A CHARACTERIZATION OF CONSTRUCTIVE DIMENSION

Satyadev Nandakumar

Iowa State University
Presented by David Doty
Outline

1 Introduction to Algorithmic Randomness
 - Constructive Measure Theoretic Approach
 - Martingales
 - Measures of Impossibility
 - Questions
Outline

1 Introduction to Algorithmic Randomness
 - Constructive Measure Theoretic Approach
 - Martingales
 - Measures of Impossibility
 - Questions

2 Background
Outline

1. Introduction to Algorithmic Randomness
 - Constructive Measure Theoretic Approach
 - Martingales
 - Measures of Impossibility
 - Questions

2. Background

3. Converting a martingale into a measure of impossibility
Outline

1. Introduction to Algorithmic Randomness
 - Constructive Measure Theoretic Approach
 - Martingales
 - Measures of Impossibility
 - Questions

2. Background

3. Converting a martingale into a measure of impossibility

4. Converting a measure of impossibility to a martingale
Outline

1. Introduction to Algorithmic Randomness
 - Constructive Measure Theoretic Approach
 - Martingales
 - Measures of Impossibility
 - Questions

2. Background

3. Converting a martingale into a measure of impossibility

4. Converting a measure of impossibility to a martingale

5. s-gales
Outline

1. Introduction to Algorithmic Randomness
 - Constructive Measure Theoretic Approach
 - Martingales
 - Measures of Impossibility
 - Questions

2. Background

3. Converting a martingale into a measure of impossibility

4. Converting a measure of impossibility to a martingale

5. s-gales

6. Constructive Dimensions
1. Introduction to Algorithmic Randomness
 • Constructive Measure Theoretic Approach
 • Martingales
 • Measures of Impossibility
 • Questions

2. Background

3. Converting a martingale into a measure of impossibility

4. Converting a measure of impossibility to a martingale

5. s-gales

6. Constructive Dimensions

7. s-Improbability
Outline

1. Introduction to Algorithmic Randomness
 - Constructive Measure Theoretic Approach
 - Martingales
 - Measures of Impossibility
 - Questions

2. Background

3. Converting a martingale into a measure of impossibility

4. Converting a measure of impossibility to a martingale

5. s-gales

6. Constructive Dimensions

7. s-Improbability

8. Characterization of Constructive Dimension
We consider a finite alphabet $\Sigma = \{0, 1\}$. The space of infinite binary sequences drawn from the alphabet is denoted \mathcal{C}.

Martin-Löf in 1966 defined the notion of an effective measure-0 set.

Theorem (Martin-Löf 1966) For every computable probability measure P defined on \mathcal{C}, there is a unique largest effective measure-0 set. The complement of the largest effective measure-0 set is the set of individual constructively random sequences.
We consider a finite alphabet $\Sigma = \{0, 1\}$. The space of infinite binary sequences drawn from the alphabet is denoted \mathcal{C}.

Definition

A *probability measure* on \mathcal{C} is a function $P : \Sigma^* \rightarrow [0, 1]$ satisfying

1. $P(\lambda) = 1$,
2. For every $w \in \Sigma^*$, $P(w) = P(w0) + P(w1)$.

Martin-Löf in 1966 defined the notion of an effective measure-0 set.

Theorem (Martin-Löf 1966) For every computable probability measure P defined on \mathcal{C}, there is a unique largest effective measure-0 set. The complement of the largest effective measure-0 set is the set of individual constructively random sequences.
We consider a finite alphabet $\Sigma = \{0, 1\}$. The space of infinite binary sequences drawn from the alphabet is denoted \mathcal{C}.

Definition

A *probability measure* on \mathcal{C} is a function $P : \Sigma^* \rightarrow [0, 1]$ satisfying

1. $P(\lambda) = 1$,
2. For every $w \in \Sigma^*$, $P(w) = P(w0) + P(w1)$.

Martin-Löf in 1966 defined the notion of an effective measure-0 set.
We consider a finite alphabet $\Sigma = \{0, 1\}$. The space of infinite binary sequences drawn from the alphabet is denoted C.

Definition

A *probability measure* on C is a function $P : \Sigma^* \to [0, 1]$ satisfying

1. $P(\lambda) = 1$,
2. For every $w \in \Sigma^*$, $P(w) = P(w0) + P(w1)$.

Martin-Löf in 1966 defined the notion of an effective measure-0 set.

Theorem

* (Martin-Löf 1966) For every computable probability measure P defined on C, there is a unique largest effective measure-0 set.

