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Abstract
In the context of Kolmogorov’s algorithmic approach to the foun-

dations of probability, Martin-Löf defined the concept of an individual
random sequence using the concept of a constructive measure 1 set. Al-
ternate characterizations use constructive martingales and measures of
impossibility. We prove a direct conversion of a constructive martingale
into a measure of impossibility and vice versa, such that their success
sets, for a suitably defined class of computable probability measures,
are equal. The direct conversion is then generalized to give a new char-
acterization of constructive dimensions, in particular, the constructive
Hausdorff dimension and the constructive packing dimension, and their
generalizations, the constructive scaled dimension and the constructive
scaled strong dimension.

1 Introduction

One of the prime successes of the algorithmic approach to the foundations
of probability theory envisioned by Kolmogorov is Martin-Löf’s definition of
an individual random sequence [15] using constructive measure theory. The
measure-theoretic approach to the definition of random sequences identifies
a property of “typical” sets. A random sequence is one that belongs to every
reasonable majority of sequences [7]. The notion of a reasonable majority
is formulated as an effective version of measure 1. Each measure 1 set has
a complement set of measure 0. It is hence sufficient to define the concept
of the effective measure zero set.

Let P be a computable probability measure defined on the Cantor Space
(defined in section 3). For finite strings x, we consider cylinders Cx, the set
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of all infinite sequences with x as a prefix. A set S of sequences from the
sample space of all sequences has P -measure zero if, for each ε > 0, there is
a sequence of cylinder sets Cx0 , Cx1 , . . . , Cxi , . . . such that

S ⊆ ∪iCxi and P (∪iCxi) < ε.

A set of sequences S has effective P -measure zero if there is a computable
function h(i, ε) such that h(i, ε) = Cxi for each i.

Martin-Löf proved a universality property – that for any computable
measure P , there is a unique largest effective P -measure zero set. The
elements in the complement of this set are the set of P -random sequences.

Another tool in the study of effective randomness is the concept of mar-
tingales. Introduced by Ville in the 1930s [21] (being implicit in the early
work of Lévy [8], [9]), they were applied in theoretical computer science by
Schnorr in the early 1970s [16], [17], [18] in his investigation of Martin-Löf
randomness, and by Lutz [11], [12], [13] in the development of resource-
bounded measure. A martingale is a betting strategy, which, for a proba-
bility measure P defined on the Cantor Space, obeys the conditions,

d(λ) ≤ 1
d(w)P (w) = d(w0)P (w0) + d(w1)P (w1). (1)

Intuitively, it can be seen as betting strategy on an infinite sequence, where,
for each prefix w of the infinite sequence, the amount d(w) is the capital that
is in hand after betting. A martingale can be seen as a fair betting condition
where the expected value after every bet is the same as the expected value
before the bet is made. It is said to succeed on a sequence ω if

lim sup
n→∞

d(ω[0 . . . n− 1]) =∞.

The success set of a martingale, S∞[d], is the set of all individual sequences
on which it succeeds. In this work, we consider constructive martingales.
There is a universal martingale d̃ which is constructive and for every ω, if
there is a constructive martingale d which succeeds on ω, then d̃ succeeds on
ω. The theory of martingales and their applications to the field of resource-
bounded measure, complexity theory, and resource-bounded dimension has
proved to be remarkably fruitful. In this work, we wish to establish con-
nections between martingales and a third approach of defining randomness,
viz., that of a measure of impossibility.

This third approach to define a random sequence is to characterize a
degree of disagreement between any sequence ω and the probability P . Fol-
lowing [22], a measure of impossibility is a positive function p(ω) which
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describes the quantitative level to which ω is impossible with respect to the
probability measure P . A measure of impossibility is defined to be a lower
semicomputable function p, which is integrable with respect to P . It can be
seen that if ω is P -random, then p(ω) < ∞. There is an optimal measure
of impossibility p̃ such that a sequence ω is random if and only if p̃(ω) <∞
[22], [23]. This concept is a central one in V’yugin’s proof of an effective
version of the Ergodic Theorem [23].

The relation between martingales and Martin-Löf’s definition of ran-
domness was studied by Schnorr [16], [17], [18]. The proof that the notion
of randomness defined by Martin-Löf corresponds to that of the ones de-
fined via the measures of impossibility is due to Vovk and V’yugin [22] and
V’yugin [23]. We establish a direct correspondence between the notions of
constructive martingales and measures of impossibility.

We then apply this construction to come up with an analogous new
definition of constructive dimension [14] in terms of a generalized version of
the notion of a measure of impossibility. We show that this construction also
generalizes to give an alternate definition of constructive scaled dimension
[4].

The main difference between a proof based on martingales and one us-
ing a measure of impossibility is that a martingale is defined on the basis
cylinders, and a measure of impossibility is a pointwise notion. Measure of
impossibility seems to be an easier tool in dealing with theorems in which
we have to reason about the convergence of general random variables de-
fined on the points in the sample space. However, we show that at the
constructive level, these tools are equivalent. Since there are universal ob-
jects available in both the cases, there exists an indirect conversion between
the two such that the success set of a martingale can be converted into that
of a measure of impossibility and conversely; this work contributes a direct
constructive conversion of one into another. The theory of algorithmic ran-
domness has been remarkably fruitful to date. (For a survey of the field,
see [2].) Martingales have proved to have greater apparent utility in some
cases than Martin-Löf tests in studying randomness, and measures of im-
possibility have been of use in establishing a remarkable result in the study
of algorithmic randomness, the Effective Ergodic Theorem [23] . We hope
that the explicit transformation of this work will improve the understand-
ing, and perhaps the utility of measure of impossibility. Moreover, in the
absence of universal objects which happens at computable and other levels
a conversion of this nature may be useful.
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2 Preliminaries

We consider the binary alphabet Σ = {0, 1}. The empty string is denoted
by λ. The set of finite strings from the alphabet is denoted as Σ∗ and the
set of infinite sequences, as C, the Cantor Space. For finite strings y, x, and
infinite sequences ω, we denote x to be a prefix of y or of ω as x v y, or as
x v ω, respectively. We adopt the convention, for all sequences and strings
x, for all 0 ≤ n ≤ |x|, the n-length prefix of x is denoted x[0 . . . n− 1] (this
is always finite), and for n > |x|, we have x[0 . . . n− 1] = x by notation.

Following the common notation, N represents the set of natural numbers,
Q the set of rational numbers and Z the set of integers. Denote [−∞,∞]
for R ∪ {−∞,∞}, R+ for the non-negative reals, and [0,∞] for R+ ∪ {∞}.

