Large Numbers [10] were successes; but, it was conjectured
that not all laws can be converted into the effective form.
In particular, it was conjectured that two laws, the Ergodic
Theorem of Birkhoff [2] and the Shannon-McMillan-Breiman
Theorem [1] resist effectivization. Nevertheless, V’yugin in
[13] converted a proof of a constructive version of the Er-
godic Theorem by Bishop [3] to prove an effective version of
the Ergodic Theorem.

The ergodic property is a weak form of independence
obeyed by stochastic processes. If P is a finite measure, f is
an integrable function and T is a transformation preserving
the measure P , then Birkhoff’s ergodic theorem states that
the limit

lim
n→∞

1

n

`

f(ω) + f(Tω) + · · · + f(T n−1ω)
´

(1)

exists for almost all ω in the sample space (for instance, see
[1]). Moreover, if T is ergodic (definitions in section 2), then
the above said average is the same constant,

R

fdP , almost
everywhere. V’yugin’s version establishes that if P is a com-
putable measure, f is an integrable computable function and
T is a computable measure-preserving transformation, the
limit exists for all individual random ω. If T is ergodic, then
the average (1) is the same constant for all individual ran-
dom points. The convergence to the constant need not be
effective - a computable function may not be able to predict
the rate of convergence. [13]

We wish to explore applications of the effective version of
the Ergodic Theorem in this paper. Classically, the Strong
Law of Large Numbers can be proved to be a special case
of the Ergodic Theorem. Moreover, the ergodic theory of
continued fractions (see for example, Kraaikamp and Da-
jani [5]) provides some examples of non-trivial applications
of the ergodic theorem to the metric theory of numbers.
The celebrated theorems of Lévy-Kuzmin, and Khinchin,
are examples. We would like to form effective versions of
these theorems. These are known to hold effectively, and
the proofs employ transfer operators [8].

Classically, the proofs of these properties fall out of the
ergodic theorem. The lack of an effective ergodic theorem
has hindered the proofs in their classical form being used to
establish the theorems in their effective form. We find that
V’yugin’s version cannot be used for this purpose because
of a technical limitation - computable functions are contin-
uous, while most of the proofs employ functions which are
discontinuous.

A recent work by Braverman [4] suggests a way of han-
dling computability of discontinuous functions using a no-



tion termed “graph-computability”. Graph–computability
cannot be adopted without modifications to prove the er-
godic theorem. Indeed, we exhibit a graph–computable func-
tion for which the Constructive Ergodic Theorem fails. How-
ever, with suitable restrictions on the class of graph-computable
functions, we can prove a constructive version of the theo-
rem. Our aim in this paper is threefold - to prove a version
of the effective ergodic theorem which handles discontinuous
functions, to prove the effective strong law of large numbers
as a consequence of the effective ergodic theorem, and to give
new proofs of some classical results in continued fractions in
their effective form, using the above.

2. PRELIMINARIES
As usual, R denotes the set of real numbers, N denotes the

set of natural numbers, and Q denotes the set of rationals.
We denote the positive part of set Q by Q+ and the negative
part by Q−. The notation 0N represents the unary notation
of natural numbers. Now, to define the sample space, we
consider an alphabet. Let Σ be the binary alphabet {0, 1}.
We consider finite words over the alphabet, denoted by Σ∗,
and infinite sequences over the alphabet, denoted by Σ∞.
For positive integer i, the ith position of sequence or word
ω is denoted as ωi. The substring ωi . . . ωj−1 is denoted
ω[i . . . j−1]. For a word ω, the length of ω = ω0ω1ω2 . . . ωn−1

is denoted as |ω| with value n. If x is a string and w is a
word or a sequence, the symbol x v ω denotes that x is a
prefix of ω.

Basic Concepts in Ergodic Theory
Let (Ω,F , P ) denote a probability space, where Ω = Σ∞ is
the sample space, F denotes the Borel σ− algebra generated
by the cylinders Cx = {ω | ω ∈ Ω, x v ω), and P : F →
[0, 1] is the probability measure.

