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Abstract. In this paper we propose a quantification of ensemble of distributions on a set of strings, in terms of how close to
pseudorandom a distribution is. The quantification is an adaptation of the theory of dimension of sets of infinite sequences intro-
duced by Lutz. Adapting Hitchcock’s work, we also show that the logarithmic loss incurred by a predictor on an ensemble of
distributions is quantitatively equivalent to the notion of dimension we define. Roughly, this captures the equivalence between
pseudorandomness defined via indistinguishability and via unpredictability. Later we show some natural properties of our notion
of dimension. We also do a comparative study among our proposed notion of dimension and two well known notions of compu-
tational analogue of entropy, namely HILL-type pseudo min-entropy and next-bit pseudo Shannon entropy.

Further, we apply our quantification to the following problem. If we know that the dimension of an ensemble of distributions
on the set of n-length strings is s ∈ (0,1], can we extract out O(sn) pseudorandom bits out of the distribution? We show that
to construct such extractor, one needs at least Ω(logn) bits of pure randomness. However, it is still open to do the same using
O(logn) random bits. We show that deterministic extraction is possible in a special case - analogous to the bit-fixing sources
introduced by Chor et al., which we term nonpseudorandom bit-fixing source. We adapt the techniques of Gabizon, Raz and
Shaltiel to construct a deterministic pseudorandom extractor for this source.

By the end, we make a little progress towards P vs. BPP problem by showing that existence of optimal stretching function
that stretches O(logn) input bits to produce n output bits such that output distribution has dimension s ∈ (0,1], implies P=BPP.
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1. Introduction
Incorporating randomness in a feasible computation is one of the basic primitives in theoretical computer science.
Fortunately, any efficient (polynomial time) randomized algorithm does not require pure random bits. What it actu-
ally needs is a source that looks random to it and this is where the notion of pseudorandomness [5, 36] comes into
picture. Since its introduction, pseudorandomness has been fundamental to the domain of cryptography, complex-
ity theory and computational learning theory. Pseudorandomness is mainly a computational approach to study the
nature of randomness, and computational indistinguishability [11] played a pivotal role in this. Informally, a distri-
bution is said to be pseudorandom if no efficient algorithm can distinguish it from the uniform distribution. Another
way of looking at computational indistinguishability is via the notion of unpredictability of distributions, due to
Yao [36]. Informally, a distribution is unpredictable if there is no efficient algorithm that, given a prefix of a string
coming from that distribution, can guess the next bit with a significant success probability. This line of research
naturally posed the question of constructing algorithms that can generate pseudorandom distributions, known as
pseudorandom generators. Till now we know such constructions by assuming the existence of one-way functions.
It is well known that constructibility of an optimal pseudorandom generator implies complete derandomization
(i.e., P=BPP) and exponential hardness assumption on one-way function enables us to do that. However, Nisan and
Wigderson [27] showed that the existence of an exponential hard function, which is a much weaker assumption, is
also sufficient for this purpose. The assumption was further weakened in [19].

In order to characterize the class of random sources, information theoretic notion of min-entropy is normally
used. A computational analogue of entropy was introduced by Yao [36] and was based on compression. Håstad,
Impagliazzo, Levin and Luby [13] extended the definition of min-entropy in computational settings while giving
the construction of a pseudorandom generator from any one-way function. This HILL-type pseudoentropy basically
extends the definition of pseudorandomness syntactically. Relations among above two types of pseudoentropy was
further studied in [4]. A more relaxed notion of pseudoentropy, known as next-bit Shannon pseudoentropy, was later
introduced by Haitner, Reingold and Vadhan [12] in the context of an efficient construction of a pseudorandom
generator from any one-way function. In a follow up work [34], the same notion was alternatively characterized
by KL-hardness. So far it is not clear which of the above notions is the most appropriate or whether they are at all
suitable to characterize distributions in terms of the degree of pseudorandomness in it.

In this paper, we first propose an alternative measure to quantify the amount of pseudorandomness present in a
distribution. This measure is motivated by the ideas of dimension [24] and logarithmic loss unpredictability [16].
Lutz used the betting functions known as gales to characterize the Hausdroff dimension of sets of infinite sequences
over a finite alphabet. The definition given by Lutz cannot be carried over directly, because here we consider the
distributions over finite length strings instead of sets containing infinite length strings. To overcome this difficulty,
we allow “non-uniform” gales and introduce a new probabilistic notion of success of a gale over a distribution. We
use this to define two notions of dimension of a distribution - strong one and a weak one. Both the notions were
already there for the case of infinite strings [25]. In [16], Hitchcock showed that the definition of dimension given
by Lutz is equivalent to logarithmic loss unpredictability. In this paper, we show that this result can be adapted to
establish a quantitative equivalence between the notion of logarithmic loss unpredictability of a distribution and
our proposed notion of dimension. Roughly, this captures the essence of equivalence between pseudorandomness
defined via indistinguishability and via unpredictability [36]. We show some important properties of the notion of
dimension of a distribution, which eventually makes this characterization much more powerful and flexible. We
also do a comparative study between our notion of dimension and two known notions of pseudoentropy, namely
HILL-type pseudo min-entropy and next-bit pseudo Shannon entropy. We show that the class of distributions with
high dimension is a strict superset of the class of distributions having high HILL-type pseudo min-entropy. Whereas,
there is a much closer relationship between dimension and next-bit pseudo Shannon entropy.

Once we have a quantification of pseudorandomness of a distribution, the next natural question is how to extract
the pseudorandom part from a given distribution. The question is similar to the question of constructing randomness
extractors which is an efficient algorithm that converts a realistic source to an almost ideal source of randomness.
The term randomness extractor was first defined by Nisan and Zuckerman [28]. Unfortunately there is no such
deterministic algorithm and to extract out almost all the randomness, extra Ω(logn) pure random bits are always
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required [29, 30]. There is a long line of research on construction of extractors towards achieving this bound. For
a comprehensive treatment on this topic, we refer the reader to excellent surveys by Nisan and Ta-Shma [26] and
Shaltiel [32]. Finally, the desired bound was achieved up to some constant factor in [21].

Coming back to the computational analogue, it is natural to study the same question in the domain of pseudoran-
domness. Given a distribution with dimension s, the problem is to output O(sn) many bits that are pseudorandom.
A simple argument can show that deterministic pseudorandom extraction is not possible, but it is not at all clear
that how many pure random bits are necessary to serve the purpose. In this paper, we show that we need to actually
involve Ω(logn) random bits to extract out all the pseudorandomness present in a distribution. However explicit
construction of one such extractor with O(logn) random bits is not known. If it is known that the given distribu-
tion has high HILL-type pseudo min-entropy, then any randomness extractor will work [4]. Instead of HILL-type
pseudoentropy, even if we have Yao-type pseudo min-entropy, then also some special kind of randomness extractor
(namely with a “reconstruction procedure”) could serve our purpose [4]. Unfortunately both of these notions of
pseudoentropy can be very small for a distribution with very high dimension. Actually the same counterexample
will work for both cases. So it is interesting to come up with an pseudorandom extractor for a class of distributions
having high dimension.

As a first step towards this goal, we consider a special kind of source which we call the nonpseudorandom
bit-fixing source. It is similar to the well studied notion of bit-fixing random source introduced by Chor et al. [6],
for which we know the construction of a deterministic randomness extractor due to [20] and [9]. In this paper, we
show that the same construction yields a deterministic pseudorandom extractor for all nonpseudorandom bit-fixing
sources having polynomial-size support.

In the concluding section, we make a little progress towards the question of P vs. BPP by showing that in order
to prove P=BPP, it is sufficient to construct an algorithm that stretches O(logn) pure random bits to n bits such
that the output distribution has a non-zero weak dimension (not necessarily pseudorandom). The idea is that using
such stretching algorithm, we easily construct a hard function, which eventually gives us the most desired optimal
pseudorandom generator.

Notations: In this paper, we consider the binary alphabet Σ = {0,1}. We denote Prx∈RD[E] as D[E], where E is
an event and x is drawn randomly according to the distribution D. We use Um to denote the uniform distribution on
Σm. Given a string x ∈ Σn, x[i] denote the i-th bit of x and x[1, . . . , i] denotes the first i bits of x. Now suppose x ∈ Σn

and S = {s1,s2, . . . ,sk} ⊆ {1,2, . . . ,n}, then by xS, we denote the string x[s1]x[s2] . . .x[sk].

2. Quantification of Pseudorandomness
In this section, we propose a quantification of pseudorandomness present in a distribution. We adapt the notion
introduced by Lutz [24] of an s-gale to define a variant notion of success of an s-gale against a distribution D on Σn.
Throughout this paper, we will talk about non-uniform definitions. First, we consider the definition of pseudoran-
domness.

2.1. Pseudorandomness
We start by defining the notion of indistinguishability which we will use frequently in this paper.

Definition 2.1 (Indistinguishability). A distribution D over Σn is (S,ε)-indistinguishable from another distribution
D′ over Σn (for S ∈ N,ε > 0) if for every circuit C of size at most S,

|D[C(x) = 1]−D′[C(x) = 1]| ≤ ε .

Now we are ready to introduce the notion of pseudorandomness.

Definition 2.2 (Pseudorandomness). For an ensemble of distributions D = {Dn}n∈N, where the distribution Dn is
on Σn and for any S = S(n)> n,1 ε = ε(n)> 0,

1Throughout this paper, we consider S(n)> n so that the circuit can at least read the full input.
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1. (via computational indistinguishability) D is said to be (S,ε)-pseudorandom if for all sufficiently large n,
Dn is (O(S(n)),ε(n))-indistinguishable from Un; or equivalently,

2. (via unpredictability [36]) D is said to be (S,ε)-pseudorandom if for all sufficiently large n,

Dn[C(x1, · · · ,xi−1) = xi]≤
1
2

+
ε(n)

n

for all circuits C of size at most O(S(n)) and for all i ∈ [n].

It is always natural to consider asymptotic definitions with respect to all polynomial size circuits and allowing bias
term to be any inverse polynomial. An ensemble of distributions D = {Dn}n∈N, where a distribution Dn is on Σn, is
said to be pseudorandom if for every constant c > 0 and c′ > 0, D is (nc,1/nc′)-pseudorandom [10].

2.2. Martingales, s-gales and predictors
Martingales are “fair” betting games which are used extensively in probability theory (see for example, [3]). Lutz
introduced a generalized notion, that of an s-gale, to characterize Hausdorff dimension [23] and Athreya et al. used
a similar notion to characterize packing dimension[2].

Definition 2.3. [23] Let s ∈ [0,∞). An s-gale is a function d : Σ∗ → [0,∞) such that d(λ ) = 1 and d(w) =
2−s[d(w0)+ d(w1)],∀w ∈ Σ∗. A martingale is a 1-gale.

The following proposition establishes a connection between s-gales and martingales.

Proposition 2.4 ([23]). A function d : Σ∗→ [0,∞) is an s-gale if and only if the function d′ : Σ∗→ [0,∞) defined as
d′(w) = 2(1−s)|w|d(w) is a martingale.

In order to adapt the notion of an s-gale to the study of pseudorandomness, we first relate it to the notion of
predictors, which have been extensively used in the literature [34]. Given an initial finite segment of a string, a
predictor specifies a probability distribution over Σ for the next symbol in the string.

Definition 2.5. A function π : Σ∗×Σ→ [0,1] is a predictor if for all w ∈ Σ∗, π(w,0)+ π(w,1) = 1.