We define the notion of lower semicomputability for the natural topology
on the product space C×Q or Σ∗×Q. The natural topology on Q or Σ∗ is
discrete (i.e., the topology made of the set of all subsets of Q or of Σ∗). The
natural topology on C is generated by the cylinders Cx = {ω | x v ω}, where
x ∈ Σ∗. A function f : Σ∗ ∪C → [−∞,∞] is called lower semicomputable
if its graph S = {(ω, q) | ω ∈ Σ∗ ∪ C and q ∈ Q , q < f(ω)} is a union of
a computably enumerable sequence of intervals in the natural topology on
Q×Σ∗. The function f is lower semicomputable, if for any rational number
q and any finite string w, the assertion q < f(ω) is true can be verified in a
computable manner.

We prove an equivalent notion of lower semicomputability:

Lemma 1. The following hold.

i. A function f : C → [−∞,∞] is lower semicomputable if and only if
there exists a computable function f̂ : Σ∗ × 0N → Q ∪ {−∞,∞} such
that the following hold: For all ω ∈ C,

(a) Monotonicity: For all m,n ∈ N, f̂(ω[0 . . .m−1], 0n) ≤ f̂(ω[0 . . .m−
1], 0n+1) ≤ f(ω), and f̂(ω[0 . . .m − 1], 0n) ≤ f̂(ω[0 . . .m], 0n) ≤
f(ω).

(b) Convergence: We have

lim
n→∞

f̂(ω[0 . . . n− 1], 0n) = f(ω).

ii. f : Σ∗ → [−∞,∞] is lower semicomputable if and only if there exists
a function f̂ : Σ∗ × 0N → Q ∪ {−∞,∞} such that the following hold:
For all x ∈ Σ∗,
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(a’) Monotonicity: For all n ∈ N, f̂(x, 0n) ≤ f̂(x, 0n+1) ≤ f(x).

(b’) Convergence: limn→∞ f̂(x, 0n) = f(x).

Proof. The characterization for the case when f is defined on the domain
Σ∗ is standard in the literature (see [14]), and we prove the formulation for
the case when the domain is C.

For the case when f : C → [−∞,∞] is lower semicomputable, first
assume that the set S = {(ω, q) | ω ∈ C, q ∈ Q, f(ω) > q} is the union of
a computable enumeration S : 0N → Σ∗ × (Q ∪ {−∞}) of cylinders in the
natural topology on C×Q. The projection functions π1 : Σ∗×Q→ Σ∗ and
π2 : Σ∗ ×Q→ Q are defined as π1(w, q) = w and π2(w, q) = q. We design a
witness function f̂ : Σ∗ × 0N → Q ∪ {−∞} in the following algorithm.

procedure f̂(w, 0n)
Set ← {−∞}.
i ← 0.
while i ≤ n do

if π1(S(i)) v w then
Set ← Set ∪ {π2(S(i))}

end if
i ← i+ 1.

end while
return max(Set)

end procedure
The monotonicity condition is satisfied, because in the algorithm, for

every n, the sets have the following relationships:

{π2(S(i)) | π1(S(i)) v w, 0 ≤ i ≤ n} ⊆ {π2(S(i)) | π1(S(i)) v w, 0 ≤ i ≤ n+1},

and, for strings w′ and w, if w′ v w, then

{π2(S(i)) | π1(S(i)) v w′, 0 ≤ i ≤ n} ⊆ {π2(S(i)) | π1(S(i)) v w, 0 ≤ i ≤ n}.

For the convergence, it is obvious that

lim
n→∞

f(ω[0 . . . n− 1], 0n) (2)

exists, since it is a monotone bounded sequence in a compact space. To see
that the limit is f(ω), assume that the limit (2) is a real r < f(ω). Then
there exists a rational r′, r < r′ < f(ω), such that there is no prefix w of
ω such that (w, r′) occurs in the enumeration of S. This is a contradiction.
Hence the condition is satisfied, and limit (2) is f(ω).
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Conversely, let f : C → R be a lower semicomputable function with
witness f̂ : Σ∗ × 0N → Q satisfying lower semicomputability conditions.
We prove that the set S = {(ω, r) : r ∈ Q, r < f(ω)} is the union of a
computable enumeration of cylinders in C×Q.

We show that for every r ∈ Q, r < f(ω), there is a prefix w of ω, such
that (w, r) is accepted by an algorithm. This is routine to see, since, we can
dovetail the execution of f̂ on Σ∗ × 0N. If r < f(ω), there is an r′ > r such
that f̂ produces r′ on some prefix w and some 0m, and then we can accept
(w, r).

A function f is called upper semicomputable if −f is lower semicom-
putable. A function f is called computable if it is both lower and upper
semicomputable. This may be seen to be equivalent to the following defini-
tion in the case of functions defined over Σ∗.

Definition 2. A function f : Σ∗ → R is said to be computable if there
exists a function f̂ : Σ∗ × 0N → Q such that for every n ∈ N and every
x ∈ Σ∗,

|f̂(x, 0n)− f(x)| ≤ 2−n.

Note. It is easy to show that if f̂ is a witness function to the computability
of f , then for all n, f̂(x, 0n) − 2 · 2−n is a lower semicomputation, and
f̂(x, 0n) + 2 · 2−n is an upper semicomputation of f .

3 Effective Randomness

Let (Ω,F , P ) be the probability space, where Ω is the sample space, F is
the Borel σ-algebra (members of F are the events), and P : F → [0, 1] is the
probability. We will be concerned with the sample space Ω = C, the Cantor
Space, the set of all infinite binary sequences. F is the σ-algebra generated
by the cylinders Cx = {ω | ω ∈ C, x v ω}.

Definition 3. A probability measure P defined on the Cantor Space of
infinite binary sequences is characterized by the following:

1. P (λ) = 1.

2. For every string w, 0 ≤ P (w) = P (w0) + P (w1).

A probability measure P : F → [0, 1] is called computable if the proba-
bility measure P : Σ∗ → [0, 1] is a computable function. The notation P (w)
for a string w ∈ Σ∗ stands for P (Cw), the probability of the cylinder Cw.
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Definition 4. A probability measure is called strongly positive if there is
positive rational constant c (0 < c < 1) such that

c < inf
w∈Σ∗
b∈Σ

{P (Cwb | Cw)}. (3)

We limit ourselves to the class of computable, strongly positive proba-
bility measures.

To define the notion of Martin-Löf random sequences, we introduce two
concepts – that of a measure of impossibility, and that of a martingale.