We introduce some basic concepts from Ergodic Theory.
Let T : Ω → Ω be a transformation, i.e., a measurable

function from Ω to itself. In particular we consider the case
when the transformation T is a measure-preserving transfor-
mation with respect to the probability space (Ω,F , P ). That
is, for every measurable set A, we have P [T−1A] = P [A]. If,
moreover, T−1A = A for only mesaure 0 and measure 1 sets,
then T is called ergodic.

Ergodic systems are weakly independent systems. For fur-
ther details, see, for instance, Walters [14].

Successive applications of T are denoted as follows: T 0ω =
ω and, for all n, T n+1ω = T (T nω). Customarily, the set
{T nω : n ∈ N} is called the orbit of ω under T .

A dynamical system is a system (Ω,F , P, T ) where (Ω,F , P )
is the probability space, and T : Ω → Ω is the measure-
preserving transformation (which need not be ergodic). Two
examples of dynamical systems are given below.

1. The probability space (Ω,F , µ) where Ω is the set of
binary sequences, F is the Borel σ-algebra generated
by the cylinders Cx = {ω ∈ Ω | x v ω}, and µ is the
uniform probability measure, Lebesgue measure. The
transformation T : Ω → Ω is the left-shift transforma-
tion,

T [ω1ω2ω3ω4 . . . ] = ω2ω3ω4 . . . ,

identified with the numerical function Tω = 2ω mod 1;
T is seen to be measure-preserving and ergodic with
respect to the probability space.

2. The probability space (N+∞

,F ′, γ) where N+∞

is the
set of positive integer sequences identified with the
continued fraction expansion of reals in (0, 1). (see
section 6), F is the Borel σ-algebra generated by the

cylinders Cx = {ω ∈ N+∞

| x v ω}, and γ is the Gauss
measure, i.e. for any measurable set A, the probability
P [A] =

R

A
1

1+x
dx. The transformation T is the left-

shift transformation, as above, now identified with the
numerical function Tω = 1

ω
mod 1. The Gauss mea-

sure is important, since T is measure-preserving with
respect to the Gauss measure, but not with respect to
the uniform measure. T is also ergodic with respect to
the probability space. For details, see Billingsley [1].

Algorithms, Graph-Computability
We also consider algorithms which map finite objects to fi-
nite objects - for instance, of the type (N → N), (Q → Q)
and (Σ∗ → N). An element of N, Q or Σ∗ is a finite object.
Any finite object is computable. A real number r is com-
putable if there exists an algorithm f : 0N → Q such that for
any integer n presented in unary, f(0n) is a rational q such
that |r − q| ≤ 2−n. The computable function f is called an
computability witness for r. For convenience, we fix an en-
coding of a finite object as an element of Σ∗. Further, we de-
fine the following notions in computable analysis(Weihrauch
[15]).

A function f : Ω → [−∞,∞] is said to be lower semicom-
putable if the set Gl = {(w, q) | w ∈ Ω, q ∈ Q, q < f(ω)} is
the union of a computably enumerable sequence of cylinders
in the natural topology on Ω × Q or Σ∗ × Q. The natural
topology on Σ∗ × Q is the discrete topology. The natural
topology on Ω×Q is the topology generated by the cylinders
of the form (x, q) where x ∈ Σ∗ and q ∈ Q.

Analogously, the function f is said to be upper semicom-
putable if −f is lower semicomputable. A function f is said
to be computable if it is both lower and upper semicom-
putable. Equivalently, we can show that a real-valued f is
computable if and only if there is a Turing machine M such
that for every real r, if r̂ : 0N → Q is a valid computabil-
ity witness for r, then we have for all n, |M r̂(0n) − f(r)| <
2−n, where M r̂ is the machine M with oracle access to r̂.
It follows that every real-valued computable function on a
bounded domain is necessarily continuous.

This introduces a problem: Many of the functions which
come up in Ergodic proofs are not computable becausethey
are not continuous. Graph-computability, introduced in Braver-
man [4], gives a framework for discussing computability of
not necessarily continuous functions.

