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Constructive Measure Theoretic Approach to Randomness

We consider a finite alphabet Σ = {0, 1}. The space of infinite
binary sequences drawn from the alphabet is denoted C.

Definition

A probability measure on C is a function P : Σ∗ → [0, 1] satisfying

1 P(λ) = 1,

2 For every w ∈ Σ∗, P(w) = P(w0) + P(w1).

Martin-Löf in 1966 defined the notion of an effective measure-0 set.

Theorem

(Martin-Löf 1966) For every computable probability measure P
defined on C, there is a unique largest effective measure-0 set.

The complement of the largest effective measure-0 set is the set of
individual constructively random sequences.
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(Martin-Löf 1966) For every computable probability measure P
defined on C, there is a unique largest effective measure-0 set.

The complement of the largest effective measure-0 set is the set of
individual constructively random sequences.



Martingale Approach to Randomness

Definition

(Ville 1939, Schnorr 1970,1971) A martingale is a function
d : Σ∗ → [0,∞) such that the following hold.

d(λ) ≤ 1.

(∀w ∈ Σ∗) d(w)P(w) = d(w0)P(w0) + d(w1)P(w1).

A constructive martingale is a lower semicomputable martingale.

Definition
The martingale succeeds on a set X ⊆ C if

(∀ω ∈ X ) lim sup
n→∞

d(ω[0 . . . n − 1]) = ∞.

The success set of a martingale is denoted S∞[d ].

A sequence ω ∈ C is random if and only if there is a constructive
martingale that succeeds on it.
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Measure of Impossibility Approach to Randomness

Definition

(Gács 81, Vovk, V’yugin 93) A measure of impossibility with
respect to a computable probability measure P is a function
p : C → [0,∞] such that the following hold.

p is lower semicomputable.∫
pdP ≤ 1.

A sequence ω ∈ C is random if and only if there is a measure of
impossibility p such that p(ω) = ∞.
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(Gács 81, Vovk, V’yugin 93) A measure of impossibility with
respect to a computable probability measure P is a function
p : C → [0,∞] such that the following hold.

p is lower semicomputable.∫
pdP ≤ 1.

A sequence ω ∈ C is random if and only if there is a measure of
impossibility p such that p(ω) = ∞.



Martingales have been successful in the study of resource
bounded measure, resource-bounded dimension (Lutz 2000),
and as a tool in computational complexity.

Measures of impossibility have been useful in proving the
effective ergodic theorem for individual random sequences
(V’yugin 97).

QUESTION:
Can measures of impossibility be general-
ized to characterize resource-bounded di-
mension?
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Definition

Let Ω be C or Σ∗. A function f : Ω → [−∞,∞] is called lower
semicomputable if S = {(w , q)|w v x , q < f (x)} is the union of a
computably enumerable sequence of cylinders in the natural
topology on Ω×Q.

A function f : Ω → [−∞,∞] is upper semicomputable if −f is lower
semicomputable. A function f is computable if it is both upper and lower
semicomputable.
A probability measure on C is computable if P : Σ∗ → [0, 1] is a
computable function.
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Converting a martingale into a measure of impossibility

Let d : Σ∗ → [0,∞] be a lower semicomputable P-martingale that
succeeds on an ω ∈ C.

Definition

A martingale d succeeds strongly on X if

(∀ω ∈ X ) lim inf
n→∞

d(ω[0 . . . n − 1]) = ∞.

The strong success set of a martingale d is denoted S∞str [d ].

Lemma

(folklore) Let ω ∈ S∞[d ]. Then there exists a martingale
d ′ : Σ∗ → [0,∞] such that ω ∈ S∞str [d

′].

Proof is by the “savings account trick”. d ′ = bc + sa
Define p : C → [0,∞] by

p(ω) = lim
n→∞

sa(ω[0 . . . n − 1]).
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Converting a Martingale into a Measure of Impossibility

Let Cw = {ω | ω ∈ C,w v ω}, and ωn = ω[0 . . . n − 1].

p is lower semicomputable

∫
pdP =

∫
lim

n→∞
sa(ω[0 . . . n − 1])

≤ liminfn→∞

∫
Cωn

sa(ωn)dP [Fatou’s Lemma]

= liminfn→∞sa(ωn)P(ωn)

≤ liminfn→∞d(ωn)P(ωn)

≤ 1. [Kraft’s Inequality]

p(ω) = ∞ if d ′ strongly succeeds on ω.
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Converting a measure of impossibility to a martingale

We consider strongly positive probability measures: There exists a
computable function h : Σ∗ × 0N → Q+ such that if P(w) 6= 0 and
P̂ : Σ∗ × 0N → Q is a witness to the computability of P, then for
all n ∈ N, h(w , 0n) < P(w).

Let p : Σ∞ → [0,∞] be a P-measure of impossibility. Then define
d : Σ∗ → [0,∞) by

d(wb) =


R
Cwb

p(ω)dP

P(wb) if P(wb) > 0,

2d(w) otherwise.
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Converting a Measure of Impossibility to a Martingale

d is a martingale by linearity of expectation, and
∫

pdP ≤ 1.

d is lower semicomputable with a computable monotone
sequence of integrals of step functions converging to the value
of d .

p(ω) = ∞ implies lim supn→∞ d(ωn) = ∞. The proof uses
the lower semicomputability of p.

Thus d is a lower semicomputable martingale that succeeds on ω.
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s-gales

Definition

(Lutz 2000) Let s ∈ [0,∞). A function d : Σ∗ → [0,∞) is called
an s-gale if

d(λ) ≤ 1.

For all w ∈ Σ∗, d(w)Ps(w) = d(w0)Ps(w0) + d(w1)Ps(w1).

Definition

An s-gale d is said to succeed on a set X ⊆ C if

(∀ω ∈ X ) lim sup
n→∞

d(ωn) = ∞.

An s-gale d is said to succeed strongly on a set X if

(∀ω ∈ X ) lim inf
n→∞

d(ωn) = ∞.
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Constructive Dimensions

Definition
Let

G constr (X ) = {s : there is a constructive s-gale d ,X ⊆ S∞[d ]}.

The constructive Hausdorff dimension (Lutz 2000) is

dimconstr (X ) = inf G constr (X ).

Let

G constr
str (X ) = {s : there is a constructive s-gale d ,X ⊆ S∞str [d ]}.

The constructive packing dimension (Athreya et al. 2004) is

Dimconstr (X ) = inf G constr (X ).
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s-Improbability

Definition

A set X is said to be s-improbable with respect to a strongly
positive probability measure P if there is a measure of impossibility
p : Ω → [0,∞] such that

∀ω ∈ X , lim sup
n→∞

∫
Cωn

pdP

Ps(ωn)
= ∞.
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pdP

Ps(ωn)
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Summary of Constructions

Martingale to measure of
impossibility

p(ω) = lim
n→∞

sa(ωn).

Measure of Impossibility to
Martingales

d(w) =

∫
Cw

pdP

P(w)

s-gale to s-measure of
improbability

p(ω) = lim
n→∞

sa(ωn)P
s−1(ωn).

s-measure of Impossibility to
s-gales

d(w) =

∫
Cw

pdP

Ps(w)
.
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Lemma

Let s ∈ [0,∞). X is s-improbable with respect to P if and only if
s ∈ G constr (X ), and X is strongly s-improbable with respect to P if
and only if s ∈ G constr

str (X ).



Alternate Characterization of Constructive Dimension

Theorem

dimconstr (X ) = inf{s | X is s-improbable with respect to P}.
Dimconstr (X ) = inf{s | X is strongly s-improbable with

respect to P}.

Thank You.
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