Definition 5. A function p : Ω→ [0,∞] is called a measure of impossibility
with respect to the probability space (Ω,F , P ) if the following hold:

P1. p is lower semicomputable.

P2. EP p ≤ 1, where EP f is the expectation of the function f with respect
to probability measure P .

A measure of impossibility p of ω with respect to the computable prob-
ability distribution P characterizes the “degree of disagreement” [23] of the
outcome ω with respect to the given probability distribution. In particular,
we can see that if ω is a not random with respect to the probability distri-
bution P , then there is a P -measure of impossibility p : Ω → [0,∞] such
that p(ω) =∞ [22].

Definition 6. Let ω ∈ C. Then ω is said to be P -impossible if there is a
P -measure of impossibility p such that p(ω) = ∞. A set X ⊆ C is said to
be P -impossible, if

X ⊆ {ω : ω is P -impossible}.

V’yugin and Vovk [22] proved that for every computable probability P ,
there is an optimal measure of impossibility p̃ : C → [0,∞] such that a
sequence ω is P -random if and only if p̃(ω) < ∞. The set of Martin-Löf
random sequences with respect to P is exactly the complement of the set of
all ω ∈ C that are P -impossible.

We also consider martingales.

Definition 7. A P -martingale d : Σ∗ → [0,∞], is a function which obeys
the properties,

M1. d(λ) ≤ 1.
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M2. For all strings w, the following holds:

d(w)P (w) = d(w0)P (w0) + d(w1)P (w1).

A martingale is said to “succeed” on sequence ω if

lim sup
n→∞

d(ω[0 . . . n− 1]) =∞.

A martingale is said to “strongly succeed” on sequence ω if

lim inf
n→∞

d(ω[0 . . . n− 1]) =∞.

The success set of a martingale d, denoted S∞[d], is defined to be the set of
binary sequences on which d succeeds. The strong success set of a martingale
d, denoted S∞str[d], is the set of binary sequences on which d strongly succeeds.

A constructive martingale is a lower semicomputable martingale.
We show, the concept of a measure of impossibility and that of a con-

structive martingale are equivalent, in that every measure of impossibility
p corresponds to a martingale which wins on an ω if and only if p(ω) =∞.
Since there is a universal martingale which succeeds on the set of non-random
sequences, and there is a universal measure of impossibility which attains
∞ on the set of non-random sequences, it is indirectly known that there is a
conversion between the success criteria of martingales and that of measures
of impossibility. The new result here is a direct conversion of a martingale
into a measure of impossibility and vice versa, such that the success sets of
both are the same (under some assumptions on the probability measure).

4 Converting a Martingale into a Measure of Im-
possibility

Let P be a strongly positive computable probability measure. We wish
to convert a lower semicomputable P -martingale which succeeds on a con-
structive P -measure-zero set, to a measure of impossibility p : C → [0,∞]
with respect to P , such that S∞[d] is P -impossible as witnessed by p.
We show that if d : Σ∗ → R+ is a lower semicomputable P -martingale,
then there exists a measure of impossibility p : Ω → [0,∞] such that
∀ω ∈ Ω lim supn→∞ d(ω[0 . . . n− 1]) =∞ if and only if p(ω) =∞.

We proceed in stages.
It is well-known that a sequence ω is non-random if and only if there is a

martingale d which is such that lim infn d(ω[0 . . . n−1]) =∞. The following
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well-known lemma is stated here because we use the construction to prove
results about the measure of impossibility.

Lemma 8. [Schnorr [17]] If d : Σ∗ → [0,∞] is a constructive martingale,
then there is a constructive martingale d′ : Σ∗ → [0,∞] such that S∞[d] ⊆
S∞str[d

′]. Moreover, there is a monotone function sa : Σ∗ → [0,∞] such that
limn→∞ sa(ω[0 . . . n− 1]) =∞ if and only if ω ∈ S∞str[d′].

Proof sketch:
The construction follows the construction of the martingale in Theo-

rem 2.6 of [17]. Let the constant c witness the strong positivity of the
computable probability measure P , as in Definition 4. For each n, let
An = {w ∈ Σ∗ | d(w) > [1/c]n}. Let us denote, for any set of strings
A, by P (A), the probability ∪w∈AP (Cw). It follows that P (An) ≤ cn. Since
d is constructive, the An’s are uniformly computably enumerable. For each
computably enumerable set An, there is a recursive, prefix-free set Bn such
that the set of infinite sequences with prefixes in Bn is exactly the same as
those with prefixes in An.

For each n, the function dn : Σ∗ → R+ is defined as

dn(x) =
∑
xy∈Bn

P (xy|x) + san(x)

where san(x) = 1 if some prefix of x is in Bn, and 0 otherwise. Then

dn(λ) =
∑
w∈Bn

P (w) ≤ c−n.

Each dn is a P -martingale, so d′ =
∑∞

i=0 dn is a P -martingale. The Ans
can be uniformly generated by an algorithm, hence so can the dns, it follows
that d′ is constructive.

Also, if d(ω[0 . . . k − 1]) > [1/c]i, then
∑i

j=0 saj(ω[0 . . . k − 1]) > i, so
d′(w[0 . . .m− 1]) > i for all m > k. This proves the lemma.

Let d′ be a P -martingale as defined above. The measure of impossibility
p is defined as follows.

p(ω) = lim
n→∞

n−1∑
i=0

sa(ω[0 . . . n− 1]). (4)

We prove that p is a measure of impossibility which attains ∞ on all
sequences on which d′ strongly succeeds.

Lemma 9. p defined in (4) is a measure of impossibility.
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Proof. Let ŝa be the witness of the lower semicomputability of sa. Then ŝa
witnesses that p is lower semicomputable.

Moreover,

EP p =
∫
p(ω)dP

≤ lim inf
n→∞

∑
w′∈{0,1}n

∫
Cw′

sa(w′)dP

= lim
n→∞

∑
w′∈{0,1}n

∫
Cw′

sa(w′)dP,

by Fatou’s Lemma. But, since sa(w′) ≤ d(w′) for all w′, it follows by Kraft’s
inequality that∑

w′∈{0,1}n

∫
sa(w′)P (w′)dP ≤

∑
w′∈{0,1}n

∫
d′(w′)P (w′)dP ≤ 1,

for all n. Hence it follows that
∫
p(ω)dP ≤ 1. Therefore p defines a measure

of impossibility.

Let ω ∈ S∞[d]. It is clear that, since lim infn→∞ d′(ω[0 . . . n − 1]) = ∞
implies that supn sa(ω[0 . . . n−1]) =∞, we have p(ω) =∞. Thus p satisfies
the conditions of being a measure of impossibility which attains ∞ on ω.

