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Constructive Measure Theoretic Approach to Randomness

We consider a finite alphabet ¥ = {0,1}. The space of infinite
binary sequences drawn from the alphabet is denoted C.

Definition
A probability measure on C is a function P : ¥* — [0, 1] satisfying
Q@ P(\) =1,

@ For every w € ¥*, P(w) = P(w0) + P(w1l).

Martin-Lof in 1966 defined the notion of an effective measure-0 set.

(Martin-Lof 1966) For every computable probability measure P
defined on C, there is a unique largest effective measure-0 set.

The complement of the largest effective measure-0 set is the set of
individual constructively random sequences.
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Martingale Approach to Randomness

(Ville 1939, Schnorr 1970,1971) A martingale is a function
d:¥* — [0,00) such that the following hold.

d(\) <1
(Yw € T¥) d(w)P(w) = d(w0)P(w0) + d(wl)P(wl).

A constructive martingale is a lower semicomputable martingale.

Definition

The martingale succeeds on a set X C C if

(Vw € X) limsupd(w[0...n—1]) = co.

n—oo

The success set of a martingale is denoted S*°[d].

A sequence w € C is random if and only if there is a constructive
martingale that succeeds on it.
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Measure of Impossibility Approach to Randomness

Definition
(Gacs 81, Vovk, V'yugin 93) A measure of impossibility with
respect to a computable probability measure P is a function
p: C — [0, 00] such that the following hold.

@ p is lower semicomputable.

o [pdP <1

A sequence w € C is random if and only if there is a measure of
impossibility p such that p(w) = oc.
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@ Martingales have been successful in the study of resource
bounded measure, resource-bounded dimension (Lutz 2000),
and as a tool in computational complexity.

@ Measures of impossibility have been useful in proving the
effective ergodic theorem for individual random sequences
(V'yugin 97).

QUESTION:

Can measures of impossibility be general-
ized to characterize resource-bounded di-
mension?




Definition

Let Q be C or X*. A function f : Q — [—o00, 0] is called lower
semicomputable if S = {(w, q)|w C x, g < f(x)} is the union of a
computably enumerable sequence of cylinders in the natural
topology on 2 x Q.




Definition

Let Q be C or X*. A function f : Q — [—o00, 0] is called lower
semicomputable if S = {(w, q)|w C x, g < f(x)} is the union of a
computably enumerable sequence of cylinders in the natural
topology on 2 x Q.

A function f : Q — [—o00, 0] is upper semicomputable if —f is lower
semicomputable. A function f is computable if it is both upper and lower
semicomputable.

A probability measure on C is computable if P: X* — [0,1] is a
computable function.
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Converting a martingale into a measure of impossibility

Let d : ¥* — [0, 00] be a lower semicomputable P-martingale that
succeeds on an w € C.

Definition

A martingale d succeeds strongly on X if

(Vw € X) liminfd(w[0...n—1]) = oco.

n—oo

The strong success set of a martingale d is denoted Sg5[d].

Lemma

| A

(folklore) Let w € S*°[d]. Then there exists a martingale
d :¥X* — [0, 0] such that w € S [d"].

Proof is by the “savings account trick”. d’ = bc + sa
Define p : C — [0, o0] by

p(w) = nI|_>n30 sa(w[0...n—1]).



Converting a Martingale into a Measure of Impossibility

Let Cy ={w|weC,wCw}, and w, =w[0...n—1].

@ p is lower semicomputable



Converting a Martingale into a Measure of Impossibility

Let Cy ={w|weC,wCw}, and w, =w[0...n—1].

@ p is lower semicomputable

o
/de—/ lim sa(w[0...n—1])
< Iiminf,Hoo/ sa(wp)dP [Fatou's Lemma]

Cup
= liminf,_sosa(wpn) P(wn)
< liminf,—ood(wn)P(wp)
<1 [Kraft's Inequality]



Converting a Martingale into a Measure of Impossibility

Let Cy ={w|weC,wCw}, and w, =w[0...n—1].