Definition 1 ([4]). We say that a bounded subset S of
Rn is bit-computable if there exists a computable function
f ′ : Dn × N → {0, 1} such that

f ′(d, 0n) =

8

>

<

>

:

0 if B(d, 2.2−n) ∩ S = ∅

1 if B(d, 2−n) intersects S

0 or 1 otherwise,

where the neighborhood B(d, r) represents the ball centered
around d with radius r. A bounded real function on a bounded
domain D ⊆ R is said to be graph-computable if the graph
of f = {(x, f(x)) : x ∈ D} is bit-computable as a set.

Every computable function over a bounded domain is graph-
computable. In addition to this, some step functions, which



were not computable according to the definition above, are
now shown to be graph-computable. For example, the unit
step function (f(x) = if x > 0 then 1, else 0) is graph-
computable.

Now, we discuss computable transformations. We follow
the definition in [13].

Transformations mapping Ω to itself are viewed as oper-
ating on the sequences themselves; the left-shift transfor-
mation is a simple case in point. Informally, a computable
transformation is one which can be computed by an algo-
rithm bit-by-bit. Formally, a computable transformation
T : Ω → Ω is a transformation for which there is an al-
gorithm which enumerates the set ST = {(x, y) | x, y ∈ Σ∗},
such that

1. (x, λ) ∈ ST , where λ is the empty string.

2. (x, y) ∈ ST ⇒ ∀x v x′, y′ v y, (x′, y′) ∈ ST .

3. (x, y)and(x, y′) ∈ ST implies y v y′ or y′ v y.

The transformation T is defined as

Tω = sup{y | (x, y) such that x v ω}.

For example, the mappings T1, T2 : Ω → Ω defined as
follows. The transformation T1(ω) = λ is one that maps
every sequence to the empty string. The transformation
T2(ω1ω2 . . . ) = (ω2 . . . ) is the left-shift transformation. Both
are computable transformations, though only T2 is measure-
preserving with respect to the Lebesgue measure on [0, 1).

A computable probability measure P is one for which for
every string x ∈ Σ∗, P (x) = P (Cx) is computable.

3. CONSTRUCTIVE RANDOMNESS
In this section, we define the notion of a constructively

random sequence, and introduce the notion of a measure
of impossibility, which we use to prove that a computable
measure-preserving transformation conserves the random-
ness of a sequence.

Let P be a computable probability measure defined on
the {0, 1}∞. For finite strings x, we consider cylinders Cx,
the set of all infinite sequences with x as a prefix. A set
S of sequences from the sample space of all sequences has
P -measure zero if, for each ε > 0, there is a sequence of
cylinders Cx0 , Cx1 , . . . , Cxi

, . . . of cylinder sets such that

S ⊆ ∪iCxi
and P (∪iCxi

) < ε.

A set of sequences S has effective P -measure zero if there
is a computable function h(i, ε) such that h(i, ε) = Cxi

for
each i. Martin-Löf proved a universality property - that for
every computable probability measureP , there is a unique
largest effective P -measure zero set. The complement of this
set is called the set of constructive random sequences wrt P .

Another tool to study randomness is the concept of a mea-
sure of impossibility [12].

Gács in [6] extends the notion of Martin-Löf randomness
to some non-compact spaces, one which he characterizes as
spaces having recognizable boolean inclusions. We take the
characterization and note that it works for Cantor Space,
the space of infinite binary sequences, and Baire space, the
space of infinite sequences of natural numbers.

Definition 2. A function p : Ω → R+ ∪ {∞} is called a
measure of impossibility with respect to the probability space
(Ω,F , P ) if p is lower semicomputable and

R

pdP ≤ 1.

A measure of impossibility p of ω with respect to the com-
putable probability distribution P denotes whether ω is ran-
dom with respect to the given probability distribution or
not. In particular, we can see that p(ω) < ∞ if ω is random
with respect to the computable probability distribution P
[12], [6].