5 Converting a Measure of Impossibility into a
Martingale

We assume P : F → [0, 1] is a computable probability measure. If p : Ω →
[0,∞] is a measure of impossibility with respect to P , we prove: there exists
a constructive P -martingale d : Σ∗ → R+ such that d succeeds on every
ω on which p assumes ∞– i.e. {ω : lim supn→∞ d(ω[0 . . . n − 1]) = ∞} ⊇
{ω : p(ω) = ∞}, with equality if P is a measure which assigns positive
probability to every cylinder.

We make the following restrictions: We ensure that P is not just a com-
putable probability measure, but also very strongly positive: if P̂ testifies to
the fact that P is computable, then there exists a program f : Σ∗× 0N → Q
such that for every cylinder Cx, the probability of the cylinder P (Cx) > 0
if and only if for all positive integers n, we have P̂ (x, 0n) > f(x, 0n). Note
that if a probability measure is strongly positive, then it is very strongly
positive.
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We define the P -martingale d.
For the empty string, d(λ) = EP [p]. For all strings w, and b ∈ {0, 1},

d(wb) =

{
EP [p | Cwb] if P (Cwb) > 0
2 · d(w) otherwise.

(5)

Lemma 10. If p is a measure of impossibility with respect to a very strongly
positive, computable probability measure P , then d defined in (5), is a lower
semicomputable P -martingale.

Proof. We show that d is a P -martingale, and d is lower semicomputable,
d is a P -martingale:
We have d(λ) =

R
Ω p(ω)dP

P (Ω) ≤ 1.
For a string w, if all of Cw, Cw0 and Cw1 have non-zero probability, then

the stipulation (M2) is satisfied by linearity of conditional expectation. If,
P (Cw) 6= 0, but one of P (Cw0), P (Cw1) is zero, without loss of generality,
say P (Cw0) = 0, then

d(w0)P (Cw0) + d(w1)P (Cw1) = 2d(w)× 0 + E[p|Cw1]P [Cw1]
= E[p|Cw1]P (Cw) = E[p|Cw]P (Cw)
= d(w)P (Cw).

d is lower semicomputable:
Consider the following program: Algorithm for d̂ : Σ∗ × 0N → Q: Let

x ∈ Σ∗, b ∈ Σ.
procedure d̂(xb, 0n)

Input xb ∈ Σ∗(b ∈ Σ) and n ∈ N.
if f(xb, 0n) > P̂ (xb, 0n) then

d̂(xb, 0n) = 2 d̂(x, 0n).
else

d̂(xb, 0n) =

∑
w∈{0,1}n maxyvxbw{p̂(y, 0n)} × (P̂ (xbw, 02n+1)− 2 · 2−2n−1)

P (xb, 02n+1) + 2 · 2−2n−1
.

end if
end procedure
To show that d̂(xb, ·) is a lower semicomputation of d(xb), we proceed

as follows. We prove that the numerator in else statement converges to
the appropriate limit. From this, it follows that the output of the program

11



converges to the value of d for the given string xb from below in a lower
semicomputable way.

Define the following:

∀xb ∈ Σ∗,m ∈ N fxb0
∞

m =
∑

w∈{0,1}m
max
yvxbw

{p̂(y, 0m)}
[
P̂ (xbw, 02m+1)− 2 · 2−2m−1

]
∀xb ∈ Σ∗,m ∈ N Sxb0

∞
m =

∑
w∈{0,1}m

max
yvxbw

{p̂(y, 0m)}P (xbw)

The following claims suffice to prove that d̂ : N × Σ∗ → Q is a lower
semicomputation of d.

Lemma 11. ∀m ∈ N fxb0
∞

m ≤ Sxb0∞m ≤
∫
Cxb

p(ω) dP.

Proof sketch: Lower semicomputability of P with witness P̂ (·, 0m) −
2.2−m for all m ∈ N implies the first inequality. The second is by the lower
semicomputability of p̂ with respect to p, and the fact that each Sx0∞

m is
the integral of a step function defined on Ω, p̂ < p (everywhere), and by the
definition of the Lebesgue integral.

Now, we show that the sum converges as n→∞ to the required integral:

Lemma 12. The series fxb0
∞

m converges uniformly to the same limit as of
the sum series Sxb0

∞
m as m→∞.

Proof. By the computability witness P̂ of P , we have, for any xbw, m ∈ N,

P (xbw)− P̂ (xbw, 02(m+1)) <
1

2(2m+1)
,

whereby

|fxb0∞m − Sxb0∞m | < 1
22m+1

× 2m =
1

2m+1

The fact that Sxb0
∞

m →
∫
Cxb

p(ω)dP as m → ∞, follows due to the fact
that p̂ is a lower semicomputation of p. Property (1) of lower semicom-
putability ensures that p dominates the step function summed in Sxb0

∞
m .

The convergence property of lower semicomputability ensures that the the
function Sxb0

∞
m converges to the integral

∫
pdP .

These claims suffice to establish the condition that d̂ has to satisfy to be
a lower semicomputation of d.
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Lemma 13. For any ω ∈ C, p(ω) = ∞ implies lim supn→∞ d(ω[0 → n −
1]) =∞.

Proof. First, if P (Cω[0...n−1]) = 0 for some n, this is routine to prove.
So, assume for all n, P (Cω[0...n−1]) > 0, so that for all n, d(ω[0 . . . n−1]) =

E[p|Cω[0...n−1]]. We show that d succeeds on ω. It is enough to show that
for every rational q, there is some x v ω such that d(x) > q.

Let S be the graph of p, described by the union of a computable enu-
meration C of cylinders in C×Q. If p(ω) =∞, then for every q ∈ Q, there
is an (x, q) ∈ C such that x is some prefix of ω. If this is so, then for every
σ ∈ Cx, p(σ) > q, whence E[p|Cx] > q, which proves the result.

6 A New Characterization of Constructive Dimen-
sion

In this section, we generalize the construction of the previous sections, to
come up with an alternate definition of constructive Hausdorff and construc-
tive packing dimension.

For s ∈ [0,∞), we introduce the notion of a set being s-improbable with
respect to a measure of impossibility.

Definition 14. Let X ⊆ C. We say that X is s-improbable with respect
to a P -measure of impossibility p : C → [0,∞] if for every infinite binary
sequence ω ∈ X, we have

lim sup
n→∞

∫
Cω[0...n−1]

p(ω)dP

P s(Cω[0...n−1])
=∞. (6)

X is strongly s-improbable with respect to p if

lim inf
n→∞

∫
Cω[0...n−1]

p(ω)dP

P s(Cω[0...n−1])
=∞. (7)

The concept of s-improbability generalizes the concept of improbability.