The complement of the largest effective measure-0 set is the set of **individual constructively random sequences**.
Martingale Approach to Randomness

Definition

(Ville 1939, Schnorr 1970,1971) A *martingale* is a function \(d : \Sigma^* \rightarrow [0, \infty) \) such that the following hold.

\[
d(\lambda) \leq 1.
\]

\[
(\forall w \in \Sigma^*) \ d(w)P(w) = d(w0)P(w0) + d(w1)P(w1).
\]

A constructive martingale is a lower semicomputable martingale.
Definition

(Ville 1939, Schnorr 1970, 1971) A **martingale** is a function $d : \Sigma^* \rightarrow [0, \infty)$ such that the following hold.

$$d(\lambda) \leq 1.$$

$$(\forall w \in \Sigma^*) \quad d(w)P(w) = d(w_0)P(w_0) + d(w_1)P(w_1).$$

A constructive martingale is a lower semicomputable martingale.

Definition

The martingale **succeeds** on a set $X \subseteq \mathcal{C}$ if

$$(\forall \omega \in X) \limsup_{n \to \infty} d(\omega[0 \ldots n-1]) = \infty.$$

The success set of a martingale is denoted $S^\infty[d]$.

Legends:

- **λ** represents the empty string.
- **Σ^*** denotes the set of all finite strings over the alphabet Σ.
- **\mathcal{C}** represents the set of all infinite strings over the alphabet Σ.
- **P** denotes the probability measure.
- **d** is the martingale function.
- **ω** represents a string in \mathcal{C}.
- **$\omega[0 \ldots n-1]$** denotes the prefix of the string ω up to the $(n-1)$-th character.
Martingale Approach to Randomness

Definition

(Ville 1939, Schnorr 1970, 1971) A *martingale* is a function \(d : \Sigma^* \to [0, \infty) \) such that the following hold.

\[
d(\lambda) \leq 1.
\]

\[
(\forall w \in \Sigma^*) \ d(w)P(w) = d(w_0)P(w_0) + d(w_1)P(w_1).
\]

A constructive martingale is a lower semicomputable martingale.

Definition

The martingale *succeeds* on a set \(X \subseteq C \) if

\[
(\forall \omega \in X) \limsup_{n \to \infty} d(\omega[0 \ldots n - 1]) = \infty.
\]

The success set of a martingale is denoted \(S^\infty[d] \).

A sequence \(\omega \in C \) is random if and only if there is a constructive martingale that succeeds on it.
Definition

(Gács 81, Vovk, V’yugin 93) A measure of impossibility with respect to a computable probability measure P is a function $p : C \rightarrow [0, \infty]$ such that the following hold.

- p is lower semicomputable.
- $\int p \, dP \leq 1$.

A sequence $\omega \in C$ is random if and only if there is a measure of impossibility p such that $p(\omega) = \infty$.
Measure of Impossibility Approach to Randomness

Definition

(Gács 81, Vovk, V’yugin 93) A *measure of impossibility* with respect to a computable probability measure P is a function $p : \mathcal{C} \rightarrow [0, \infty]$ such that the following hold.

- p is lower semicomputable.
- $\int pdP \leq 1$.

A sequence $\omega \in \mathcal{C}$ is random if and only if there is a measure of impossibility p such that $p(\omega) = \infty$.
Definition

(Gács 81, Vovk, V’yugin 93) A measure of impossibility with respect to a computable probability measure P is a function $p : \mathcal{C} \to [0, \infty]$ such that the following hold.

- p is lower semicomputable.
- $\int pdP \leq 1$.

A sequence $\omega \in \mathcal{C}$ is random if and only if there is a measure of impossibility p such that $p(\omega) = \infty$.
Martingales have been successful in the study of resource bounded measure, resource-bounded dimension (Lutz 2000), and as a tool in computational complexity.
• Martingales have been successful in the study of resource bounded measure, resource-bounded dimension (Lutz 2000), and as a tool in computational complexity.

• Measures of impossibility have been useful in proving the effective ergodic theorem for individual random sequences (V’yugin 97).
Martingales have been successful in the study of resource bounded measure, resource-bounded dimension (Lutz 2000), and as a tool in computational complexity.

Measures of impossibility have been useful in proving the effective ergodic theorem for individual random sequences (V’yugin 97).

QUESTION:
Can measures of impossibility be generalized to characterize resource-bounded dimension?
Definition

Let Ω be \mathbb{C} or Σ^*. A function $f : \Omega \rightarrow [-\infty, \infty]$ is called *lower semicomputable* if $S = \{(w, q) | w \sqsubseteq x, q < f(x)\}$ is the union of a computably enumerable sequence of cylinders in the natural topology on $\Omega \times \mathbb{Q}$.