Note that the above definition of a predictor is not very different from the type of predictor used in Definition 2.2.
If we have a predictor that given a prefix of a string outputs the next bit, then by invoking that predictor independently
polynomially many times we can get an estimate on the probability of occurrence of 0 or 1 as the next bit. Using
Chernoff bound it can easily be shown that the estimation is correct up to some inverse exponential error. For the
detailed equivalence, the reader may refer to [34]. In this paper, we only consider the martingales (or s-gales) and
predictors that can be computed using family of non-uniform circuits and from now onwards we refer to them just
as martingales (or s-gales) and predictors, and by the size of a martingale (or an s-gale or a predictor), we refer the
size of the circuit corresponding to that martingale (or s-gale or predictor).

2.3. Conversion Between s-Gale & Predictor
There is an equivalence between an s-gale and a predictor. An early reference to this is [7]. We follow the construc-
tion given in [16].

A predictor π induces an s-gale dπ for each s ∈ [0,∞) and is defined as follows: dπ(λ ) = 1, dπ(wa) =
2sdπ(w)π(w,a) for all w ∈ Σ∗ and a ∈ Σ; equivalently dπ(w) = 2s|w|

∏
|w|
i=1 π(w[1 · · · i−1],w[i]) for all w ∈ Σ∗.

Conversely, an s-gale d with d(λ ) = 1 induces a predictor πd defined as: if d(w) 6= 0, πd(w,a) = 2−s d(wa)
d(w) ;

otherwise, πd(w,a) = 1
2 , for all w ∈ Σ∗ and a ∈ Σ.

Hitherto, s-gales have been used to study the dimension of sets of infinite sequences - for an extensive bibliog-
raphy, see [14] and [15]. Although in this paper, we consider distributions on finite length strings, the conversion
procedure between s-gale and predictor will be exactly same as described above.
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2.4. Defining Dimension
Definition 2.6. For any ε > 0, an s-gale d : Σ∗→ [0,∞) is said to ε-succeed over a distribution Dn on Σn if

Dn[d(w)≥ 2] >
1
2

+ ε .

Note that the above definition of win of an s-gale is not arbitrary and reader may refer to the last portion of the proof
of Theorem 4.3 to get some intuition behind this definition. The following lemma states the equivalence between
the standard definition of pseudorandomness and the definition using martingale.

Lemma 2.7. Consider an ensemble of distributions D = {Dn}n∈N, where the distribution Dn is on Σn. If D is (S,ε)-
pseudorandom then for all large enough n, there is no martingale of size at most O(S(n)) that ε(n)-succeeds on Dn.
Conversely, if for all large enough n, there is no martingale of size at most O(S(n)) that ε(n)

n -succeeds on Dn, then
D is (S,ε)-pseudorandom.

Proof. Assume d : Σ∗→ [0,∞) is a martingale which ε(n)-succeeds on Dn for some n ∈ N, i.e.,

Dn[d(w)≥ 2] >
1
2

+ ε(n).

By the Markov Inequality, Un[d(w)≥ 2]≤ 1
2 .

Let Cd be a circuit of size O(S(n)) obtained by instantiating d at length n. Now let C be a circuit which outputs
1 if Cd(w)≥ 2. Then,

|Dn[C(w) = 1]−Un[C(w) = 1]|> ε(n).

Thus D is not (S,ε)-pseudorandom.
Now for the converse direction, assume that D is not (S,ε)-pseudorandom. Then there exists an n0 ∈N such that

for any n≥ n0 there exists an bit position i ∈ [0,n−1) and some circuit C of size at most O(S(n)) for which

Dn[C(w1, · · · ,wi−1) = wi] >
1
2

+
ε(n)

n
.

Now build a martingale d : Σ∗ → [0,∞) using this circuit C as follows. Let d(λ ) = 1. Now, ∀j ∈ [n], j 6= i,
d(w[0 . . . j−1]0)= d(w[0 . . . j−1]1)= d(w[0 . . . j−1]), and d(w[0 . . . i−1]b)= 2d(w[0 . . . i−1]), d(w[0 . . . i−1]b)=
0 if C(w[0 . . . i−1]) = b.

Now it is clear that

Dn[d(w)≥ 2] >
1
2

+
ε(n)

n

and for all large enough n, the size of the martingale d is at most O(S(n)). �

The next definition gives a complete quantification of distributions in terms of dimension.

Definition 2.8 (Weak Dimension or Dimension). For an ensemble of distributions D = {Dn}n∈N, where the distri-
bution Dn is on Σn and for any S = S(n)> n, ε = ε(n)> 0, the (S,ε)-weak dimension or simply dimension of D is
defined as

dimS,ε(D)= inf{s∈ [0,∞) | for infinitely many n, ∃s− gale d of size at most O(S(n)) which ε(n)-succeeds on Dn}.

Informally, if the dimension of an ensemble of distribution is s, we say that it is s-pseudorandom. It is clear from
Lemma 2.7 that for any (S,ε)-pseudorandom ensemble of distributions D, dimS,ε(D) ≥ 1. In Section 4 we will see
that it is actually an equality. We can also define dimension of distributions in slightly stronger sense.
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Definition 2.9 (Strong Dimension). For an ensemble of distributions D = {Dn}n∈N, where the distribution Dn is
on Σn and for any S = S(n)> n, ε = ε(n)> 0, the (S,ε)-strong dimension of D is defined as

sdimS,ε(D)= inf{s∈ [0,∞) | for all large enough n, ∃s− gale d of size at most O(S(n)) which ε(n)-succeeds on Dn}.

It follows from the definition that weak dimension is smaller or equal to strong dimension.

Proposition 2.10. For an ensemble of distributions D = {Dn}n∈N, where the distribution Dn is on Σn and for any
S = S(n)> n, ε = ε(n)> 0, dimS,ε(D) and sdimS,ε(D) are well defined and

dimS,ε(D)≤ sdimS,ε(D).

We will show separation between both of these notions of dimensions in Section 4. Now just like the asymptotic
definition of pseudorandomness with respect to all polynomial size circuits and inverse polynomial bias, for any
ensemble of distributions D = {Dn}n∈N, we can give definitions of weak dimension or simply dimension (denoted
by dim(D)) and strong dimension (denoted by sdim(D)) by allowing S(n) to be nO(1) and ε(n) to be n−O(1) in the
Definition 2.8 and 2.9 respectively.

3. Unpredictability and Dimension
It is customary to measure the performance of a predictor utilizing a loss function [17]. The loss function determines
the penalty incurred by a predictor for erring in its prediction. Let the next bit be b and the probability induced by
the predictor on it is pb.

Commonly used loss functions include the absolute loss function, which penalizes the amount 1− pb; and
the logarithmic loss function, which penalizes − log(pb). The latter, which appears complicated at first glance,
is intimately related to the concepts of Shannon Entropy and dimension. In this section, adapting the result of
Hitchcock [16], we establish that there is an equivalence between the notion of dimension that we have defined in
the previous section, and the logarithmic loss function defined on a predictor.

Definition 3.1. The logarithmic loss function on p ∈ [0,1] is defined to be loss(p) =− logp.

Using this, we define the running loss that a predictor incurs while it predicts successive bits of a string in Σn, as
the sum of the losses that the predictor makes on individual bits.

Definition 3.2. Let π : Σ∗×Σ→ [0,1] be a predictor.

1. The cumulative loss of π on w ∈ Σn, denoted as Loss(π ,w), is defined by Loss(π ,w) = ∑
n
i=1

loss(π(w[1 . . . i−1], w[i])).
2. The loss rate of π on w ∈ Σn is LossRate(π ,w) = Loss(π ,w)

n .
3. The ε-loss rate of π over a distribution Dn on Σn is

LossRateε(π ,Dn) = inf{t ∈ [0,1] | Dn[LossRate(π ,w)≤ t] >
1
2

+ ε}.

Intuitively the unpredictability of a distribution is defined as the infimum of the loss rate that any predictor has
to incur on the distribution.

Definition 3.3 (Weak Unpredictability or Unpredictability). For an ensemble of distributions D = {Dn}n∈N,
where the distribution Dn is on Σn and for any S = S(n) > n, ε = ε(n) > 0, the (S,ε)-weak unpredictability or
simply unpredictability of D is

unpredS,ε(D) = inf{t ∈ [0,1] | for infinitely many n, there exists a predictor π of size at most O(S(n)) such that
LossRateε(n)(π ,Dn)≤ t}.
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With this, we can prove that dimension can equivalently be defined using unpredictability. The proof is motivated
from the proof of the equivalence between logarithmic loss unpredictability and dimension [16].

Theorem 3.4. Consider any s ∈ [0,1]. For an ensemble of distributions D = {Dn}n∈N, where the distribution Dn is
on Σn and for any S= S(n)> n, ε = ε(n)> 0, if dimS,ε(D)≤ s then unpredSO(1),ε(D)≤ s. Conversely, unpredS,ε(D)≤
s implies dimSO(1),ε(D)≤ s.

Proof. Assume that s′ is any number such that s < s′ and then take a number s′′ such that s < s′′ ≤ s′ and 2s′′ is
rational2. For some large enough n, suppose d is an s′′-gale of size at most O(S(n)) that ε(n)-succeeds on Dn. Let
πd : Σ∗×Σ→ [0,1] be defined by

πd(w,b) =

{
2−s′′ d(wb)

d(w) if d(w) 6= 0
1
2 otherwise.

For any w ∈ Σn with d(w)≥ 2, we have

Lossπd(w) =−
n

∑
i=1

logπd(w[1 . . . i−1],w[i])

=− logΠ
n
i=1πd(w[1 . . . i−1],w[i])

= s′′n− logd(w)

≤ s′′n−1≤ s′n.

So LossRate(πd,w)≤ s′. Thus,

Dn[LossRate(πd,w)≤ s′]≥ Dn[d(w)≥ 2] >
1
2

+ ε .

Note that implementation of πd involves division of two at most O(S(n)) bits rational numbers3 and thus can be
done using a circuit of size at most (S(n))O(1) [35].

Conversely, assume that unpredS,ε(D) ≤ t ∈ [0,1]. Assume that t′ is any number satisfying t < t′ and then take
any number t′′ such that t′ < t′′ and 2t′′ is rational. For some large enough n, let π be a predictor of size at most
O(S(n)) such that

Dn[LossRate(π ,w)≤ t′] >
1
2

+ ε .

If dπ is the t′′-gale defined by

dπ(w) = 2t′′|w|
Π
|w|
i=1π(w[0 . . . i−1],w[i])

then for any w ∈ Σn with LossRate(π ,w)≤ t′, we have the following,

logdπ(w) = t′′n +
n

∑
i=1

logπ(w[1 . . . i−1],w[i])

= t′′n−Lossπ(w)≥ 1.

2We consider 2s′′ to be rational to ensure that the value of 2s′′ can be computed using constant size circuit. Note that we can always
find such s′′ due to the fact that the function 2s for s > 0 is continuous, monotonically increasing and within any two real numbers there
exists a rational number.

3As we are considering martingales and predictors that can be implemented by circuits of size O(S(n)) so the output must be a rational
number which can be represented by at most O(S(n)) bits.
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The last inequality holds for all sufficiently large n. Hence, for infinitely many n,

Dn[dπ(w)≥ 2] >
1
2

+ ε .

Moreover, computation of d involves multiplication of n rational numbers of at most O(S(n)) bits each and thus can
be implemented by a circuit of size (S(n))O(1) [35]. �

Just like dimension, one can also define strong unpredictability in the following way.