Lemma 15. Let p : C→ [0,∞] be a P -measure of impossibility.

1. For any ω ∈ C, if p(ω) =∞, then lim supn→∞

R
Cω[0...n−1]

p(ω)dP

P (Cω[0...n−1])
=∞.

2. For any ω ∈ C, if lim supn→∞

R
Cω[0...n−1]

p(ω)dP

P (Cω[0...n−1])
=∞, then there exists

a P -measure of impossibility p′ : C→ [0,∞] such that p′(ω) =∞.
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Proof. 1.) Let ω ∈ C be such that p(ω) = ∞. Since p is lower semi-
computable and P (Cw) > 0 for all strings w, the function d : Σ∗ → R+

defined by d(w) = EP [p|Cw] is a martingale, such that ω ∈ S∞[d]. Thus,

lim supn→∞

R
Cω[0...n−1]

p(ω)dP

P (Cω[0...n−1])
=∞.

2.) Since
∫
pdP ≤ 1 and P (Cw) > 0 for all w, we take the equiva-

lent characterization that supn

R
Cω[0...n−1]

p(ω)dP

P (Cω[0...n−1])
= ∞. Since p is lowersemi-

computable and P is computable, f ′ : C → [0,∞] defined by f ′(χ) =

supn

R
Cχ[0...n−1]

p(χ)dP

P (Cχ[0...n−1])
=∞ is a measure of impossibility.

We now review the notion of a lower semicomputable s-P -gale, which,
following Lutz [14], we use to give a definition of constructive Hausdorff (or
constructive Billingsley) dimension.

Definition 16. (Lutz [14]) Let s ∈ [0,∞). An s-P -gale d : Σ∗ → R+ is a
function that satisfies the condition for all w ∈ Σ∗,

d(w)P s(w) = [d(w0)P s(w0) + d(w1)P s(w1)] (8)

Definition 17. (Lutz [14]) Let d be an s-P -gale, where s ∈ [0,∞).

• We say that d succeeds on ω ∈ C if

lim sup
n→∞

d(ω[0 . . . n− 1]) =∞.

• The success set of d is

S∞[d] = {ω ∈ C | d succeeds on ω}.

• We say that d strongly succeeds on ω ∈ C if

lim inf
n→∞

d(ω[0 . . . n− 1]) =∞.

• The strong success set of d is

S∞str[d] = {ω ∈ C | d strongly succeeds on ω}.

The notion of constructive Hausdorff dimension, a constructive analogue
of the classical Hausdorff dimension, is defined using the notion of construc-
tive s-gales [14].

Remark.[Lutz [14]] For every s1, s2 ∈ [0,∞), the function d : Σ∗ →
[0,∞] is a P -s1-gale if and only if the function d′ : Σ∗ → [0,∞] defined by
d′(w) = P (s1−s2)(w)d(w) is an s2 gale.
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Definition 18. (Lutz [14], Lutz and Mayordomo [10]) The constructive
Hausdorff dimension of a set X ⊆ C is

dimP
H(X) = inf{s ∈ [0,∞) | There is a constructive s-P -gale for which X ⊆ S∞[d].}

Analogously, the notion of constructive packing dimension is defined as
the constructive analogue of the classical packing dimension [20], [19]. We
use the following equivalent notion defined using strong success of s-P -gales.

Definition 19. (Athreya et al. [1], [10]) The constructive packing dimension
of a set X ⊆ C is

DimP
H(X) = inf{s ∈ [0,∞) | There is a constructive s-P -gale for which X ⊆ S∞str[d].}

Notation. For X ⊆ C, let G(X) be the set of all s ∈ [0,∞) such that
there is an s-P -gale d for which X ⊆ S∞[d] and P(X) be the set of all
s ∈ [0,∞) such that X is s-improbable with respect to some P -measure
of impossibility. Similarly, let Gstr(X) be the set of all s ∈ [0,∞) such
that there is an s-P -gale d for which X ⊆ S∞str[d] and Pstr(X) be the set of
all s ∈ [0,∞) such that X is strongly s-improbable with respect to some
P -measure of impossibility.

The following lemma asserts that for every strongly positive computable
probability measure P , every positive rational s, for every X ⊆ C, there
is a P -s-gale which succeeds on X if and only if X is s-improbable with
respect to the probability measure, and analogously, there is an P -s-gale
which strongly succeeds on X if and only if X is strongly s-improbable with
respect to the probability measure.

The construction uses an analogue of the “savings account” method used
in the proof of Lemma 7. In Lemma 7, the method was used to prove that
the set of sequences on which there is a P -martingale succeeds, is the same as
that on which there is a P -martingale which strongly succeeds. In the case of
s-gales, we cannot prove this: there are sequences and some s ∈ [0,∞) such
that there is some constructive s-gale which succeeds on them, but there
are no s-gales which succeed strongly. However, we used the construction in
Lemma 7 to extract a monotone behavior from the martingale, which was
used in the definition of the measure of impossibility. The construction in the
next lemma shows that it is possible to extract a monotone behavior from
an s-gale to define a measure of impossibility which has desirable properties.

Lemma 20. Let P be a strongly positive computable probability measure.
Let X ⊆ C and s ∈ [0,∞) be a rational. Then s ∈ G(X) if and only if
s ∈ P(X), and s ∈ Gstr(X) if and only if s ∈ Pstr(X).
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Figure 1: Algorithm 2
1: procedure d(n)(w)
2: αn = 2c(s2−s1)n/2

3: if |w| < n then
4: bc′n(w)← αnd2(w)
5: sa′n(w)← 0
6: else
7: valw ← d2(w[0 . . . n− 1])P (1−s2)(Cw|Cw[0...n−1])
8: if d2(w[0 . . . n− 1]) > P s1−s2(Cw[0...n−1]) then
9: bc′n(w), sa′n(w)← αnvalw

2
10: else
11: bc′n(w)← αnvalw
12: sa′n(w)← 0
13: end if
14: end if
15: return bc′n(w) + sa′n(w)
16: end procedure

Proof. Let c be as in (3). Let ε > 0 be arbitrary and s1 < 1 be rational,
and let d1 be an s1-P -gale. Let s2 be a rational number such that s2 ∈
(s1,min{1, s1 + ε}). Then d2 : Σ∗ → R defined by, for all strings w, d2(w) =
d1(w)P (w)(s1−s2) is an s2-P -gale such that S∞[d1] ⊆ S∞[d2] and S∞str[d1] ⊆
S∞str[d2]. As in the case of constructive martingales, we can form another
s2-P -gale d′ consisting of bc′ and sa′ such that the following hold.