A function $f : \Omega \rightarrow [-\infty, \infty]$ is *upper semicomputable* if $-f$ is lower semicomputable. A function f is *computable* if it is both upper and lower semicomputable.

A probability measure on \mathbb{C} is computable if $P : \Sigma^* \rightarrow [0, 1]$ is a computable function.
Definition

Let Ω be \mathbb{C} or Σ^*. A function $f : \Omega \to [-\infty, \infty]$ is called **lower semicomputable** if $S = \{(w, q) | w \sqsubseteq x, q < f(x)\}$ is the union of a computably enumerable sequence of cylinders in the natural topology on $\Omega \times \mathbb{Q}$.

A function $f : \Omega \to [-\infty, \infty]$ is **upper semicomputable** if $-f$ is lower semicomputable. A function f is **computable** if it is both upper and lower semicomputable.

A probability measure on \mathbb{C} is computable if $P : \Sigma^* \to [0, 1]$ is a computable function.
Converting a martingale into a measure of impossibility

Let \(d : \Sigma^* \to [0, \infty) \) be a lower semicomputable \(P \)-martingale that succeeds on an \(\omega \in C \).

Definition

A martingale \(d \) succeeds strongly on \(X \) if \((\forall \omega \in X) \lim \inf_{n \to \infty} d(\omega[0..n-1]) = \infty\).

The strong success set of a martingale \(d \) **is denoted** \(S_{\infty}^{\text{str}}[d] \).

Lemma (folklore) Let \(\omega \in S_{\infty}^{\text{str}}[d] \). Then there exists a martingale \(d' : \Sigma^* \to [0, \infty] \) such that \(\omega \in S_{\infty}^{\text{str}}[d'] \).

Proof is by the "savings account trick".

Define \(p : C \to [0, \infty] \) by \(p(\omega) = \lim_{n \to \infty} sa(\omega[0..n-1]) \).
Let $d : \Sigma^* \to [0, \infty]$ be a lower semicomputable P-martingale that succeeds on an $\omega \in C$.

Definition

A martingale d succeeds strongly on X if

$$\left(\forall \omega \in X \right) \lim_{n \to \infty} \inf d(\omega[0 \ldots n - 1]) = \infty.$$

The strong success set of a martingale d is denoted $S^{\infty}_{str}[d]$.

Lemma

(folklore) Let $\omega \in S^{\infty}[d]$. Then there exists a martingale $d' : \Sigma^* \to [0, \infty]$ such that $\omega \in S^{\infty}_{str}[d']$.

Proof is by the “savings account trick”. $d' = bc + sa$
Let \(d : \Sigma^* \rightarrow [0, \infty] \) be a lower semicomputable \(P \)-martingale that succeeds on an \(\omega \in C \).

Definition

A martingale \(d \) succeeds strongly on \(X \) if

\[
(\forall \omega \in X) \lim_{n \to \infty} \inf d(\omega[0 \ldots n - 1]) = \infty.
\]

The strong success set of a martingale \(d \) is denoted \(S_{\text{str}}[d] \).

Lemma

(folklore) Let \(\omega \in S^\infty[d] \). Then there exists a martingale \(d' : \Sigma^* \rightarrow [0, \infty] \) such that \(\omega \in S_{\text{str}}^\infty[d'] \).

Proof is by the “savings account trick”. \(d' = bc + sa \)

Define \(p : C \rightarrow [0, \infty] \) by

\[
p(\omega) = \lim_{n \to \infty} sa(\omega[0 \ldots n - 1]).
\]
Let \(C_w = \{ \omega \mid \omega \in C, w \sqsubseteq \omega \} \), and \(\omega_n = \omega[0\ldots n - 1] \).

- \(p \) is lower semicomputable
Let $C_w = \{ \omega | \omega \in C, w \sqsubseteq \omega \}$, and $\omega_n = \omega[0 \ldots n - 1]$.

- p is lower semicomputable

\[
\int pdP = \int \lim_{n \to \infty} sa(\omega[0 \ldots n - 1])
\leq \liminf_{n \to \infty} \int_{C_{\omega_n}} sa(\omega_n) dP \quad \text{[Fatou’s Lemma]}
\]

\[
= \liminf_{n \to \infty} sa(\omega_n) P(\omega_n)
\leq \liminf_{n \to \infty} d(\omega_n) P(\omega_n)
\leq 1. \quad \text{[Kraft’s Inequality]}
\]
Let $C_w = \{\omega \mid \omega \in C, w \sqsubseteq \omega\}$, and $\omega_n = \omega[0 \ldots n - 1]$.