We now use this tool to give a proof of the fact that a com-
putable, measure-preserving transformation conserves ran-
domness. This extends, and gives a new proof of, Shen’s [9]
result on Cantor Space that a measure-preserving transfor-
mation conserves individual randomness.

Lemma 3. Let ω be a Martin-Löf random real in Baire
space or Cantor Space. Then for any computable measure-
preserving transformation T , Tω is also Martin-Löf random.

Proof. Let Tω be non-random. By assumption, there
is a measure of impossibility p such that p(Tω) = ∞. We
define a new function p′ : Ω → R+ ∪{∞} by p′(χ) = p(Tχ).
p′ is lower semicomputable by the lower semicomputability
of p and the computability of T . Also,

R

p′dP =
R

pdP ≤ 1
by the measure conservation property of T . Thus p′ is a
measure of impossibility such that p′(ω) = ∞.

This lemma implies that no point in the orbit of a se-
quence random wrt a computable measure, will be com-
putable. This will be used in section 4.

4. MAIN RESULT
We would like to prove the following:
Ideal Theorem If (Ω,F , P ) is a probability space where

Ω = Σ∞, with Borel σ-algebra generated by Cx, x ∈ Σ∗ and
P is a computable probability measure, then for any function
f : Ω → R which is graph-computable, f ∈ L1P , for any
computable transformation T , and for any random ω wrt P ,
the ergodic average converges to

R

fdP .
However, there are graph-computable functions for which

the ergodic average does not converge to the mean of the
function.

Example 1. We construct a function f : Ω → [0, 1] which
is graph-computable, but is such that the effective ergodic
theorem fails to hold. Consider f defined as follows.

Consider the uniform probability space. Let ω be an arbi-
trary Martin-Löf random real, e.g., the halting probability
in binary notation, and Tx = 2x mod 1. Then ω is normal:
For all n ∈ N and x ∈ {0, 1}n, limi→∞

|{m : 0 < m + n < i and ω[m. . . m + n − 1] = x}|

i
= 2−n.

In particular, the orbit of ω is dense in the unit interval.
Define, for all j ∈ N, f(T jω) = 1, and f(x) = 0 for all other
x.

This function is graph computable because both the sets
{x : f(x) = 0} and {x : f(x) = 1} are dense in [0, 1]. The
function is graph computable with a witness B((q1, q2), 2

−n) =
1 if and only if |q2| < 2−n−1 or |1 − q2| < 2−n−1.

We notice limn→∞

Pn−1
m=0

f(T mω)

n
= 1.

However,
R

f(x)dx = 0, since {x : f(x) = 0} is a measure
1 set, so the effective ergodic theorem fails to hold for ω.
(End Example)

This example serves to prove that graph-computability
needs restriction in order to serve our purpose. One of the
problems of the above example is the presence of a dense



set of discontinuities. We posit the following class of graph-
computable functions.

Definition 4. Let GP be the class of graph-computable
functions f continuous almost everywhere wrt P, with the
property that f has only simple discontinuities which form a
nowhere dense (one-dimensional) bit-computable set.

Note that a nowhere dense bit-computable set can contain
only computable points, and hence there are at most count-
ably many discontinuities. Hence by Lemma 3, for any con-
structively random ω, no point on its orbit {T mω : m ∈ N}
is a point of discontinuity. GP is a superset of the class of
computable functions. It is also large enough to subsume
useful discontinuous functions used in some proofs of the
metric theory of numbers. We have the following.

Lemma 5. Let f : R → R be a graph-computable function
in GP . Then there is a computable function f : Q × N → Q

such that for every point of continuity r ∈ R of f , every
computability witness r̂ of r the following hold:

1. For all natural numbers n, f(r̂, 0n) > f(r̂, 0n+1) >
f(r).

2. limn→∞ f(r̂, 0n) = f(r).

We sketch the proof of this lemma in Section 5. We call
any function which satisfies the above property as essen-
tially upper semicomputable. A function f on a bounded
domain is called essentially lower semicomputable if −f is
essentially upper semicomputable. A function f which has
both properties is called essentially computable.