Definition 3.5 (Strong Unpredictability). For an ensemble of distributions D = {Dn}n∈N, where the distribution
Dn is on Σn and for any S = S(n)> n, ε = ε(n)> 0, the (S,ε)-strong unpredictability of D is

sunpredS,ε(D) = inf{t ∈ [0,1] | for all large enough n, there exists a predictor π of size at most O(S(n)) such that
LossRateε(n)(π ,Dn)≤ t}.

Now by following the proof of Theorem 3.4 it is easy to see that a similar relation also holds between strong
dimension and strong unpredictability.

Theorem 3.6. Consider any s ∈ [0,1]. For an ensemble of distributions D = {Dn}n∈N, where the distribution
Dn is on Σn and for any S = S(n) > n, ε = ε(n) > 0, if sdimS,ε(D) ≤ s then sunpredSO(1),ε(D) ≤ s. Conversely,
sunpredS,ε(D)≤ s implies sdimSO(1),ε(D)≤ s.

Analogous to pseudorandomness and dimension, for any ensemble of distributions D = {Dn}n∈N, one can define
weak unpredictability or simply unpredictability (denoted by unpred(D)) and strong unpredictability (denoted by
sunpred(D)) by allowing S(n) to be nO(1) and ε(n) to be n−O(1) in the Definition 3.3 and 3.5 respectively. Following
is a straight forward implication of Theorem 3.4 and Theorem 3.6.

Corollary 3.7. For any ensemble of distributions D = {Dn}n∈N, where the distribution Dn is on Σn,

dim(D) = unpred(D) and sdim(D) = sunpred(D).

4. Properties of Dimension
We now establish a few basic properties of our notion of dimension. We begin by exhibiting existence of an ensemble
of distributions with dimension s, for any s ∈ [0,1].

First, we observe that the dimension of any ensemble of distributions D is the infimum of a non-empty subset of
[0,1 + ε] for any ε > 0 and hence the dimension of a distribution is well-defined. The following lemma establishes
the above claim.

Lemma 4.1. For an ensemble of distributions D = {Dn}n∈N, where the distribution Dn is on Σn and for any S =
S(n)> n, ε = ε(n)> 0, sdimS,ε(D)≤ 1.

Proof. Let us first take any s > 1 such that 2s is rational and then consider the following function d : Σ∗→ [0,∞).
Let d(λ ) = 1 and ∀i ∈ [n], d(w[0 . . . i−1]0) = d(w[0 . . . i−1]1) = 2s−1d(w[0 . . . i−1]). It is easy to see that d is an
s-gale and for any w ∈ Σn, d(w) = 2(s−1)n. Thus for all large enough n, d will ε(n)-succeed over Dn. Also note that
for all large enough n, this function d can be implemented using a circuit of size O(n).4 Hence the statement of the
lemma follows. �

Above lemma along with Proposition 2.10 implies the following corollary.

4As for every string w of length n, the value of d(w) will be same, so one can hardcode the value 2(s−1)n inside the non-uniform circuit
implementing the function d.
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Corollary 4.2. For an ensemble of distributions D = {Dn}n∈N, where the distribution Dn is on Σn and for any
S = S(n)> n, ε = ε(n)> 0, dimS,ε(D)≤ 1.

Since it is clear that any ensemble of distributions has a dimension, the following theorem establishes the fact that
our definition yields a nontrivial quantification of the set of ensembles of distributions.

Theorem 4.3. Let s ∈ [0,1]. Then for for any S = S(n) > n, ε = ε(n) > 0, there is an ensemble of distributions
D = {Dn}n∈N, where the distribution Dn is on Σn, such that (S,ε)-dimension (also strong dimension) of D is s.

Proof. Let us take the ensemble of uniform distributions, i.e., D := {Un}n∈N, where Un is the uniform distribution on
Σn. Then by Lemma 2.7 together with Lemma 4.1 shows that for any S and ε , sdimS,ε(D) = 1. By using corollary 4.2
instead of Lemma 4.1, one can also show that dimS,ε(D) = 1.

On the other hand we consider an ensemble D= {Dn}n∈N where support size of each Dn is one, or in other words,
Dn imposes all the probability on a single string, say 0n. Now first take any s > 0 such that 2s is rational and then
consider the following function d : Σ∗→ [0,∞). Let d(λ ) = 1 and ∀i ∈ [n], d(w[0 . . . i− 1]0) = 2sd(w[0 . . . i− 1]).
It is easy to see that d is an s-gale and d(0n) = 2sn. Thus for all large enough n, d will ε(n)-succeed over Dn. Also
note that for all large enough n this function d can be implemented using a circuit of size O(n). Hence for any S and
ε , (S,ε)-dimension as well as (S,ε)-strong dimension of D is 0.

Otherwise, assume that s ∈ (0,1). Let us take the ensemble of uniform distributions D := {Un}n∈N. To each
string x ∈ Σn, we append b n

s c−n many zeros, and denote the resulting string as x′. Let D′n(x
′) = Un(x). For strings

y ∈ Σ
b n

s c which do not terminate in a sequence of b n
s c−n many zeros, we set D′n(y) = 0.

For any large enough n, let π : Σ∗ × Σ → [0,1] be the predictor for distribution Un which testifies that the
(SO(1),ε)-strong unpredictability of D is at most 1. Define the new predictor π ′ : Σ∗×Σ→ [0,1] by

π
′(x,b) =


π(x,b) if|x|< n,b = 0,1
1 if|x| ≥ n,b = 0
0 otherwise.

For every w ∈ Σ
b n

s c which is in the support of D′n such that LossRate(π ,w[1 . . .n])≤ (1 + ε1), for any ε1 > 0, we
have that

LossRate(π ′,w) =
Loss(π ,w[1 . . .n])

b n
s c

≤ (1 + ε1)n
b n

s c
≤ (s + ε

′), for some ε
′ > 0

The last inequality holds for all small enough s/n and this testifies that the (SO(1),ε)-strong unpredictability (hence
the (SO(1),ε)-strong dimension) of the ensemble of distributions D′ is at most s. Now by Proposition 2.10, it follows
that dimSO(1),ε(D

′) is also at most s.
Now, assume that (S,ε)-dimension of D′ is less than s. For any s′ such that 0 < s′ < s, for infinitely many n,

there exists an s′-gale d of size at most O(S(n)) which ε(n)-succeeds on D′n. We show that this would imply that
Un is not uniform. Now consider a string w ∈ Σ

b n
s c, which is in the support of D′n. For any k ∈ {n + 1, · · · ,b n

s c},
d(w[1 . . .k])≤ 2s′d(w[1 . . .k−1]) and thus d(w)≥ 2 will imply that d(w[1 . . .n])≥ 2−s′(b n

s c−n)+1. Now consider the
martingale d′ (needs not be computed by any circuit) corresponding to the s′-gale d. According to [23], we have
d′(w′) = 2(1−s′)|w′|d(w′), for any string w′ ∈ Σ∗. Thus,

D′n[d′(w[1 . . .n])≥ 2]≥ D′n[d(w[1 . . .n])≥ 2−s′(b n
s c−n)+1]

≥ D′n[d(w)≥ 2]

>
1
2

+ ε(n).
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Note that D′n[d′(w[1 . . .n]) ≥ 2] is same as Un[d′(x) ≥ 2], which contradicts the fact that by Markov inequality,
Un[d′(x) ≥ 2] ≤ 1

2 . This shows that dimS,ε(D′) ≥ s and hence by Proposition 2.10, sdimS,ε(D′) is also greater than
or equal to s. �

Informally the following theorem shows that our notion of dimension is able to capture the fact that if we
mix a “good” distribution with a small amount of an extremely “bad” distribution, then also “quality” of the first
distribution would not change much.

Theorem 4.4. Let D = {Dn}n∈N, D1 = {D1
n}n∈N and D2 = {D2

n}n∈N be three ensembles of distributions such that
for some δ = δ (n) ∈ [0,1], for every n ∈N, Dn = (1−δ (n))D1

n +δ (n)D2
n. If for any S = S(n)> n and ε = ε(n)> 0,

dimS,ε(D1) = s1 (sdimS,ε(D1) = s1), then dimS,(ε+δ )(D)≥ s1 (sdimS,(ε+δ )(D)≥ s1).5

Proof. For the contrary, let us assume that, dimS,(ε+δ )(D)< s1 and assume s = s1−ε1, for some ε1, 0 < ε1 < s1. So
for infinitely many n, there exists an s-gale of size at most O(S(n)) that (ε(n)+ δ (n))-succeeds over Dn. Thus,

Dn[d(w)≥ 2] >
1
2

+ (ε(n)+ δ (n)).

Let the strings w for which d(w)≥ 2 holds be wi, 1≤ i≤ k. So,

Dn(w1)+ · · ·+ Dn(wk)>
1
2

+ (ε(n)+ δ (n)),

where Dn(wi) = (1−δ (n))D1
n(wi)+ δ (n)D2

n(wi), for all 1≤ i≤ k.
Now, as D2

n(w1)+ · · ·+ D2
n(wk)≤ 1,

D1
n(w1)+ · · ·+ D1

n(wk)>
1
2

+ ε(n)

and thus dimS,ε(D1)< s1 which is a contradiction.
The above argument is valid for all n for which there exists an s-gale of size at most O(S(n)) that (ε(n)+ δ (n))-

succeeds over Dn and hence the same claim holds even if we consider strong dimension instead of dimension. �

If we follow the proof of Theorem 4.4 with martingale instead of s-gale, we get the following weaker version of the
above theorem, which we will require in the construction of deterministic extractor for a special kind of sources in
Section 6.1.

Lemma 4.5. Let D = {Dn}n∈N, D1 = {D1
n}n∈N and D2 = {D2

n}n∈N be three ensembles of distributions such that for
some δ = δ (n) ∈ [0,1], for every n ∈ N, Dn = (1− δ (n))D1

n + δ (n)D2
n. If for any S = S(n) > n and ε = ε(n) > 0,

D1 is (S,ε)-pseudorandom, then D is (S,ε + δ )-pseudorandom.

In subsequent sections, we will see how to extract pseudorandom parts from a convex combination of distribu-
tions. For that purpose we need the following lemma which establishes the fact that convex combination of two
pseudorandom distributions will be pseudorandom as well.

Lemma 4.6. Consider two ensembles of distributions D1 = {D1
n}n∈N and D2 = {D2

n}n∈N. Suppose for any S =
S(n) > n and ε = ε(n) > 0, both D1 and D2 are (S,ε)-pseudorandom. If for δ = δ (n) ∈ [0,1] there exists an
ensemble of distributions D = {Dn}n∈N which can be expressed as for all n ∈N, Dn = δ (n)D1

n + (1−δ (n))D2
n, then

D is also (S,ε ′)-pseudorandom, where ε ′(n) = n · ε(n).6

5Note that bias term in the dimension of D1 depends on δ .
6Note that this lemma will be useful only when we consider ε(n)< 1

2n .
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Proof. The claim clearly holds when δ (n) is either 0 or 1, so assume that 0 < δ (n) < 1. For the contrary, let us
assume that D is not (S,ε ′)-pseudorandom where ε ′(n) = n · ε(n), i.e., by Lemma 2.7, for infinitely many n ∈ N
there exists an martingale d of size at most O(S(n)) that ε(n)-succeeds on Dn, i.e.,

Dn[d(w)≥ 2] >
1
2

+ ε(n).