@ p is lower semicomputable

o
/de—/ lim sa(w[0...n—1])
< Iiminf,Hoo/ sa(wp)dP [Fatou's Lemma]

= liminf,_sosa(wpn) P(wn)
< liminf,—ood(wn)P(wp)
<1 [Kraft's Inequality]

e p(w) = oo if d’ strongly succeeds on w.
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Converting a measure of impossibility to a martingale

We consider strongly positive probability measures: There exists a
computable function h: ¥* x 0N — Q7 such that if P(w) # 0 and
P:x* x 0N — Qis a witness to the computability of P, then for
all n e N, h(w,0") < P(w).

Let p: £°° — [0, 00] be a P-measure of impossibility. Then define
d:¥* —[0,00) by

fcw p(w)dP .

2d(w) otherwise.
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Converting a Measure of Impossibility to a Martingale

e d is a martingale by linearity of expectation, and [ pdP < 1.

@ d is lower semicomputable with a computable monotone
sequence of integrals of step functions converging to the value
of d.

@ p(w) = oo implies limsup,_, ., d(wn) = co. The proof uses
the lower semicomputability of p.

Thus d is a lower semicomputable martingale that succeeds on w.
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s-gales

(Lutz 2000) Let s € [0,00). A function d : ¥* — [0, 00) is called
an s-gale if

e d(\) <1
e Forall we X*, d(w)P*(w) = d(w0)P*(w0) + d(Wl)PS(Wl).)

Definition

An s-gale d is said to succeed on a set X C C if

(Vw € X) limsupd(wp) = o0.

n—oo

An s-gale d is said to succeed strongly on a set X if

(Vw € X) liminf d(wp) = oo.

n—0o0

\
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Constructive Dimensions

Let

G«™"(X) = {s: there is a constructive s-gale d, X C S*°[d]}.
The constructive Hausdorff dimension (Lutz 2000) is
dim®str (X) = inf Gstr(X).
Let
G (X) = {s: there is a constructive s-gale d, X C S2[d]}.

The constructive packing dimension (Athreya et al. 2004) is

Dimconstr(x) — |nf Gconstr(x).




s-Improbability

Definition

A set X is said to be s-improbable with respect to a strongly
positive probability measure P if there is a measure of impossibility
p:Q — [0, 0] such that
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s-Improbability

Definition

A set X is said to be s-improbable with respect to a strongly
positive probability measure P if there is a measure of impossibility
p:Q — [0, 00] such that

I c.. pdP
Yw € X, limsup —2——
n—>oop Ps(wn)

| \

Definition

A set X C C is said to be strongly s-improbable with respect to a
strongly positive probability measure P if there is a measure of
impossibility p : Q2 — [0, 0o] such that

e

pdP

= OQ.




Summary of Constructions
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Summary of Constructions

. s-gale to s-measure of
Martingale to measure of

improbabilit
impossibility Mprobabiiity
p(w) = nll—>n<1>o sa(wn)- p(w) = lim sa(w,)P*~(wn).
n—oo

Measure of Impossibility to

el s-measure of Impossibility to

s-gales

w) = Je. PO dP
(W) = "5 d(w):—flgg(pw) .




Let s € [0,00). X is s-improbable with respect to P if and only if
s € G™(X), and X is strongly s-improbable with respect to P if
and only if s € G (X).

str




Alternate Characterization of Constructive Dimension

dim®™"(X) = inf{s | X is s-improbable with respect to P}.
Dim®"™*(X) = inf{s | X is strongly s-improbable with
respect to P}.




Alternate Characterization of Constructive Dimension

dim®™"(X) = inf{s | X is s-improbable with respect to P}.
Dim®"™*(X) = inf{s | X is strongly s-improbable with
respect to P}.

Thank You.
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