Main Theorem 1. Let (Ω,F , P ) be a probability space
where Ω = Σ∞, F is the Borel σ-field generated by the
cylinders Cx, and P is a computable probability measure.
If T : Ω → Ω is a computable measure-preserving transfor-
mation, then for every essentially computable f : Ω → R,
f ∈ L1[P ] ∩ GP , there is an integrable function f̃ such that

lim
n→∞

1

n

n−1
X

j=0

f(T jω) = f̃ (ω), (2)

for every ω random wrt P , with f̃ (Tω) = f̃(ω) and
R

fdP =
R

f̃ dP . Moreover, if T is ergodic, the abovementioned limit

is a constant, for all individual random ω, f̃(ω) =
R

f dP .

The idea of the proof is as follows. For a graph-computable
function f which obeys the restriction mentioned above, we
prove that it is easy to obtain an essential upper semicom-
putation except at points of discontinuity; moreover, by the
same argument, there is also an essential lower semicom-
putation of the function f . Using these essential upper
and lower semicomputations, an upcrossing function is de-
fined, which behaves reasonably well at points of continuity
- namely, it converges if and only if the ergodic sum at the
point converges. This function is shown to be semicom-
putable from below. We bound the integral of the upcross-
ing function over the whole space (this is essentially due to
V’yugin [13]), thus we prove that the upcrossing function we
defined measure of impossibility.

The upcrossing function attains ∞ only if the ergodic av-
erage diverges at the given point. This would imply that
the ergodic sum converges at every individual random point.
Details follow in the next sections.

5. PROOF OF MAIN THEOREM 1
We first prove that for every function in GP , there exists

an essential upper semicomputation and an essential lower
semicomputation - i.e., functions which are semicomputa-
tions except at the points of discontinuity.

Proof Sketch for Lemma 5. Let g be the computability
witness for the set of discontinuities. If x is a continuity
point and the discontinuities are nowhere dense, then there
is a least n1 such that q + 2.2−n1 < x − 2.2−n1 < x +
2.2−n1 < r − 2.2−n1 for the discontinuities q, r closest to x,
r > q. Thus, x can be detected to be a continuity point at
precision n1 + 1, using g as a witness. We define the upper
semicomputation as follows.

For all n > n1, if B((d1, d2), 2
−n) intersects the graph of

the function and |d1 −x| < 2−n, then d2 +2.2−n is an upper
approximation of f(x). So, given 0k, we see whether we can
determine that x is a continuity point at precision k. If no,
we output ∞. If yes, we enumerate balls of radius 2−k until
we find k distinct upper approximants to f(x), and output
their minimum.

It is routine to verify that this process is an essential upper
semicomputation of f .

Similarly, we establish that there is an essential lower
semicomputation f of f , which at points of continuity, ap-
proximates f from below, and approaches f in the limit.

Now, we proceed to the proof of the main result.

Proof of Main Theorem 1
Let f be the graph computable function, as given, with es-
sential upper semicomputation f and essential lower semi-
computation f . Let ω be a random point. Define the fol-
lowing:

a(ω, f, n) =
n−1
X

i=0

h

lim
n→∞

f (T iω, 0n) − α
i

(3)

b(ω, f, n) =

n−1
X

i=0

h

lim
n→∞

f (T iω, 0n) − β
i

for any rational numbers α and β, natural numbers n and
f given above. The set of functions can be undefined if for
some f , the value at a point is ±∞. We assume that the
functions are bounded, so this is impossible. We define the
sets A and A′ as follows:

ω ∈ A′(u, v) ≡
u−1
X

i=0

h

f(T iω) − α
i

<
v−1
X

i=0

h

f(T iω) − β
i

(4)

ω ∈ A(u, v) ≡a(ω, f, n) < b(ω, f, n). (5)

Let n be a non-negative integer. A sequence of integers
s = {u1, v1, . . . , un, vn} is called an n-admissible sequence if
−1 ≤ u1 < v1 ≤ u2 < v2 ≤ · · · ≤ uN < vN ≤ n. We use
ms = N . We define a(ω, f,−1) = 0. We define Bishop’s
upcrossing function.