As D2 is (S,ε)-pseudorandom, by Lemma 2.7, for all large enough n there exists no martingale of size at most
O(S(n)) that ε(n)-succeeds on D2

n. Thus it is possible to consider an n ∈ N such that there exists a martingale d of
size at most O(S(n)) that ε(n)-succeeds on Dn, but does not ε(n)-succeed on D2

n. Let the strings w ∈ Σn for which
d(w)≥ 2 holds be wi, 1≤ i≤ k. So,

Dn(w1)+ · · ·+ Dn(wk)>
1
2

+ ε(n),

where Dn(wi) = δ (n)D1
n(wi)+ (1−δ (n))D2

n(wi),1≤ i≤ k. Now, since we have that

D2
n(w1)+ · · ·+ D2

n(wk)≤
1
2

+ ε(n).

Thus the following holds

D1
n(w1)+ · · ·+ D1

n(wk)>
1
2

+ ε(n).

As for infinitely many n ∈ N the above happens, so D1 is not (S,ε)-pseudorandom, which is a contradiction. �

We can also slightly generalize the above lemma and get the following theorem.

Theorem 4.7. Let D= {Dn}n∈N, D1 = {D1
n}n∈N and D2 = {D2

n}n∈N be three ensembles of distributions such that for
some δ = δ (n) ∈ [0,1], for every n ∈N, Dn = δ (n)D1

n + (1−δ (n))D2
n. Then for any S = S(n)> n and ε = ε(n)> 0,

dimS,ε(D)≥min{dimS,ε(D1),dimS,ε(D2)}.

Proof. The claim clearly holds when δ (n) is either 0 or 1, so assume that 0 < δ (n) < 1. Let dimS,ε(D1) = s1, and
dimS,ε(D2) = s2.

For the contrary, let us assume that, dimS,ε(D) < min{s1,s2}. Now consider s = min{s1,s2} −
ε1, for some ε1,0 < ε1 < min{s1,s2}. Then for infinitely many n, there exists an s-gale d of size at most O(S(n))
such that

Dn[d(w)≥ 2] >
1
2

+ ε(n).

As dimS,ε(D2) = s2, so for all large enough n, there exists no s-gale of size at most O(S(n)) that ε(n)-succeeds on
D2

n. Thus we can consider an n such that there exists an s-gale d of size at most O(S(n)) that ε(n)-succeeds on Dn,
but does not ε(n)-succeed on D2

n. Let the strings w for which d(w)≥ 2 holds be wi, 1≤ i≤ k. So,

Dn(w1)+ · · ·+ Dn(wk)>
1
2

+ ε(n)

where Dn(wi) = δ (n)D1
n(wi)+ (1−δ (n))D2

n(wi), for 1≤ i≤ k. Also, we have that

D2
n(w1)+ · · ·+ D2

n(wk)≤
1
2

+ ε(n).
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Thus

D1
n(w1)+ · · ·+ D1

n(wk)>
1
2

+ ε(n)

and this happens for infinitely many n ∈ N implying dimS,ε(D1)< s1, which is a contradiction. �

The following theorem shows that in order for a distribution to have dimension less than 1, it is not sufficient to
have a few positions where we can successfully predict - it is necessary that these positions occur often.

Theorem 4.8. For any S = S(n)> n and ε = ε(n)> 0, there is an ensemble of distributions D = {Dn}n∈N such that
dimS,ε(D) = 1, but D is not (S,ε)-pseudorandom.

Proof. Let Dn on Σn be defined as follows.

Dn(x) =

{
1

2n−1 if x[n] = 0
0 otherwise.

Then D is clearly not (S,ε)-pseudorandom, for any value of S = S(n) > n and ε = ε(n) > 0. Consider a predictor
π : Σ∗ × Σ → [0,1] defined as follows. For strings w of length i, i ∈ [1,n− 2], set π(w,b) = 0.5, b = 0,1 and
π(w,0) = 1, π(w,1) = 0 otherwise. Then

Dn[π(x[ 1 . . .n−1 ],x[n]) = 1] = 1.

However, we will show that dimS,ε(D) = 1. Assume that dimS,ε(D) < 1 and thus for some ε1, 0 < ε1 < 1, for
infinitely many n ∈ N, there exists an s-gale d, where s = 1− ε1, of size at most O(S(n)) which ε(n)-succeeds on
Dn. Now consider a string w ∈ Σn, which is in the support of Dn. Now, d(w)≤ 2sd(w[1 . . .n−1]) and thus d(w)≥ 2
will imply that d(w[1 . . .n− 1]) ≥ 21−s. Next consider the martingale d′ (needs not be computed by any circuit)
corresponding to the s-gale d. According to [23], we have d′(w′) = 2(1−s)|w′|d(w′), for any string w′ ∈ Σ∗. Thus,

Dn[d′(w[1 . . .n−1])≥ 2]≥ Dn[d(w[1 . . .n−1])≥ 21−s]
≥ Dn[d(w)≥ 2]

>
1
2

+ ε(n).

The first inequality holds for all large enough n. Note that Dn[d′(w[1 . . .n− 1]) ≥ 2] is same as Un−1[d′(x) ≥ 2],
where x ∈ Σn−1 is drawn according to the distribution Un−1. However by Markov inequality, Un−1[d′(x) ≥ 2] ≤ 1

2 ,
which is a contradiction and this completes the proof. �

We now give separation between two notions of dimension by providing an example of ensemble which has a very
high strong dimension, but very low weak dimension.

Theorem 4.9. There exists an ensemble of distributions D = {Dn}n∈N such that for any S = S(n) > n and ε =
ε(n)> 0, dimS,ε(D)< sdimS,ε(D).

Proof. Here we actually show a much stronger claim by giving an example of an ensemble of distributions D =
{Dn}n∈N such that sdimS,ε(D) = 1 whereas dimS,ε(D) = 0. This is the largest possible gap between weak and strong
dimension of any ensemble of distributions.

Construct an ensemble of distributions D = {Dn}n∈N as follows: for all the odd value of n, set Dn = Un where
Un is the uniform distribution over Σn and for all even value of n, set Dn to be such that it imposes all the probability
on a single string 0n.

Due to Markov inequality, there exists no martingale that ε(n)-succeeds over distribution Dn for any odd value
of n and by Lemma 4.1, strong dimension can be at most 1. Hence, sdimS,ε(D) = 1. By the argument used in the
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proof of Theorem 4.3, we can say that for any s > 0 such that 2s is rational, for all large enough even value of n,
there exists an s-gale of size at most O(S(n)) that ε(n)-succeeds over Dn and hence dimS,ε(D) = 0. �

5. Pseudoentropy and Dimension
In this section we study the relation between our notion of dimension and different variants of computational or
pseudo (min/Shannon) entropy. We will use standard notions and notations of information theory (e.g., Shannon
entropy, KL divergence) without defining them. Readers can find a few basic notations and propositions of informa-
tion theory in the following subsection and for more details, we refer the reader to the book by Cover and Thomas
[8].

5.1. Basics of Information Theory
Definition 5.1 (Shannon Entropy). The Shannon entropy of a discrete random variable X is defined as

H(X) :=−∑
x

Pr[X = x] logPr[X = x] =−Ex∼X[logPr[X = x]].

The joint entropy H(X,Y) is defined to be −Ex∼X,y∼Y [logPr[X = x,Y = y]] and the conditional entropy H(Y | X) is
defined to be Ex∼X[H(Y | X = x)].

Proposition 5.2 (Chain Rule for Shannon Entropy).

H(X,Y) = H(X)+ H(Y | X).

Definition 5.3 (KL divergence). The Kullback-Leibler distance or KL divergence between two distributions P and
Q is defined as

KL(P‖Q) := Ep∼P log
Pr[P = p]
Pr[Q = p]

.

Definition 5.4 (Conditional KL divergence). For random variables (P1,P2) and (Q1,Q2), the conditional KL
divergence from (P2|P1) to (Q2|Q1) is defined as

KL((P2|P1)‖(Q2|Q1)) = Ep1∼P1,p2∼P2

[
log

Pr[P2 = p2|P1 = p1]
Pr[Q2 = p2|Q1 = p1]

]
.

Just like Shannon entropy, in this case also, we have chain rule stated below.

Proposition 5.5 (Chain Rule for KL divergence).

KL(P1,P2‖Q1,Q2) = KL(P1‖Q1)+ KL((P2|P1)‖(Q2|Q1)).

5.2. High HILL-type pseudo min-entropy implies high dimension
For a distribution D, the min-entropy of D is defined as H∞(D) = minw{log(1/D[w])}. We start with the standard
definition of computational min-entropy, as given by [13].

Definition 5.6 (HILL-type pseudo min-entropy). For any S = S(n) > n and ε = ε(n) > 0, an ensemble of dis-
tributions D = {Dn}n∈N has (S,ε)-HILL-type pseudo min-entropy (or simply (S,ε)-pseudo min-entropy) at least
k = k(n), denoted as HHILL,S,ε

∞ (D) ≥ k if there exists an ensemble of distributions D′ = {D′n}n∈N such that for all
large enough n,
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1. H∞(D′n)≥ k(n), and
2. D′n is (O(S(n)),ε(n))-indistinguishable from the distribution Dn.

Several other definitions of pseudo min-entropy (metric-type, Yao-type or compression type) are present in the
literature. We refer the reader to [4] for a comprehensive treatment on different definitions and the connections
between them. In the remaining portion of this subsection, we focus only on HILL-type pseudo min-entropy. Now
we state the main result of this subsection.

Theorem 5.7. For every ensemble of distributions D = {Dn}n∈N and for any S = S(n) > n, ε = ε(n) > 0, if
HHILL,S,ε

∞ (D)≥ k, where k = k(n) = sn for some s ∈ [0,1], then dimS,ε(D)≥ s.

Proof. The theorem is a consequence of the following lemma.

Lemma 5.8. For every ensemble of distributions X = {Xn}n∈N, if for all large enough n, H∞(Xn) ≥ k(n), where
k(n) = sn for some s ∈ [0,1], then dimS,ε(X)≥ s for any S = S(n)> n and ε = ε(n)> 0.

Now observe that if for all large enough n, distribution Dn is (O(S(n)),ε(n))-indistinguishable from another distri-
bution D′n, then dimS,ε(D) = dimS,ε(D′) as otherwise the s-gale of size at most O(S(n)) which ε(n)-succeeds over
exactly one of them, acts as a distinguishing circuit. This fact along with Lemma 5.8 completes the proof. �

It only remains to establish Lemma 5.8.

Proof of Lemma 5.8. For the sake of contradiction, let us assume that for infinitely many n ∈ N, there exists an
s-gale d of size at most O(S(n)) that ε(n)-succeeds over Xn, i.e.,

Xn[d(w)≥ 2] >
1
2

+ ε(n).

Now consider the following set

S := {w ∈ Σ
n | d(w)≥ 2}.

As H∞(Xn)≥ k(n),

|S|> 2sn−1 + 2sn · ε(n).

By taking the corresponding martingale d′ (needs not be computed by any circuit) according to the Proposition 2.4,
we have that for any w ∈ S, d′(w)≥ 2(1−s)n+1 and as a consequence,

Un[d′(w)≥ 2(1−s)n+1] > 2sn−n−1 + 2sn−n · ε(n)

which contradicts the fact that by Markov inequality, Un[d′(w)≥ 2(1−s)n+1]≤ 2sn−n−1. �

One can extend the definition of HILL-type pseudo min-entropy by allowing S(n) to be nO(1) and ε(n) to be
n−O(1) and let us denote this by HHILL

∞ (D). We can extend the result stated in Theorem 5.7 as follows.

Corollary 5.9. For any ensemble of distributions D = {Dn}n∈N, where Dn is a distribution over Σn,and s ∈ [0,1], if
HHILL

∞ (Dn)≥ k, where k = k(n) = sn, then dim(D)≥ s.