1. For all strings w, d′(w) = bc′(w) + sa′(w).

2. bc′(λ) = d2(λ).

3. sa′(λ) = 0.

The construction is an adaptation of the construction in [3, 5]. Using
this, we can build a P -measure of impossibility p which witnesses that X is
s2-improbable wrt P .

Consider d(n) : Σ∗ → Q defined in Algorithm 2.
In Algorithm 2, we have, for every string w ∈ {0, 1}<n, d(n) behaves

exactly the same as αnd2.
For wb ∈ Σ=n, we have valwb = d2(wb). We have that half of the bet-

ting capital at wb is transferred to the the savings account of wb if d2(wb) >
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P (s1−s2)(wb). This transfer maintains the property
∑

b∈{0,1} d
(n)(wb)P s2(wb) =

d(n)(w)P s2(w). This transfer preserves the s2-P -gale property of d(n).
Also, for w ∈ {0, 1}≥n and b ∈ {0, 1}, in lines 8–13,

∑
b∈{0,1}

bc′n(w)P 1−s2(Cwb|Cw)P s2(Cwb) =bc′n(w)
P (Cw)
P 1−s2Cw

=bc′n(w)P s2(Cw),

and ∑
b∈{0,1}

sa′n(w)
[
P 1−s2(Cwb)
P 1−s2(Cw)

]
P s2(Cwb) =

∑
b∈{0,1}

sa′n(w)
[

P (Cwb)
P 1−s2(Cw)

]
= sa′n(w)P s2(Cw),

so the s2-P -gale condition for d(n) is satisfied. Hence, each d(n) is an s2-P -
gale.

Denote α =
∑∞

n=0 αn. This is finite since c < 1. Define d′ = 1/α
∑∞

i=0 d
(n).

Then d′(λ) = d2(λ). It follows that d′ is an s2-P -gale.
We note that P is a computable probability measure, s2 is a rational

number and d2 is a constructive s2-P -gale. For each n, the condition in line
8 can be verified by a lower semicomputation. It follows that each dn is a
constructive s2-P -gale, and hence, so is d′.

We define bc′(w) =
∑|w|−1

i=0 bc′i(w). Let sa′(w) =
∑|w|−1

i=0 sa′i(w). Each
san is lower semicomputable by a computation that is 0 until the condition in
line 8 is true, and converges from below to αnvalw

2 when the condition is true.
Hence sa′ is also lower semicomputable. Each san is lower semicomputable
by a computation that is 0 until the condition in line 8 is true, and converges
from below to αnvalw

2 when the condition is true. Hence sa′ is also lower
semicomputable. Unlike the martingale case, we cannot say that sa′(w) is
monotone increasing in the length of w. However, we can use the remark
previously noted, to construct a martingale which for every w is defined as
bc′(w)P s2−1(Cw) + sa′(w)P s2−1(Cw).

We prove that for each n, sa′n(w)P (s2−1)(Cw) is constant for all w with at
least n bits. To see this, let w be a string such that |w| ≥ n. If d2(w[0 . . . n−
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1]) > P s1−s2(Cw[0...n−1]), then we have

sa′n(w)P (Cw) =
αn
2
valwP

(s2−1)(Cw)

=
αn
2
d2(w[0 . . . n− 1])P (1−s2)(Cw|Cw[0...n−1])P

(s2−1)(Cw)

=
αn
2
d2(w[0 . . . n− 1])

1
P (1−s2)(Cw[0...n−1])

,

which is a constant. If, d2(w[0 . . . n − 1]) ≤ P s1−s2(Cw[0...n−1]), then sa′n is
zero, so sa′n(w)P (s2−1)(Cw) is zero.

We can see that sa′(w)P s2−1(Cw) is monotone increasing with the length
of w. This is because for each i, sa′i appears in the summation of sa′ only
on strings which are at least i bits long.

We define p : Σ∗ → R+ by

p(w) = sa′(w)P s2−1(Cw),

for finite strings w.
Now, we define p : C→ [0,∞] by

p(ω) = lim
n→∞

p(ω[0 . . . n− 1]).

Since sa′ is lower semicomputable, it follows that p is lower semicomputable.
Then we have

∫
Cλ
pdP ≤ d2(λ)P (C) = 1. Thus p is a measure of impossi-

bility.
Also, ∫

Cw
p(ω)dP

P s2(Cw)
≥ sa′(w)

for all strings w.
We have to analyze the behavior of sa′ on sequences where d1 succeeds.

We can observe the following fact. If the s1-gale d1 succeeds on ω, then for
every i, there is a least n such that d1(ω[0 . . . n−1]) ≥ 2[1/c]i. Then, at this
length n, d2(ω[0 . . . n − 1]) ≥ 2[1/c]iP (ω[0 . . . n − 1])(s1−s2). This quantity
is at least [1/c]i+(s2−s1)n. Then sa′n(ω[0 . . . n − 1]) > [1/c]i+(s2−s1)n/2, so
sa′(ω[0 . . . n− 1]) > [1/c]Ω(n).

So we have that

lim sup
n→∞

d1(ω[0 . . . n− 1]) =∞⇔ lim sup
n→∞

sa′(ω[0 . . . n− 1]) =∞.
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If d1 strongly succeeds on ω, then for each i, for all large enough n,
we have d1(ω[0 . . . n − 1]) > 2[1/c]i, which implies d2(ω[0 . . . n − 1]) ≥
2[1/c]iP (ω[0 . . . n−1])(s1−s2), and hence sa′n(ω[0 . . . n−1]) > [1/c]i+(s2−s1)n−0.5(s2−s1)n

= [1/c]Ω(n). This implies that, lim infn→∞ sa′(ω[0 . . . n− 1]) =∞.
Thus,

lim inf
n→∞

d1(ω[0 . . . n− 1]) =∞⇔ lim inf
n→∞

sa′(ω[0 . . . n− 1]) =∞.

Hence

lim sup
n→∞

d(ω[0 . . . n− 1]) =∞ =⇒ lim sup
n→∞

∫
Cω[0...n−1]

p(ω)dP

P s2(Cω[0...n−1])
=∞.

Similarly,

lim inf
n→∞

d(ω[0 . . . n− 1]) =∞ =⇒ lim inf
n→∞

∫
Cω[0...n−1]

p(ω)dP

P s2(Cω[0...n−1])
=∞.