σ′

n(ω,α, β) =

max({N | ω ∈
N
\

j=1

A′(uj , vj) ∩
N−1
\

j=1

A′(uj+1, vj) ∩ Cf

for some n-admissible s = {u1, v1, . . . , uN , vN}} ∪ {0}),

(6)

We then define the function in its modified form: σn(ω, α, β)
is defined analogous to σ′

n, with A replacing A′ in the defi-



nition. It is easy to see that σn and σ′

n coincide on all points
of continuity of f .

The function σn is lower semicomputable, since we can
use the essential upper semicomputation f and the essential
lower semicomputation f to compute σn, and at points of

continuity ω, limn→∞ f (ω, 0n) = f(ω) = limn→∞ f(ω, 0n).
The points of discontinuity are all non-random points. De-
fine σ′ = supn σ′

n and σ = supn σ. Then σ is a lower semi-
computable function.

We notice that σ(ω,α, β) and σ′(ω,α, β) differ only on a
P -measure zero set. In particular, this means that

Z

σ′(ω,α, β)dP =

Z

σ(ω,α, β)dP. (7)

V’yugin proves that σ′

n is an integrable function. His proof
assumes that f is computable and T is measure-preserving.
We note that the proof that σn is integrable for graph-
computable functions is identical to V’yugin’s; it is repro-
duced here only to reflect the invariance in technical detail.

Since f is integrable, we have some constant M for which
R

(f(ω) − α)+dP ≤ M + |α| holds.

Lemma 6. [V’yugin [13]] Let T be a measure-preserving
transformation and f : Ω → R be an integrable, computable
function. Then

Z

(M + |α|)−1(β − α)σ(ω,α, β) ≤ 1. (8)

To define the measure of impossibility, we need to verify de-
fine an upcrossing function for every pair of rationals (q, r)
where q < r. But we can enumerate all pairs of such ratio-
nals with a program, and let α(i) and β(i) be the ith pair
in this enumeration. The measure of impossibility is

p(ω) =
1

2

∞
X

i=1

i−2(M + |α(i)|)−1(β(i)− (α(i))σ(ω,α(i), β(i)),

as in V’yugin [13]. It is easy to see that p is lower semicom-
putable and integrable.

This function attains ∞ only if the ergodic average di-
verges. It follows that for all individual random ω, the er-
godic average converges.

Besides, f̃(ω) = f̃(Tω) for any ω random wrt P , so f̃
is bounded almost everywhere P , and is therefore, inte-
grable. Integrating (2) on both sides, by the measure preser-
vation of T and the Dominated Convergence Theorem, we
get

R

fdP =
R

f̃ dP .
To see that for every individual random ω, the ergodic

average converges to the same constant, we observe that
every random ω is a point of continuity. Hence V’yugin’s
null cover can be used to prove that for every ω, if ω is
random, then the ergodic average is the same constant - if
the ergodic average at a random ω = d 6=

R

fdP = c, and
r1 and r2 are rationals that separate c and d, then the sets
{x ∈ Ω : r1 < 1

n

Pn−1
k=0 f(T kx) < r2} can be used to define

an effective null cover to contain ω [13].
The class of essentially computable functions include sim-

ple step functions like the indicator random variables of the
cylinders Cw. These functions, being discontinuous are not
computable. These are the functions that we use to observe
that the Strong Law of Large Numbers in probability theory
is a special case of the Ergodic Theorem. We now are able
have a simple proof that the Effective Strong Law of Large

Numbers, originally due to van Lambalgen [10] is a special
case of the modified Effective Ergodic Theorem.

Corollary 7 (Effective SLLN [10]). Let (Ω, F, P )
be such that P is generated by a computable coin-toss prob-
ability measure. Then limn→∞

Pn−1
i=0

ωi

n
= P (1).