The converse direction of the statement of Theorem 5.7 is also true if the distribution under consideration is pseudo-
random. If the converse is true then we can apply any randomness extractor to get pseudorandom distribution from
any distribution having high dimension [4]. However, we should always be careful about the circuit size with respect
to which we call the output distribution pseudorandom. Unfortunately, in general the converse is not true.
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Counterexample for the converse: Suppose one-way functions (see Definition 2.2.1 of [10]) exist, then it is
well-known that we can construct a pseudorandom generator (see Definition 3.3.1 of [10]) G = {Gl}l∈N where
Gl : Σl→ Σm such that m is any polynomial in l, say m = l3. For the construction of pseudorandom generator with
polynomial stretch from any one-way function, interested reader may refer to [13, 34]. Now consider the ensemble
of distributions D := {(G(Ul),Ul)}l∈N. For large enough l, using the argument similar to the proof of Theorem 4.3,
it can easily be shown that the distribution D has dimension (as well as weak dimension) almost 1 as the distribution
on the first m bits are pseudorandom, but pseudo min-entropy is not larger than l.

5.3. Equivalence between dimension and next-bit pseudo Shannon entropy
In the last subsection, we have talked about pseudo min-entropy. In similar fashion, one can also define pseudo
Shannon entropy and a natural generalization of it is conditional pseudo Shannon entropy [12, 18, 34].

Definition 5.10 (Conditional pseudo Shannon entropy). A random variable Yn jointly distributed with Xn is said
to have (S,ε)-conditional pseudo Shannon entropy at least k, for any S ∈ N and ε > 0 if there exists a random
variable Zn jointly distributed with Xn such that

1. H(Zn|Xn)≥ k, and
2. (Xn,Yn) and (Xn,Zn) are (S,ε)-indistinguishable.

Now suppose Y = {Yn}n∈N is an ensemble of random variables jointly distributed with another ensemble of distri-
butions X = {Xn}n∈N. For any S = S(n)> n and ε = ε(n)> 0, Y is said to have (S,ε)-conditional pseudo Shannon
entropy at least k = k(n) given X if there exists another ensemble of distributions Z jointly distributed with X such
that for all sufficiently large n, Yn has (O(S(n)),ε(n))-conditional pseudo Shannon entropy at least k(n).

The following is the variant of pseudoentropy that we are looking for in this subsection and was introduced by
Haitner et al. [12].

Definition 5.11 (Next-bit pseudo Shannon entropy). An ensemble of random variables X = {Xn}n∈N, where Xn =
(X1

n ,X2
n , · · · ,Xn

n) takes values in Σn, has (S,ε)-next-bit pseudo Shannon entropy for any S= S(n)> n and ε = ε(n)> 0
at least k = k(n), denoted as Hnext,S,ε(X) ≥ k if there exists an ensemble of random variables Y = {Yn}n∈N where
Yn = (Y1

n ,Y2
n , · · · ,Yn

n ) takes values in Σn and for all sufficiently large n,

1. ∑i H(Y i
n|X1

n , · · · ,Xi−1
n )≥ k(n), and

2. for all 1≤ i≤ n, (X1
n , · · · ,Xi−1

n ,Xi
n) and (X1

n , · · · ,Xi−1
n ,Y i

n) are (O(S(n)),ε(n))-indistinguishable.

Later, Vadhan and Zheng [34] provided an alternative characterization of conditional pseudo Shannon entropy by
showing an equivalence between it and KL-hardness (defined below). We use this alternative characterization exten-
sively for our purpose.

Definition 5.12 (KL-hardness). Suppose (Xn,Yn) is a Σn×Σ-valued random variable and π be any predictor. Then
π is said to be a δ -KL-predictor of Yn given Xn if KL(Xn,Yn‖Xn,Cπ)≤ δ where Cπ(y|x) = π(x,y) for all x ∈ Σn and
y ∈ Σ.

Moreover, for any S = S(n) > n and δ = δ (n) > 0, an ensemble Y = {Yn}n∈N, where each Yn is a random
variable taking value in Σ, is said to be (S,δ )-KL-hard given another ensemble of random variables X = {Xn}n∈N,
where each Xn takes value in Σn, if for all large enough n there is no predictor π of size at most O(S(n)) that is a
δ (n)-KL-predictor of Yn given Xn.

The following theorem provides the equivalence among KL-hardness and conditional pseudo Shannon entropy of a
distribution.
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Theorem 5.13 ([34]). For an ensemble (X,Y) = {(Xn,Yn)}n∈N where each (Xn,Yn) is a Σn × Σ-valued random
variable and for any δ = δ (n)> 0, ε = ε(n)> 0,

1. If Y is (S,δ )-KL-hard given X, then for all large enough n, Yn has (S′(n),ε(n))-conditional pseudo Shannon
entropy at least H(Yn|Xn)+ δ (n)− ε(n), where S′(n) = S(n)Ω(1)/poly(n,1/ε(n)).

2. Conversely, if for all large enough n, Yn has (S(n),ε(n))-conditional pseudo Shannon entropy at
least H(Yn|Xn) + δ (n), then for every σ = σ(n) > 0, Y is (S′,δ ′)-KL-hard given X, where S′(n) =
min{S(n)Ω(1)/poly(n, log(1/σ(n))),Ω(σ(n)/ε(n))} and δ ′(n) = δ (n)−σ(n).

Now we are ready to state the main theorem of this subsection which conveys the fact that the distributions with
high dimensions also have high next-bit pseudo Shannon entropy.

Theorem 5.14. For an ensemble of distributions D = {Dn}n∈N, where Dn is a distribution over Σn, for any S =

S(n)> n and ε = ε(n)> 0 such that ε(n)→ 0 as n→∞, if dimS,ε(D)> 2s, then Hnext,S′,ε(D)> k, where k = k(n) =
sn and S′(n) = S(n)Ω(1)/poly(n,1/ε(n)).7

Proof. For the sake of contradiction, let us assume that Hnext,S′,ε(D) ≤ k. Thus there exists a subset S ⊆ N of
cardinality equals to the cardinality of N such that for all n ∈ S, Item 1 and Item 2 of Definition 5.11 do not hold
simultaneously. On the other hand dimS,ε(D)> 2s and thus by following the proof of Theorem 3.4, we can say that
there exists a c ∈ (0,1) such that unpredSc,ε(D) = t > 2s. Now consider some large enough n belongs to S and break
Dn into 1-bit blocks, i.e., Dn = (D1

n,D2
n, · · · ,Dn

n).
For any predictor π : Σ∗×Σ→ [0,1], let us define πi : Σi−1×Σ→ [0,1] such that π(x,a) = πi(x,a),∀x∈Σi−1,a∈Σ

for 1≤ i≤ n. Then,

n

∑
i=1

KL((D1
n, · · · ,Di−1

n ),Di
n‖(D1

n, · · · ,Di−1
n ),πi)

=
n

∑
i=1

[
∑

wi∈Σi

− log(πi(wi[1 · · · i−1],wi[i]))Pr[wi]−H(Di
n|D1

n · · ·Di−1
n )

]
=

n

∑
i=1

[
∑

wi∈Σi

loss(π(wi[1 · · · i−1],wi[i]))Pr[wi]−H(Di
n|D1

n · · ·Di−1
n )

]
= ∑

w∈Σn
Loss(π ,w)Dn(w)−H(Dn)

where the last equality follows from the chain rule of Shannon entropy (Proposition 5.2).
Now the definitions of next-bit pseudo Shannon entropy, conditional pseudo Shannon entropy and KL-predictor

along with Item 1 of Theorem 5.13 imply that for any n ∈ S, there exists a predictor π of size at most O((S(n))c)
such that

∑
w∈Σn

Loss(π ,w)Dn(w)≤ (s + ε(n))n.

7Note that Ω(1) constant in the expression of S′(n) here is related to that appeared in Item 1 of Theorem 5.13, but not exactly the
same.
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Hence for any ε1 > 0,

Dn[LossRate(π ,w)≥ (t− ε1)] = Dn[Loss(π ,w)≥ (t− ε1)n]

≤ ∑w∈Σn Loss(π ,w)Dn(w)
(t− ε1)n

by Markov inequality

≤ s + ε(n)
t− ε1

.

Thus,

Dn[LossRate(π ,w)≤ (t− ε1)]≥ 1− s + ε(n)
t− ε1

.

As unpredSc,ε(D) = t, by the definition, it implies that for all but finitely many n belong to the set S,

1− s + ε(n)
t− ε1

≤ 1
2

+ ε(n).

For all large enough n, the above inequality gives us t ≤ 2s + ε2, for any ε2 > ε1 because ε(n)→ 0 as n→ ∞. Hence
unpredSc,ε(D)≤ 2s which is a contradiction and this completes the proof. �

The following weak converse can easily be proven.

Theorem 5.15. For an ensemble of distributions D = {Dn}n∈N, where Dn is a distribution over Σn, for any
S = S(n) > n and ε = ε(n) > 0, if Hnext,S,ε(D) > sn, then for any ε ′ > 0 dimS′,ε(D) > s− 1

2 − ε ′, where S′(n) =
min{(S(n))Ω(1)/poly(n),1/ε(n)Ω(1)}.8

Proof. Suppose an ensemble of distributions D is given such that Hnext,S,ε(D) > sn. Now take any large enough n
and break Dn into 1-bit blocks, i.e., Dn = (D1

n,D2
n, · · · ,Dn

n). Let us denote dimS′,ε(D) = t and thus by Theorem 3.4,
there exists a constant c > 1 such that unpredS′c,ε(D) ≤ t. This implies that for infinitely many n, there exists a
predictor π of size at most O(S′c(n)) such that for any ε1 > 0,

Dn[LossRate(π ,w)≤ (t + ε1)] >
1
2

+ ε(n).

Thus we can write the following,

∑
w∈Σn

Loss(π ,w)Dn(w)≤ (t + ε1)n + (
1
2
− ε(n))n.

We have already seen that for any predictor π : Σ∗×Σ→ [0,1],

n

∑
i=1

KL((D1
n, · · · ,Di−1

n ),Di
n‖(D1

n, · · · ,Di−1
n ),πi) = ∑

w∈Σn
Loss(π ,w)Dn(w)−H(Dn).

Now the definitions of next-bit pseudo Shannon entropy, conditional pseudo Shannon entropy and KL-predictor
along with Item 2 of Theorem 5.13 imply that for all large enough n, for every σ(n)> 0,

∑
w∈Σn

Loss(π ,w)Dn(w)> (s−σ(n))n.

8Note that Ω(1) constant of the term S(n)Ω(1) here is related to that appeared in Item 2 of Theorem 5.13, but not exactly the same.
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Hence,

(s−σ(n))n < (t + ε1)n + (
1
2
− ε(n))n

⇒ s < t +
1
2

+ ε2

for any ε2 > ε1, for infinitely many large enough n and now setting S′(n) to be such that S′(n)c equals to the value
of S′(n) mentioned in Item 2 of Theorem 5.13 concludes the proof. �

It is natural to allow S(n) to be nO(1) and ε(n) to be n−O(1) and then consider the definitions of conditional pseudo
Shannon entropy, next-bit pseudo Shannon entropy (denoted as Hnext(D)) and KL-hardness. For details we refer
the reader to [34]. Now we use the equivalence between conditional pseudo Shannon entropy and KL-hardness
from [34] to derive the following corollary of Theorem 5.14.

Corollary 5.16. For any ensemble of distributions D = {Dn}n∈N, where Dn is a distribution over Σn, and for any
s ∈ [0,1], if dim(Dn)> 2s, then Hnext(D)> k for k = k(n) = sn.