- p is lower semicomputable

\[
\int pdP = \int \lim_{n \to \infty} sa(\omega[0 \ldots n - 1])
= \liminf_{n \to \infty} \int_{C_{\omega_n}} sa(\omega_n) dP \quad \text{[Fatou’s Lemma]}
= \liminf_{n \to \infty} sa(\omega_n) P(\omega_n)
\leq \liminf_{n \to \infty} d(\omega_n) P(\omega_n)
\leq 1. \quad \text{[Kraft’s Inequality]}
\]

- $p(\omega) = \infty$ if d' strongly succeeds on ω.
We consider *strongly positive probability measures*: There exists a computable function $h : \Sigma^* \times 0^\mathbb{N} \rightarrow \mathbb{Q}^+$ such that if $P(w) \neq 0$ and $\hat{P} : \Sigma^* \times 0^\mathbb{N} \rightarrow \mathbb{Q}$ is a witness to the computability of P, then for all $n \in \mathbb{N}$, $h(w, 0^n) < P(w)$.

Let $p : \Sigma^\infty \rightarrow [0, \infty]$ be a P-measure of impossibility. Then define $d : \Sigma^* \rightarrow [0, \infty)$ by

$$d(wb) =
\begin{cases}
\int_{\omega} \frac{p(\omega)}{dP} dP(w) & \text{if } P(w) > 0,
2 & \text{otherwise}.
\end{cases}$$
We consider strongly positive probability measures: There exists a computable function $h : \Sigma^* \times 0^\mathbb{N} \to \mathbb{Q}^+$ such that if $P(w) \neq 0$ and $\hat{P} : \Sigma^* \times 0^\mathbb{N} \to \mathbb{Q}$ is a witness to the computability of P, then for all $n \in \mathbb{N}$, $h(w, 0^n) < P(w)$.

Let $p : \Sigma^\infty \to [0, \infty]$ be a P-measure of impossibility. Then define $d : \Sigma^* \to [0, \infty)$ by

$$d(wb) = \begin{cases} \frac{\int_{cwb} p(\omega)dP}{P(wb)} & \text{if } P(wb) > 0, \\ 2d(w) & \text{otherwise.} \end{cases}$$
Converting a Measure of Impossibility to a Martingale

- d is a martingale by linearity of expectation, and $\int pdP \leq 1$.

d is a martingale by linearity of expectation, and $\int pdP \leq 1$.

d is lower semicomputable with a computable monotone sequence of integrals of step functions converging to the value of d.

Thus d is a lower semicomputable martingale that succeeds on ω.

Converting a Measure of Impossibility to a Martingale
- d is a martingale by linearity of expectation, and $\int pdP \leq 1$.
- d is lower semicomputable with a computable monotone sequence of integrals of step functions converging to the value of d.
- $p(\omega) = \infty$ implies $\limsup_{n \to \infty} d(\omega_n) = \infty$. The proof uses the lower semicomputability of p.
• d is a martingale by linearity of expectation, and $\int pdP \leq 1$.
• d is lower semicomputable with a computable monotone sequence of integrals of step functions converging to the value of d.
• $p(\omega) = \infty$ implies $\limsup_{n \to \infty} d(\omega_n) = \infty$. The proof uses the lower semicomputability of p.

Thus d is a lower semicomputable martingale that succeeds on ω.
Definition

(Lutz 2000) Let $s \in [0, \infty)$. A function $d : \Sigma^* \to [0, \infty)$ is called an s-gale if
Definition

(Lutz 2000) Let $s \in [0, \infty)$. A function $d : \Sigma^* \rightarrow [0, \infty)$ is called an s-gale if

- $d(\lambda) \leq 1$.
- For all $w \in \Sigma^*$, $d(w)P^s(w) = d(w0)P^s(w0) + d(w1)P^s(w1)$.

Definition

An s-gale d is said to succeed on a set $X \subseteq C$ if

\[\forall \omega \in X \limsup_{n \to \infty} d(\omega_n) = \infty. \]

An s-gale d is said to succeed strongly on a set $X \subseteq C$ if

\[\forall \omega \in X \liminf_{n \to \infty} d(\omega_n) = \infty. \]
Definition

(Lutz 2000) Let $s \in [0, \infty)$. A function $d : \Sigma^* \to [0, \infty)$ is called an s-gale if

- $d(\lambda) \leq 1$.
- For all $w \in \Sigma^*$, $d(w)P^s(w) = d(w_0)P^s(w_0) + d(w_1)P^s(w_1)$.