Proof. The system (Ω,F , P, T ) is a computable dynam-
ical system. The indicator function f = I1 is an effectively
computable, integrable function. Substituting f = I1 in (2),
we get that limn→∞

Pn−1
i=0

ωi

n
= P (1).

6. EFFECTIVE NOTIONS IN ERGODIC THE-
ORY OF CONTINUED FRACTIONS

We introduce some basic notions in the theory of contin-
ued fractions.

A real number r ∈ (0, 1) is said to have continued fraction
expansion [a1, . . . , an, . . . ] if r can be expressed as

r =
1

a1 +
.. . + 1

an+
.. .

(9)

where ai ∈ N. The set of finite representations constitute
exactly the set of rational numbers. We introduce some basic
notations and inequalities.

Let pn

qn
be the representation of the rational [a1, . . . , an]

obtained by truncating the representation of r to n places,
written in lowest form (i.e., gcd(pn, qn) = 1.). The fraction
pn

qn
is called the nth convergent of the real number r, the

number pn being the nth partial quotient and qn being the
nth partial denominator of the continued fraction. The fol-
lowing recurrence equality is well-known (see, for example,
Dajani and Kraikaamp [5].), ∀npnqn−1−pn−1qn = (−1)n+1.

We prove the effective versions of two famous theorems
in the ergodic theory of continued fractions, viz., the Lévy-
Kuzmin Thorem and Khinchin’s Theorem.

We first note that the set of reals random wrt γ and µ
are exactly the same, since the Radon-Nikodym derivative
dγ
dµ

= 1/x is a Lipshitz function, making every effective null-
cover for µ, an effective null-cover for γ and conversely. We
use Theorem 1 to prove the effective version of the Lévy-
Kuzmin Theorem. The proof is an effective version of the
classical proofs from the exposition in [5]. We only have
to prove that the functions used in the proof are essentially
computable.

Theorem 8. Let r be a real number in (0, 1). If r is

constructively random, then limn→∞

log qn(r)
n

= π2

12 log 2
.

Proof. We show that standard proofs using ergodic the-
ory directly translate to the effective version. See [5] for the
classical proof. It can be shown that log qn(x) =

Pn−1
m=0 log(T m(x))+

R(n, x) for all x, where the absolute value of the error |R(n, x)|
is bounded. The function log(x) is computable and mono-
tone. The continued fraction map g(x) = 1/x mod 1 on
(0, 1) is a member of Gµ and is a computable transforma-
tion.

Therefore, by the Effective Ergodic Theorem (Theorem
1), for all individual random x, we have

lim
n→∞

Pn−1
m=0 f(T m(x))

n
=

Z

log x

1 + x
dx,

which proves the result.



Now, we prove Khinchin’s theorem [5] where the addi-
tional result over graph computability is useful.

Theorem 9. For every random ω ∈ [0, 1) with the stan-
dard continued fraction expansion,

lim
n→∞

(a1a2 . . . an)1/n =
∞
Y

k=1

(1 +
1

k(k + 1)
)

log k

log 2

= K = 2.6854 . . . .

Proof. It suffices to show that for every random ω, the

ergodic average limn→∞

log a1(ω)+···+log an(ω)
n

= logK. The

function a1(ω) = b 1
ω
c can be shown to be essentially upper

(lower) semicomputable, even though it is not computable
in Gµ, by approximating it from above (below) by a com-
putable sequence of computable functions. Since log is a
computable function, it follows that f(x) = log(a1(x)) is
essentially computable. Hence by the effective ergodic the-
orem for random variables in G, we have

lim
n→∞

log a1(ω) + · · · + log an(ω)

n
=

Z

log a1(ω)

(1 + ω)
dω (10)

=

∞
X

k=1

Z 1
k

1
k+1

log a1(ω)

1 + ω
dω =

∞
X

k=1

log k

k(k + 2)
,

which is a convergent series with limit logK.
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[6] P. Gács. Unifrom test of algorithmic randomness over
a general space. Theoretical Computer Science,
341:91–137, 2005.
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