In a similar fashion, we get the following as a corollary of Theorem 5.15.

Corollary 5.17. For any ε > 0, s ∈ [0,1] and k = k(n) = sn, for any ensemble of distributions D = {Dn}n∈N, where
Dn is a distribution over Σn, if Hnext(D)> k, then dim(D)> s− 1

2 − ε .

6. Pseudorandom Extractors & Lower Bound
We now introduce the notion of pseudorandom extractor similar to the notion of randomness extractor. Intuitively,
a randomness extractor is a function that outputs almost random (statistically close to uniform) bits from weakly
random sources, which need not be close to the uniformly random source. Two distributions X and Y on a set Λ

are said to be ε − close (statistically close) if maxS⊆Λ{|Pr[X ∈ S]−Pr[Y ∈ S]|} ≤ ε or equivalently 1
2 ∑

x∈Λ

|Pr[X =

x]−Pr[Y = x]| ≤ ε .

Definition 6.1 (Deterministic Randomness Extractor). For any ε = ε(n)> 0, a family of functions E = {En}n∈N
where En : Σn→ Σm(n) is said to be a deterministic ε-extractor for a class of ensemble of distributions C if for every
ensemble of distributions X = {Xn}n∈N in C , where Xn is on Σn, for all large enough n, the distribution En(Xn) is
ε(n)-close to Um(n).

Likewise, a seeded ε-extractor is defined and the only difference is that now it takes a d(n)-bit string chosen accord-
ing to Ud(n), as an extra input. Before going further, we mention that for ease of presentation, now onwards we will
only talk about the definitions and results derived so far related to pseudorandomness and dimension by considering
all polynomial size circuits and inverse polynomial bias. We now define the notion of a pseudorandom extractor, the
purpose of which is to extract out pseudorandom distribution from a given distribution.

Definition 6.2 (Pseudorandom Extractor). A family of functions E = {En}n∈N where En : Σn → Σm(n) is said
to be a deterministic pseudorandom extractor for a class of ensemble of distributions C if for every ensemble of
distributions X = {Xn}n∈N in C , where Xn is on Σn, E(X) is pseudorandom.

A family of functions E = {En}n∈N where En : Σn×Σd(n)→ Σm(n) is said to be a seeded pseudorandom extractor
for a class of ensemble of distributions C if for every ensemble of distributions X = {Xn}n∈N in C , E(X,Ud) is
pseudorandom.

In this section, we will concentrate on the class of distributions having dimension at least s. It is clear from the results
stated in Section 5.2 that this class of distribution is a strict superset of the class of distributions with HILL-type
pseudo min-entropy at least sn, for which any randomness extractor will act as a pseudorandom extractor [4]. Thus
it is natural to ask the following.
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Question 6.3. For any s ∈ (0,1], does there exist a deterministic/seeded pseudorandom extractor for the class of
ensemble of distributions having dimension at least s?

Just like the case of randomness extraction, one can easily argue that deterministic pseudorandom extraction is not
possible9. The next natural question is what the lower bound on the seed length will be. We answer this question in
the following theorem.

Theorem 6.4. Suppose for any s ∈ (0,1], E = {En}n∈N where En : Σn×Σd(n)→ Σm(n) be a seeded pseudorandom
extractor for the class of ensemble of distributions having dimension at least s and for some δ > 0, m(n) = (sn)δ .
Then d(n) = Ω(logn).

Proof. For the sake of contradiction, let us assume that d(n) = o(logn). Now by doing a walk according to the
output distribution on an odd-length cycle, we achieve the following claim.

Claim. There is a deterministic 1
4√m

-extractor E′= {E′m}m∈N where E′m : Σm→ Σ
logm

4 for all pseudorandom ensemble
of distributions.

This claim follows from the stronger result stated in Theorem 6.8. Now construct the following function Extn :
Σn×Σd(n)→ Σc logn for some constant c > 0 such that Extn(x,y) = E′n(En(x,y)) for all x ∈ Σn,y ∈ Σd(n). The function
Ext is a seeded 1

(sn)δ/4 -extractor with d(n) = o(logn), but it is well known due to [30](Theorem 1.9) that any such

randomness extractor must satisfy d(n) = Ω(logn) and hence we get a contradiction. �

However, the question on constructing an explicit or polynomial time computable seeded pseudorandom extractor
with seed length O(logn) is still open and next, we formally pose this question.

Question 6.5. For any s ∈ (0,1], can one construct a seeded pseudorandom extractor E = {En}n∈N where En :
Σn×Σd(n)→ Σm(n) in polynomial time, for the class of ensemble of distributions having dimension at least s such
that m(n) = (sn)δ for some δ > 0 and d(n) = O(logn)?

Note that it is important to consider dimension in the statement of Question 6.3 and 6.5, because if we consider
strong dimension instead of dimension then sometimes it might be just impossible to extract out pseudorandom
distributions. For example one can consider the ensemble of distributions mentioned in the proof of Theorem 4.9
where however strong dimension is 1, as for infinitely many n, support of Dn contains just a single string, thus one
cannot hope to get any pseudorandom distribution out of it. In the next part of this section, we will see a special
type of nonpseudorandom source and give an explicit construction of deterministic pseudorandom extractor for that
particular type of source. Before proceeding further, we want to mention that it is also very interesting to consider
nonpseudorandom distributions samplable by poly-size circuits and we will discuss on the existence of extractor for
that particular source in Section 6.2.

6.1. Deterministic Pseudorandom Extractor for Nonpseudorandom Bit-fixing Sources
In Section 4 while proving Theorem 4.3, we have introduced a special type of nonpseudorandom distribution which
looks similar to the (n,k)-bit-fixing source defined as a distribution X over Σn such that there exists a subset I =
{i1, . . . , ik} ⊆ {1, . . . ,n} where all the bits at the indices of I are independent and uniformly chosen and rest of the
bits are completely fixed. This distribution was introduced by Chor et al.[6]. Now we define an analogous notion for
the class of nonpseudorandom distributions, which we term nonpseudorandom bit-fixing sources.

Definition 6.6 (Nonpseudorandom Bit-fixing Source). Let s ∈ (0,1). An ensemble of distributions D = {Dn}n∈N,
where Dn is an distribution over Σn, with dimension s is an (n,s)-nonpseudorandom bit-fixing source if for all n there

9Suppose E = {En}n∈N with En : Σn → Σ is a deterministic pseudorandom extractor, then for all n, there exists x ∈ Σ such that
|E−1

n (x)| ≥ 2n−1. Thus E is not a pseudorandom extractor for a source D that is a uniform distribution on E−1
n (x) for all n and by

Lemma 5.8, dim(D)≥ s for any s < 1.
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exists a subset I = {i1, . . . , idsne} ⊆ {1, . . . ,n} such that all the bits at the indices of I come from a pseudorandom
distribution and rest of the bits are fixed.

We devote the rest of the section to achieve an affirmative answer to the question of constructing deterministic pseu-
dorandom extractor for the nonpseudorandom bit-fixing sources. For this purpose, we show that a careful analysis
of the technique used in the construction of the deterministic randomness extractor for bit-fixing random sources by
Gabizon, Raz and Shaltiel [9] will lead us to the desired deterministic pseudorandom extractor.

Theorem 6.7. For any s ∈ (0,1], there is an explicit deterministic pseudorandom extractor E = {En : Σn →
Σm(n)}n∈N, for all (n,s)-nonpseudorandom bit-fixing sources having polynomial-size support where m(n) = (sn)Ω(1).

We first extract O(logsn) amount of almost random bits and then use the same as seed in the seeded extractor. To use
the seeded extractor, we modify the source such that it becomes independent of the random bits extracted. Before
going into the exact details of the proof, we first discuss the ingredients required in the proof of the theorem.

6.1.1. Pseudorandom walk and extracting a few random bits
Kamp and Zuckerman [20] use a technique of random walk on odd-length cycles to extract almost random bits from
a bit-fixing source. We adapt this to extract O(logsn) almost random bits from a (n,s)-nonpseudorandom bit-fixing
source.

Theorem 6.8. Let s ∈ [0,1], k = dsne. Then there is a deterministic 1
4√k

-extractor E = {En : Σn→ Σ
logk

4 }n∈N for all

(n,s)-nonpseudorandom bit-fixing sources.

We prove the above theorem using the property of pseudorandom walk together with the fact that the second largest
eigenvalue of a l length odd cycle is cos(π/l). Note that a corollary of the above theorem is the claim used in the
proof of Theorem 6.4. Before proving the above theorem, we state two lemmas required for the proof. The first is a
very special case of a lemma given in [20] which was restated in [9].

Lemma 6.9 ([9]). Let n ∈ N, k ≤ n and s ∈ [0,1]. Suppose G is an odd length cycle having M vertices and having
second largest eigenvalue λ . If we take a walk on G according to the bits from a (n,k)-bit-fixing source, starting from
any fixed vertex, then at the end of the n step of the walk, the distribution P on the vertices will be 1

2 λ k
√

M-close to
UM .

Now we prove a similar result for (n,s)-nonpseudorandom bit-fixing source using the property of pseudorandom
walk. The idea of pseudorandom walk was also used previously in the domain of space bounded computation by
Reingold et al. [31].

Lemma 6.10. Let s∈ [0,1] and k = dsne. Let G be an odd length cycle having M vertices and having second largest
eigenvalue λ . If we take a walk on G according to the bits from a (n,s)-nonpseudorandom bit-fixing source starting
from any fixed vertex, then for all large enough n, at the end of the n step of the walk, the distribution Q on the
vertices will be 1

2 (λ
k +
√

Mε(n))
√

M-close to UM , where M is polynomial in n and ε(n) < 1/nc for any constant
c > 0.

Proof. Let π be the stationary distribution on the vertices and since we consider an odd length cycle (a 2-regular
graph), the stationary distribution is the uniform distribution on M vertices. Suppose we take a n step walk on the
graph G starting from any vertex v according to the bits from a (n,k)-bit-fixing source, where k = dsne and the
probability vector on the vertices at the end of the walk is P =

(
p1 p2 . . . pM

)
. Now we take a n step walk on the

graph G starting from the same vertex v according to the bits from a (n,s)-nonpseudorandom bit-fixing source and
the probability vector on the vertices at the end of the walk is Q =

(
q1 q2 . . . qM

)
, where ∀1≤i≤M , qi ≤ pi + ε(n) and

ε(n)< 1/nc for any constant c > 0. This bound on qi can be justified as follows.
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Note that the only difference between (n,s)-nonpseudorandom bit-fixing source and (n,k)-bit-fixing source is
that on the set I, in (n,k)-bit-fixing source, we have Uk instead of pseudorandom distribution (say D) on Σk. Also
observe that actually P and Q are the distributions on vertices at the end of a k step walk, where the walk was started
from the vertex v and done according to the bits coming from Uk and D respectively, because a step according to a
fixed bit will not change the output distribution and in a (n,k)-bit-fixing source (also in a (n,s)-nonpseudorandom
bit-fixing source), all the n− k bits are fixed. For a step according to a fixed bit gives rise to a transition matrix that
is actually a permutation matrix and thus it leaves the distance from uniform unchanged. Hence, if the bound on
qi,∀1≤i≤M is not true then we can use this k step walk on G as a polynomial (polynomial in k) time algorithm to
distinguish between Uk and D. Thus,

||q−π||2 =
M

∑
i=1

(qi−
1
M
)2 ≤

M

∑
i=1

(pi + ε(n)− 1
M
)2 = ||p−π||2 + Mε(n)2 ≤ λ

2k + Mε(n)2 ≤ (λ k +
√

Mε(n))2.