Thus s2 ∈ Pstr(X) if s2 ∈ Gstr(X), and s2 ∈ P(X) if s2 ∈ G(X).

If s = 1, the condition that lim supn→∞

R
C(ω[0...n−1]) pdP

P s(Cω[0...n−1])
= lim supn→∞EP [p|Cω[0...n−1]]

is similar to the case of conversion of the martingale case.
If s > 1, and let ε > 0 be arbitrary. then we pick a rational number s2

such that s < s2 < s+ ε. The s2-gale d2 which bets, for every string w and
every symbol b, in the proportion P (Cwb|Cw)1−s2 succeeds on the Cantor
Space C. We define p(ω[0 . . . n−1]) = d2(ω[0 . . . n−1])P s2−1(ω[0 . . . n−1]),
a monotone function in n. Then p(ω) = limn→∞ p(ω[0 . . . n−1]) is a measure
of impossibility. Then∫

ω[0...n−1] pdP

P s2(Cω[0...n−1])
= d2(ω[0 . . . n− 1]),

so ω is s2-improbable with respect to P if ω ∈ S∞[d2], and ω is strongly
s2-improbable with respect to P if ω ∈ S∞str[d2].

Conversely, let s ∈ P(X). Then there exists a measure of impossibility
p such that X is s-improbable with respect to p. We define a martingale
d : Σ∗ → R+ as follows. For finite strings w,

d(w) = EP [p|Cw]P 1−s(Cw).

It is routine to see that d is a lowersemicomputable s-P -gale. Moreover,

lim sup
n→∞

∫
Cω[0...n−1]

pdP

P s(Cω[0...n−1])
=∞ =⇒ lim supn→∞ d(ω[0 . . . n− 1]) =∞.
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Thus, we can see that s ∈ G(X). Similarly, we can establish that if s ∈
Pstr(X), then s ∈ Gstr(X).

Using this, we can characterize effective Hausdorff and packing dimen-
sions in the following way.

Corollary 21. (Alternate Characterization of Constructive Dimension) For
any set X ⊆ C, the constructive Hausdorff P -dimension of X = inf P(X),
and the constructive P -packing dimension of X = inf Pstr(X).

7 Scaled Dimension

In this section, we give an alternate characterization of constructive scaled
dimension, introduced by Hitchcock, Lutz and Mayordomo [4]. The dis-
cussion in this section focuses on Lebesgue measure, since the theory of
scaled dimension has been developed so far for the Lebesgue measure (or
equivalently, uniform probability distribution).

Scaled dimension is a generalization of classical Hausdorff and classical
packing dimension. Just as Hausdorff dimension and packing dimension al-
lows us to make distinctions between measure 0 sets, scaled dimension allows
us to make distinctions between dimension 0 sets. The motivation for study-
ing scaled dimension comes from complexity theory and its applications, like
cryptography, where many interesting classes have resource-bounded dimen-
sion 0 in the appropriate resource-bounded setting (for example, ESPACE)
[6].

However, we give a characteracterization of scaled dimension at the con-
structive level, using a suitable generalization of the characterization for
constructive dimension, given in the previous section. We first give the no-
tion of a scale, and then introduce the notion of a scaled improbability, and
use this notion to give a new characterization of scaled dimension.

Definition 22. (Hitchcock, Lutz, Mayordomo, 2004 [4]) A scale is a con-
tinuous function g : H × R→ R with the following properties.

1. H = (a,∞) for some a ∈ R ∪ {∞}.

2. g(m, 1) = m for all m ∈ H.

3. g(m, 0) = g(m′, 0) ≥ 0 for all m,m′ ∈ H.

4. For every sufficiently large m ∈ H, the function s 7→ g(m, s) is non-
negative and strictly increasing.
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5. For all s′ > s ≥ 0, limm→∞[g(m, s′)− g(m, s)] =∞.

Notation Let g be a scale. Then for any j ∈ H, we define

δj(s1, s2) = 2g(j,s2)−g(j,s1).

If s1 < s2, then δj(s1, s2) > 1.
We deal with computable rapidly growing scales in this section. We give

the definition of a scaled gale.

Definition 23. (Hitchcock, Lutz and Mayordomo [4]) Let g : H × R → R
be a computable scale, and s ∈ [0,∞).

A g-scaled s-gale (briefly, an s(g)-gale) is a function d : Σ∗ → [0,∞) such
that for all w ∈ Σ∗ with |w| ∈ H,

d(w)2−g(|w|,s) = d(w0)2−g(|w0|,s) + d(w1)2−g(|w1|,s). (9)

An s-gale (whose definition is given in section 6) is a g-scaled s-gale
where g(n, s) = ns for all s and n.

The notion of success and strong success of a g-scaled s-gale are exactly
the lim sup and the lim inf success defined in section 6. Therefore, we do
not reproduce it here.

We now introduce a notion of scaled improbability, based on the notion
of the scale functions defined above.

Definition 24. Let X ⊆ C. We say that X is s(g)-improbable with respect
to a measure of impossibility1 p : C → R+ if for every binary sequence
ω ∈ X, we have

lim sup
n→∞

∫
Cω[0...n−1] p(ω)dω

2−g(n,s)
= ∞. (10)

We say X is strongly s(g)-improbable with respect to p if for every binary
sequence ω ∈ X, we have

lim inf
n→∞

∫
Cω[0...n−1] p(ω)dω

2−g(n,s)
= ∞. (11)

We introduce some notation which is used in the definition of scaled di-
mension. We recall the standard definitions of scaled dimension, and scaled
strong dimension, and then give an alternate characterization of scaled di-
mension using the concept of scaled improbability.

1The probability measure is the uniform probability measure.

21



Notation. For X ⊆ C, let G(g)(X) be the set of all s ∈ [0,∞) such
that there is an s(g)-gale d for which X ⊆ S∞[d] and P(X) be the set of all
s ∈ [0,∞) such that X is s(g)-improbable with respect to some measure of
impossibility. Similarly, let G(g)

str (X) be the set of all s ∈ [0,∞) such that
there is an s(g)-gale d for which X ⊆ S∞str[d] and Pstr(X) be the set of all
s ∈ [0,∞) such that X is strongly s(g)-improbable with respect to some
P -measure of impossibility.

Definition 25. (Hitchcock, Lutz, Mayordomo [4]) If g is a scale, then the
g-scaled dimension of a set X ⊆ C is dim(g)(X) = inf G(g)(X). The g-scaled
strong dimension of X is Dim(g)(X) = inf G(g)(X).

We introduce the notion of a rapidly growing scale.