Definition

An s-gale d is said to succeed on a set $X \subseteq C$ if

$$\left(\forall \omega \in X \right) \limsup_{n \to \infty} d(\omega_n) = \infty.$$

An s-gale d is said to succeed strongly on a set X if

$$\left(\forall \omega \in X \right) \liminf_{n \to \infty} d(\omega_n) = \infty.$$
Constructive Dimensions

Definition

Let

\[G^{\text{constr}}(X) = \{ s : \text{there is a constructive } s\text{-gale } d, X \subseteq S^{\infty}[d] \}. \]

The constructive Hausdorff dimension (Lutz 2000) is

\[\dim^{\text{constr}}(X) = \inf G^{\text{constr}}(X). \]
Constructive Dimensions

Definition

Let

$$G^{constr}(X) = \{s : \text{ there is a constructive } s\text{-gale } d, X \subseteq S^\infty[d]\}.$$

The constructive Hausdorff dimension (Lutz 2000) is

$$dim^{constr}(X) = \inf G^{constr}(X).$$

Let

$$G^{constr}_{str}(X) = \{s : \text{ there is a constructive } s\text{-gale } d, X \subseteq S^\infty_{str}[d]\}.$$

The constructive packing dimension (Athreya et al. 2004) is

$$Dim^{constr}(X) = \inf G^{constr}(X).$$
s-Improbability

Definition
A set X is said to be s-improbable with respect to a strongly positive probability measure P if there is a measure of impossibility $p : \Omega \rightarrow [0, \infty]$ such that

$$\forall \omega \in X, \limsup_{n \rightarrow \infty} \frac{\int_{C_{\omega_n}} pdP}{Ps(\omega_n)} = \infty.$$
s-Improbability

Definition

A set X is said to be *s-improbable with respect to a strongly positive probability measure P* if there is a measure of impossibility $p : \Omega \rightarrow [0, \infty]$ such that

$$\forall \omega \in X, \limsup_{n \rightarrow \infty} \frac{\int_{C_{\omega_n}} pdP}{P^s(\omega_n)} = \infty.$$

Definition

A set $X \subseteq C$ is said to be *strongly s-improbable with respect to a strongly positive probability measure P* if there is a measure of impossibility $p : \Omega \rightarrow [0, \infty]$ such that

$$\forall \omega \in X, \liminf_{n \rightarrow \infty} \frac{\int_{C_{\omega_n}} pdP}{P^s(\omega_n)} = \infty.$$
Summary of Constructions

Martingale to measure of impossibility

\[p(\omega) = \lim_{n \to \infty} sa(\omega_n). \]

s-gale to s-measure of improbability

\[p(\omega) = \lim_{n \to \infty} sa(\omega_n)P^{s-1}(\omega_n). \]
Summary of Constructions

Martingale to measure of impossibility

\[p(\omega) = \lim_{n \to \infty} sa(\omega_n). \]

Measure of Impossibility to Martingales

\[d(w) = \frac{\int_{C_w} pdP}{P(w)} \]

s-gale to s-measure of improbability

\[p(\omega) = \lim_{n \to \infty} sa(\omega_n) P^{s-1}(\omega_n). \]

s-measure of Impossibility to s-gales

\[d(w) = \frac{\int_{C_w} pdP}{P^s(w)}. \]
Lemma

Let $s \in [0, \infty)$. X is s-improbable with respect to P if and only if $s \in G_{\text{constr}}(X)$, and X is strongly s-improbable with respect to P if and only if $s \in G_{\text{str}}(X)$.
Alternate Characterization of Constructive Dimension

Theorem

\[\dim^{\text{constr}}(X) = \inf\{s \mid X \text{ is } s\text{-improbable with respect to } P\} \]

\[\Dim^{\text{constr}}(X) = \inf\{s \mid X \text{ is strongly } s\text{-improbable with respect to } P\} \]
Alternate Characterization of Constructive Dimension

Theorem

\[\dim^{\text{constr}}(X) = \inf \{ s \mid X \text{ is } s\text{-improbable with respect to } P \}. \]

\[\Dim^{\text{constr}}(X) = \inf \{ s \mid X \text{ is strongly } s\text{-improbable with respect to } P \}. \]

Thank You.