�

The above lemma together with the fact that the second largest eigenvalue of a l length odd cycle is cos(π/l), implies
Theorem 6.8.

Proof of Theorem 6.8. Let us take an odd cycle G with M = 4√k vertices. The second largest eigenvalue of G is
cos( π

4√k
). Now take a walk starting from a fixed vertex of G according to the bits from (n,s)-nonpseudorandom

bit-fixing source and finally output the vertex number of the graph G. Thus we get logk
4 bits. From Lemma 6.10, we

reach distance 1
2 ((cos( π

4√k
))k + 8√kε(n)) 8√k from uniform.

By the Taylor expansion of the cosine function, for 0 < x < 1, cos(x)< 1− x2

2 + x4

24 .

Therefore,
(

cos
(

π
4√k

))k
< (1− π2

4
√

k
)k < (exp−

π2
4 )
√

k < 4−
√

k. Hence, 1
2 ((cos( π

4√k
))k + 8√kε(n)) 8√k < 1

4√k
. Thus we

get distribution of logk
4 bit strings which is 1

4√k
-close to uniform in statistical distance. �

6.1.2. Sampling and Partitioning with a short seed
Here we restate some of the results on sampling and partitioning used in construction of deterministic extractor for
bit-fixing sources from [9]. Let S ⊆ [n] be some subset of size k. Now we consider a process of generating a subset
T ⊆ [n] such that kmin ≤ |S∩T| ≤ kmax and this process is known as Sampling.

Definition 6.11. A function Samp : Σt → P([n]) is called a (n,k,kmin,kmax,δ )-sampler if for any subset S ⊆ [n],
where |S|= k, Prw∈RUt [kmin ≤ |Samp(w)∩S| ≤ kmax]≥ 1−δ

Now consider a similar process known as Partitioning, the task of which is to partition [n] into m distinct subsets
T1,T2, · · · ,Tm such that for every 1≤ i≤ m, kmin ≤ |S∩Ti| ≤ kmax.
According to [9], the above two processes can be performed using only a few random bits.

Lemma 6.12 ([9]). For any constant 0 < α < 1, there exist constants c > 0,0 < b < 1 and 1
2 < e < 1 such that

for any n ≥ 16 and k ≥ (logn)c, there is an explicit construction of a function Samp : Σt → P([n]) which is a
(n,k, ke

2 ,3ke,O(k−b))-sampler, where t = α logk.

Lemma 6.13 ([9]). For any constant 0 < α < 1, there exist constants c > 0,0 < b < 1 and 1
2 < e < 1 such that for

any n ≥ 16 and k ≥ (logn)c, there is an explicit construction that uses only α logk random bits and partition [n]
into m = O(kb) many subsets T1,T2, · · · ,Tm such that for any subset S ⊆ [n], where |S| = k, Pr[∀1 ≤ i ≤ m, ke

2 ≤
|Ti∩S| ≤ 3ke]≥ 1−O(k−b).
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6.1.3. Generating an independent seed
In this subsection, we see the way of obtaining a short seed from a nonpseudorandom bit-fixing source so that
we can use them in a seeded pseudorandom extractor to extract out almost all the pseudorandom part from the
source. The main problem of using this short seed in a seeded pseudorandom extractor is that the already obtained
seed is dependent on the main distribution. Now we describe that this problem can be removed in the case of
nonpseudorandom bit-fixing sources. Even though the result is analogous to [9], the proofs differ in essential details.

Definition 6.14 (Seed Obtainer). A family of functions F = {Fn : Σn→ Σn×Σd(n)}n∈N is said to be a (s,s′,ρ)-seed
obtainer (s′ ≤ s) if for every (n,s)-nonpseudorandom bit-fixing source X = {Xn}n∈N, the distribution R = {Rn =
Fn(Xn)}n∈N can be written as R = ηQ+∑a αaRa

10 for η = η(n)> 0, αa = αa(n)> 0 and η(n)+∑a αa(n) = 1 such
that η(n)≤ ρ(n) and for every a, there exists a (n,s′)-nonpseudorandom bit-fixing source Za such that for all large
enough n, {Ra}n is ρ(n)-close to {Za}n⊗Ud(n).

In the above definition, by {Za}n⊗Ud(n), we mean the product of two distributions {Za}n and Ud(n). From the above
definition it is clear that given a seed obtainer and a seeded pseudorandom extractor for nonpseudorandom bit-fixing
sources, we can easily construct a deterministic pseudorandom extractor. The following theorem provides us the
details of such construction, where the correctness follows from the properties of our proposed notion of dimension
described in Section 4.

Theorem 6.15. Suppose F = {Fn : Σn → Σn × Σd(n)}n∈N is a (s,s′,ρ)-seed obtainer, where ρ(n) ≤ 1
(sn)c for

some constant c > 0 and E′ = {E′n : Σn × Σd(n) → Σm(n)}n∈N is a seeded pseudorandom extractor for (n,s′)-
nonpseudorandom bit-fixing sources, where m(n) = (sn)Ω(1). Then the function E = {En : Σn→ Σm(n)}n∈N defined as
En(x) = E′n(Fn(x)) for all x ∈ Σn, is a deterministic pseudorandom extractor for (n,s)-nonpseudorandom bit-fixing
sources.

Proof. By the definition of the seed obtainer, we can write E(X) = ηE′(Q)+∑a αaE′(Ra) = ηE′(Q)+(1−η)Y , for
some ensemble of distributions Y . Now by Lemma 4.5, for all a, E′(Ra) is pseudorandom and as a consequence, by
Lemma 4.6, Y is pseudorandom as well. Then using Lemma 4.5, we can argue that E(X) is also pseudorandom as
η ≤ 1

(sn)c , for some constant c > 0. �

Now we give an explicit construction of (s,s′,ρ)-seed obtainer, which is crucial in the later part of this paper. To
understand the notion of sampler used in the following theorem, the readers may refer to the last subsection.

Theorem 6.16. Let Samp = {Sampn : Σt(n) → P([n])}n∈N where Sampn be a (n,dsne,ds1ne,ds2ne,δ (n))-sampler
and E = {En : Σn → Σm(n)}n∈N with m(n) > t(n) be a deterministic ε-extractor for (n,s1)-nonpseudorandom bit-
fixing sources, where ε(n)< 1/nc for any constant c > 0. Then there is an explicit (s,s′,ρ)-seed obtainer F = {Fn :
Σn→ Σn×Σd(n)}n∈N, where d(n) = m(n)− t(n), s′ = s− s2, and ρ(n) = max{ε(n)+ δ (n),

√
ε(n)2t(n)+1}.

The construction of the seed obtainer is the same as that mentioned in [9], however the proof requires a slightly
different argument.

Proof. The construction of F mentioned in the theorem is as follows:

1. Given x ∈ Σn, compute En(x). Denote the first t(n) bits of En(x) by E1
n(x) and the last (m(n)− t(n)) bits by

E2
n(x);

2. Compute Sampn(E1
n(X)) and denote it as T;

3. Let x′ = x[n]\T and y = E2
n(x). If |x′|< n, pad it with zeros to get n-bit long string. Now output x′,y.

10It means for all n, Rn = η(n)Qn + ∑a αa(n){Ra}n
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Note that the above construction is the same as the construction of seed obtainer given in [9]. However, the proof
is not the same and more specifically the proof of the next claim differs from that of the similar claim made in [9].
Here, in the proof we use the properties of pseudorandomness and the fact that the distribution under consideration
has polynomial-size support.

Let X be a (n,s)-nonpseudorandom bit-fixing source and now consider any large enough n and let I be the set
of indices at which the bits are not fixed. For a string a ∈ Σt(n), Ta denotes Sampn(a) and T ′a denotes [n]\Sampn(a).
Given a string x∈ Σn, xa denotes xTa and x′a denotes n-bit string obtained by padding xT ′a with zeros. Let X′ = X′E1

n(Xn)

and Y = E2
n(Xn). We say that a string a ∈ Σt(n) correctly splits Xn if ds1ne ≤ |I∩Ta| ≤ ds2ne.

Claim. For every a ∈ Σt(n) which correctly splits Xn, (X′a,En(Xn)) is ε(n)-close to (X′a⊗Um(n)), where ε(n)< 1/nc

for any constant c > 0.

Proof. Let |Sampn(a)|= l. Given a string σ ∈ Σl and a string σ ′ ∈ Σn−l, we define [σ ;σ ′] as follows:
Suppose l indices of Ta are i1 < · · · < il and the (n− l) indices of T ′a are i′1 < · · · < i′n−l. The string [σ ;σ ′] ∈ Σn is
defined as:

[σ ;σ
′]i =

{
σj i ∈ Ta and ij = i
σ ′j i ∈ T ′a and i′j = i

In this notation, we denote Xn = [Xa;X′a]. Now consider the distribution (X′a,En(Xn)) = (X′a,En([Xa;X′a])). For every
b∈ Σn−l, we consider the event {X′a = b}. As a correctly splits Xn, there are at least ds1ne “good” indices in Ta. Now
fix some b ∈ Σn−l such that Xn[X′a = b] > 0.

Now we claim that for all subsets B⊆Σn−l where ∀b∈B,Xn[X′a = b]> 0, there exists a b′ ∈B such that the distribu-
tion ([Xa;X′a]|X′a = b′) forms an (n,s1)-nonpseudorandom bit-fixing source if for some constant c > 0, ε ′(n)≥ 1/nc

and

∑
b∈B

Xn[X′a = b] > ε
′(n).

For the sake of contradiction, let us assume that the above claim is not true. It means that there exists a subset
J ⊆ Σn−l, where

i. ∀b∈J , Xn[X′a = b] > 0,
ii. ∑

b∈J
Xn[X′a = b] > ε ′(n) where ε ′(n)≥ 1/nc, for some constant c > 0, and also

iii. for all b∈ J, the distributions ([Xa;X′a]|X′a = b) are not forming (n,s1)-nonpseudorandom bit-fixing sources.

Now let us consider only the “good” positions which are dsnemany in X and at least ds1nemany in ([Xa;X′a]|X′a = b).
So the above assumption implies that the ensemble of distributions formed by considering those ds1ne bits (this
part of the string b is denoted as bds1ne) in ([Xa;X′a]|X′a = b) is not pseudorandom, i.e., it has its corresponding
distinguishing circuits Cb. If this is the case, then the circuit C (by hard-wiring the good random bits) corresponding
to the following algorithm A, will act as a distinguishing circuit for the pseudorandom distribution P on dsne many
bits; which is a contradiction. The algorithm A is as follows: on input y ∈ {0,1}ds1ne, if yds1ne = bds1ne for any b ∈ J,
then return Cb(yds1ne); otherwise return 0 or 1 uniformly. And thus clearly,

|P[A[y] = 1]−Uds1ne[A[y] = 1]|> 1/nc.

Circuit C is nothing but the combination of all the circuits Cb, for b ∈ J, each of which is of polynomial size.
Now as ∀b∈J , Xn[X′a = b] > 0 and by our assumption that the distribution under consideration has polynomial-size
support (see statement of Theorem 6.7), the support of the subset J is at most polynomial. Hence the circuit C is of
polynomial size. Note that this is the only place where we use the fact that the distribution under consideration is of
polynomial-size support.
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So, we can write,

1
2 ∑

b,c
|Pr[(X′a,E(X)) = (b,c)]−Pr(X′a⊗Um(n))

[b,c]|

=
1
2 ∑

b,c
|Pr[X′a = b]Pr[En(Xn) = c|X′a = b]−Pr[X′a = b]PrUm(n)[c]| ≤ ε(n)

where ε(n) < 1/nc for any constant c > 0. The first inequality follows from the fact that we can split the sum in
two parts one in which ([Xa;X′a]|X′a = b)’s are not (n,s1)-nonpseudorandom bit-fixing sources and another in which
([Xa;X′a]|X′a = b)’s are at least (n,s1)-nonpseudorandom bit-fixing sources. �

Next we mention a claim from [9] that makes comment on independence of the pair (X′a,E2
n(Xn)) conditioned on the

event E1
n(Xn) = a).