Definition 26. Let p be the smallest natural number in H. A rapidly
growing scale is a scale such that for any s, s′ where s′ > s, there is a
constant 0 < k < 1 such that

∑∞
m=p 2−kδm(s′,s) is finite.

The above notion is reminiscent of the notion of strong positivity of
the probability measure dealt with in the preceding sections, since strong
positivity also ensures convergence of an infinite series necessary in the con-
struction of the countable family of martingales.

The following lemma is crucial in the alternate characterization of scaled
dimension. The constructions we use in the proof of the lemma are exactly
analogous to those in the proof of Lemma 20 (in fact, in the case of the
uniform probability measure, the constructions in Lemma 20 are special
cases of the following constructions when the scale is g(n, s) = ns.).

Lemma 27. Let g be a computable rapidly growing scale, s ∈ [0,∞) and
X ⊆ C. Then s ∈ G(g)(X) if and only if s ∈ P(g)(X), and s ∈ G(g)

str(X) if
and only if s ∈ P(g)

str (X).

Proof. Let g be a computable rapidly growing scale.
Let s1 ∈ [0,∞) be a rational such that g(n, s1) < n for all n ∈ N, when

defined, and ε > 0 be arbitrary. Let s2 ∈ [0,∞) be such that for every n
where both are defined, εf(n) < g(n, s2)−g(n, s1), and g(n, s2) < n. Let p be
the smallest natural number such that both g(p, s1) and g(p, s2) are defined,
and M > 2−g(p,s2)−g(p,s1). Let 0 < k < 1 be such that

∑∞
m=p 2−kδn(s2,s1) <

∞. Let d1 : Σ∗ → R be a g-scaled s1-gale. Then d2 : {0, 1}∗ → R defined by
d2(w) = d1(w)2g(|w|,s2)−g(|w|,s1) is a g-scaled s2-gale.
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Figure 2: Algorithm 3
1: procedure d(n)(w)
2: αn = 2−kδn(s2,s1)

3: if g(n, s2) is not defined then
4: bc(n)′(w)← αnd2(w)
5: sa(n)′(w)← 0
6: return bc(n)′(w) + sa(n)′(w)
7: end if
8: if |w| < n then
9: bc(n)′(w)← αnd2(w)

10: sa(n)′(w)← 0.
11: else
12: valw = d2(w[0 . . . n− 1])2g(j,s2)−g(j−1,s2)−1

13: if d2(w[0 . . . n− 1]) > 2δn(s2,s1) then
14: bc(n)′(w), sa(n)′(w)← αnvalw/2
15: else
16: bc(n)′(w)← αnvalw
17: sa(n)′(w)← 0
18: end if
19: end if
20: return bc(n)′(w) + sa(n)′(w)
21: end procedure

We will construct the following g-scaled s2-gale, which transfers some
capital into a “savings account”. We will use this gale to build the s(g)

2 -
measure of improbability. The gale d(n) : Σ∗ → R is defined in Algorithm
3.

Let α =
∑∞

i=p 2−kδi(s2,s1). Then, as in the proof of Lemma 20, that
d′ = 1

α

∑∞
i=0 d

(n) is a constructive g-scaled s2-gale.
Let sa′(w) =

∑|w|−1
i=0 sa(n)′(w). We define p : Σ∗ → [0,∞] by

p(w) =

{
sa′(w)2−g(|w|,s2)+|w| if g is defined for |w|
sa′(w) otherwise.

for strings w.
We define the function p : C→ [0,∞] by

p(ω) = lim
n→∞

p(ω[0 . . . n− 1]).
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As in Lemma 20, if d is lower semicomputable, it is routine to verify that p
is a measure of impossibility.

Also, ∫
C(ω[0...n−1]) pdP

2−g(n,s2)
≥ sa′(ω[0 . . . n− 1]).

If d1 succeeds on a binary sequence ω, then there is an n for which
d2(ω[0 . . . n−1]) > 2δn(s2,s1). Then, sa(n)′(ω[0 . . . n−1]) ≥M−12(1−k)δn(s2,s1).
Hence,

lim sup
n→∞

d1(ω[0 . . . n− 1]) =∞⇔ lim sup
n→∞

sa′(ω[0 . . . n− 1]) =∞.

If d1 strongly succeeds on ω, then for all large enough lengths n, we have
sa(n)′(ω[0 . . . n]) ≥M−12(1−k)δn(s2,s1), so

lim inf
n→∞

d1(ω[0 . . . n− 1]) =∞⇔ lim inf
n→∞

sa′(ω[0 . . . n− 1]) =∞.

If, g(n, s) = n for all n, then any g-scaled s-gale is a martingale. If there
is a martingale that succeeds on ω, there is a measure of impossibility p to
witness that ω is s(g)-improbable with respect to P , and if there is a mar-
tingale that strongly succeeds on ω, then there is a measure of impossibility
p to witness that ω is s(g)-improbable.

If g(n, s) > n for all large enough n, then the gale d(w) = 2g(|w|,s)−g(|w|−1,s)

strongly succeeds on C. Then, if we define p(ω) = limn→∞ d(ω[0 . . . n −
1])2−g(n,s)+g(n−1,s)−1, we can prove that p is a measure of impossibility such
that C is strongly s(g)-improbable.

Hence, if s ∈ G(g)(X), we can conclude that

lim sup
n→∞

∫
Cω[0...n−1]

p(ω)dω

2−g(n,s)
=∞,

and if s ∈ G(g)
str(X), we can conclude that

lim inf
n→∞

∫
Cω[0...n−1]

p(ω)dω

2−g(n,s)
=∞.

Conversely, let s ∈ P(g)(X). Then there is a measure of impossibility p
such that X is s(g)-improbable with respect to p. Define a function d : Σ∗ →
R as follows. For finite strings w,

d(w) = E[p|Cw]2g(|w|,s)−|w|
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It is routine to show that d is a lower semicomputable s(g)-gale. Moreover,
as in Lemma 20,

lim sup
n→∞

∫
Cω[0...n−1]

p(x)dx

2−g(n,s)
= lim sup

n→∞
d(ω[0 . . . n− 1]).

Thus, we can see that s ∈ G(g)(X). Similarly, we can establish that if
s ∈ P(g)

str (X), then s ∈ G(g)
str(X).

Corollary 28. (Alternate Characterization of Constructive Scaled Dimen-
sion) For any scale g, for any set X ⊆ C, the constructive g-scaled dimen-
sion of X is inf P(g)(X), and the constructive g-scaled strong dimension of
X is inf P(g)

str (X).
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