Claim ([9]). For every fixed a ∈ Σt(n) that correctly splits Xn, the distribution ((X′a,E2
n(X)) | E1

n(X) = a) is ε(n)2t+1-
close to (X′a⊗Um(n)−t(n)).

Note that as a correctly splits Xn, so X′a forms a (n,s− s2)-nonpseudorandom bit-fixing source.
The rest of the proof follows directly from the proof of correctness of the construction of seed obtainer given in

[9] with the following parameters k = dsne, kmin = ds1ne, kmax = ds2ne. �

6.1.4. A seeded pseudorandom extractor
In this subsection, we discuss about how we can extract (sn)Ω(1) many pseudorandom bits using O(logsn) random
bits. In the next subsection, we will use this seeded pseudorandom extractor and the techniques discussed in the
previous subsections, to construct deterministic extractor. The construction of seeded pseudorandom generator given
in the proof of the following theorem is same as that of the seeded randomness extractor given in [9]. However, the
analysis is quite different and uses some of the properties of dimension.

Theorem 6.17. For an s ∈ (0,1) and any constant 0 < α < 1, there exist constants c > 0,0 < b < 1 such that
there is an explicit function E = {En : Σn×Σd(n)→ Σm(n)}n∈N which acts as a seeded pseudorandom extractor for
(n,s)-nonpseudorandom bit-fixing sources with d(n) = α logsn and m(n) = Ω((sn)b).

Proof. Let X be a (n,s)-nonpseudorandom bit-fixing source and for some large enough n, x be a string sampled by
Xn. The description of the extractor En(x,y) is as follows:

1. According to Lemma 6.13 provided in Section 6.1.2, using y as seed, we obtain a partition of [n] into
m(n) = Ω((sn)b) many sets T1,T2, · · · ,Tm(n) with the parameter α;

2. For 1≤ i≤ m(n), compute z[i] =⊕j∈Tix[j];
3. Output z = z[1]z[2] · · ·z[m(n)].

Let I ⊆ [n] be the set of indices at which the bits are not fixed and let Zn be the distribution of the output strings. We
need to show that Z = {Zn}n∈N is pseudorandom.

Let An be the event {∀i, |Ti ∩ I| 6= 0} and Ac
n = {∃i, |Ti ∩ I| = 0} be the complement event. According to

Lemma 6.13, Pr[An]≥ 1−O((sn)−b). Now we can write the output distribution as

Zn = Pr[An](Zn|An)+ Pr[Ac
n](Zn|Ac

n)

and hence due to Lemma 4.5, Z is pseudorandom. �
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6.1.5. Deterministic pseudorandom extractor
Now it only remains to combine all the components we discussed so far to build the final deterministic pseudorandom
extractor mentioned in Theorem 6.7. We first extract O(logsn) amount of almost random bits by Theorem 6.8 and
then use the same as seed in the seeded extractor described in Theorem 6.17. To use the seeded extractor it is
required to modify the source such that it becomes independent of the random bits extracted using Theorem 6.8. For
that purpose, we use the technique developed in Section 6.1.3 and this concludes the proof of Theorem 6.7.

Proof of Theorem 6.7. Due to Lemma 6.12, we have a (n,sn, (sn)e

2 ,3(sn)e,(sn)−Ω(1))-sampler Sampn : Σt(n) →
P([n]), where t(n) = logsn

32 and e > 1
2 . From Theorem 6.8, we have a deterministic 1

4√s′n
-extractor E∗ = {E∗n : Σn→

Σm′}n∈N for (n,s′)-nonpseudorandom bit-fixing sources where for all large enough n, s′n≥ (sn)e

2 and m′(n) = logs′n
4 .

Now we use Theorem 6.16 to get (s,s′′,ρ)-seed obtainer F = {Fn : Σn → Σn×Σm′(n)−t(n)}n∈N where for all large
enough n, s′′n ≥ 3(sn)e and ρ(n) = 1

(sn)p , for some constant p. According to Theorem 6.17, we have a seeded

pseudorandom extractor E′ = {E′n : Σn × Σd(n) → Σm(n)}n∈N with d(n) = logsn
32 and m(n) = (sn− s′′n)Ω(1) for

(n,s− s′′)-nonpseudorandom bit-fixing sources. Since m′(n) = logs′n
4 ≥ logsn

16 = t(n)+ d(n), we use F and E′ in
Theorem 6.15 to construct a deterministic pseudorandom extractor E = {En : Σn→ Σm(n)}n∈N. For a large enough
n, m(n) = (sn− s′′n)Ω(1) = (sn)Ω(1) and this completes the proof. �

6.2. Discussion on Pseudorandom Extractor for Nonpseudorandom Samplable Distributions
Another interesting special kind of source is samplable distributions studied by Trevisan and Vadhan [33]. In a
natural way, one can extend the definition of samplable distribution to nonpseudorandom distribution as follows:
for any s ∈ (0,1], an ensemble of distributions D = {Dn}n∈N is said to be s-nonpseudorandom samplable by circuit
of size S = S(n) > n if for all large enough n, there exists a circuit C of size at most S(n) that samples from
Dn and dim(D) = s. Observe that the negative results for deterministic randomness extractor in case of samplable
distributions will also applicable for deterministic pseudorandom extractor in case of s-nonpseudorandom samplable
distribution. By Lemma 5.8, if H∞(Dn) ≥ n− 1 for all large enough n, then dim(D) ≥ s for any s < 1. Now by
applying the argument in [33], we get the following.

Theorem 6.18. Suppose E = {En : Σn → Σ}n∈N is a family of functions computable in time T(n) such that E is
a deterministic pseudorandom extractor for ensemble of distributions that are s-nonpseudorandom samplable by
circuit of size S(n) for any s < 1 . Then there is a language in DTIME(T(n)) of circuit complexity at least Ω(S(n)).

The existence of deterministic pseudorandom extractors implies separations between deterministic complexity
classes and non-uniform circuit classes that are not yet known. So one might have to consider some complexity
theoretic assumptions like in [33] to construct deterministic pseudorandom extractor. However, we do not think con-
struction with such strong assumption like in [33] will be interesting in this case as it is known that certain hardness
assumption already leads to a construction of optimal pseudorandom generator (See Section 7). Nevertheless, it is
natural to ask the question of constructing explicit extractor using O(logn) amount of extra randomness. We do not
know any such result so far, but in the next section we will see that if some distribution is samplable using very few
(O(logn)) random bits, then it is possible to extract out all the pseudorandom bits using extra O(logn) random bits.

7. Approaching Towards P=BPP
We now show that if there is an exponential time computable algorithm G = {Gn}n∈N with Gn : ΣO(logn)→ Σn where
the output distribution has dimension s (s > 0), then this will imply P=BPP. We refer to this algorithm G as optimal
nonpseudorandom generator. The proof of this is similar to the proof of Theorem 7.4 [27]. We start with some basic
definitions.

A pseudorandom generator against a class of circuits is a function which takes a random seed as input and
outputs a sequence of bits which is a pseudorandom distribution.
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Definition 7.1 (Pseudorandom Generators). A function G is said to be a l(n)-pseudorandom generator if

1. G = {Gn}n∈N with Gn : Σl(n)→ Σn

2. Gn is computable in 2O(l(n)) time
3. For sufficiently large n, Gn(Ul(n)) is (n2,1/n)-pseudorandom.

Definition 7.2 (Optimal Pseudorandom Generators). A function G is said to be an optimal pseudorandom gen-
erator if it is an O(logn)-pseudorandom generator.

Nisan and Wigderson [27] showed that there is a connection between pseudorandom generators and hard func-
tions in EXP:

Definition 7.3 (Hard Function). A family of functions f = {fn}n∈N where fn : Σn → Σ is (S,ε)-hard for any S =
S(n)> n and ε = ε(n)> 0, if for all large enough n, for all circuits C of size at most O(S(n)),

Un[C(x) = fn(x)]≤
1
2

+ ε(n).

The following theorem shows that under the assumption of existence of hard function in EXP, optimal pseudo-
random generator exists [27].

Theorem 7.4 ([27]). There exists an optimal pseudorandom generators if and only if there is a language L in EXP
and ∃δ > 0 such that L is (2δn,1/2δn)-hard.

The proof of the above theorem is constructive and thus we can explicitly convert optimal pseudorandom gener-
ators to the hard function and conversely. However this is still a very strong requirement and later Impagliazzo and
Wigderson weakened it.

Theorem 7.5 ([19]). Suppose there is a language L in EXP and ∃δ > 0 such that L on inputs of length n cannot
be solved by circuits of size at most 2δn. Then there exists a language L′ in EXP and ∃δ ′ > 0 such that L′ is
(2δ ′n,1/2δ ′n)-hard and as a consequence optimal pseudorandom generator exists.

Now let us state and prove the main result of this section.

Theorem 7.6. Consider any s ∈ (0,1] and c > 0. If there exists an algorithm G = {Gn}n∈N where Gn : Σc logn→ Σn

computable in 2O(logn) such that dim({Gn(Uc logn)})≥ s, then P=BPP.

Proof. Suppose X := {Gn(Uc logn)}n∈N. If dim(X) = s > 0, then for all large enough n, there must be a subset of
indices S⊆ {1,2, · · · ,n} such that |S|= logn and for any i ∈ S, loss incurred by any polynomial-size predictor at i-th
bit position is non-zero or in other words, for any polynomial-size circuit family C = {Cn}n∈N, X[Ci(x1, · · · ,xi−1) =
xi] < 1. Actually one can show a much stronger claim that there exists such a subset S such that |S|= c ·n, for some
constant c < 1. Otherwise dim(X) = 0. To prove this, suppose |S| = o(n) and thus there exists a predictor π such
that for every w ∈ Σn,

Loss(π ,w) =
n

∑
i=1

loss(π(w[1 . . . i−1], w[i])) = ∑
i∈S

loss(π(w[1 . . . i−1], w[i])).

Now as loss(π(w[1 . . . i− 1], w[i])) ≤ 1, so for all large enough n, for any ε < 1
2 , LossRateε(π ,Xn) = 0. Hence

unpred(X) = 0 and by Corollary 3.7, dim(X) = 0 as well.
Suppose S contains first logn many such indices. Also assume that S = {i1, i2, · · · , ilogn} and i1 < i2 < · · ·< ilogn.

Now we define two languages L0 and L1 as follows: for j = 0,1,

Lj := {y ∈ Σ
logn−1|∃x ∈ Σ

n in the support of Gn and xS = jy}
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where jy denotes the string generated by concatenating j and y. First of all, note that as i1 ∈ S, none of L0 and L1
is an empty set. Now clearly either L0 or L1 is the language that satisfies all the conditions of Theorem 7.5 [19].
Otherwise, there exists a predictor circuit of size at most 2δ logn, for some δ > 0, i.e., polynomial in n, by which
we can predict ilogn-th bit position or loss incurred by that predictor at ilogn-th bit position will be zero implying
ilogn 6∈ S which is a contradiction. Thus either L0 or L1 can be used to construct an optimal pseudorandom generator
and that eventually implies P=BPP. �
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